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Abstract: In this work, a finite-horizon zero-sum linear-quadratic differential game, modeling a
pursuit-evasion problem, was considered. In the game’s cost function, the cost of the control of the
minimizing player (the minimizer/the pursuer) was much smaller than the cost of the control of
the maximizing player (the maximizer/the evader) and the cost of the state variable. This smallness
was expressed by a positive small multiplier (a small parameter) of the square of the L2-norm of
the minimizer’s control in the cost function. Parameter-free sufficient conditions for the existence of
the game’s solution (the players’ optimal state-feedback controls and the game value), valid for all
sufficiently small values of the parameter, were presented. The boundedness (with respect to the small
parameter) of the time realizations of the optimal state-feedback controls along the corresponding
game’s trajectory was established. The best achievable game value from the minimizer’s viewpoint
was derived. A relation between solutions of the original cheap control game and the game that
was obtained from the original one by replacing the small minimizer’s control cost with zero, was
established. An illustrative real-life example is presented.

Keywords: linear-quadratic differential game; cheap control; singular (degenerate) differential game;
pursuit-evasion game

1. Introduction

A cheap control problem is an extremal control problem where a control cost of at least
one of the decision makers is much smaller than a state cost in at least one cost function
of the problem. Cheap control problems appear in many topics of optimal control and
differential game theories. For example, such problems appear in the following topics:
(1) regularization of singular optimal controls (see, e.g., [1–4]); (2) limitation analysis for
optimal regulators and filters (see, e.g., [5–7]); (3) extremal control problems with high gain
control in dynamics (see, e.g., [8,9]); (4) inverse optimal control problems (see, e.g., [10]);
(5) robust optimal control of systems with uncertainties/disturbances (see, e.g., [11,12]);
(6) guidance problems (see, e.g., [13,14]).

The Hamilton boundary-value problem and the Hamilton–Jacobi–Bellman–Isaacs
equation, associated with the cheap control problem by solvability (control optimality)
conditions, are singularly perturbed because of the smallness of the control cost.

In the present paper, we considered one class of cheap control pursuit-evasion differ-
ential games. Cheap control differential games have been studied in a number of works
in the literature (see, e.g., [4,11,12,15,16] and references therein). In most of these studies,
the case where a state cost appeared in the integral part of the cost function was treated.
This feature allowed (subject to some additional condition on the state cost) the use of the
boundary function method [17] for an asymptotic analysis of the corresponding singularly
perturbed Hamilton–Jacobi–Bellman–Isaacs equation. Moreover, the time realization of the
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optimal state-feedback control with the small cost had an impulse-like behaviour, meaning
it was unbounded as the control cost tended to zero. To the best of our knowledge, cheap
control games, where the time realization of the state-feedback optimal control with the
small cost remains bounded as this cost tends to zero, were considered only in a few works
and only for specific problem settings. Thus in [13], a pursuit-evasion problem, modeled
by a linear-quadratic zero-sum differential game with time-invariant four-dimensional
dynamics and scalar controls of the players, was considered. In this game, the control cost
of the pursuer was assumed to be small. Moreover, the integral part of the game’s cost
function did not contain the state cost. By a linear state transformation, this cheap control
game was converted to a scalar linear-quadratic cheap control game. In this scalar game,
the time realization of the optimal state-feedback pursuer’s control against a bang–bang
evader’s control was analyzed. Sufficient conditions for the boundedness of this time real-
ization for all sufficiently small values of the pursuer’s control cost were derived. In [14],
a similar problem was solved in the case where the control costs of both the pursuer and
evader were small and had the same order of smallness. In [11], a more general pursuit-
evasion problem was studied. This problem was modeled by a linear-quadratic zero-sum
differential game with time-dependent six-dimensional dynamics. The controls of both
the pursuer and evader were scalar. The costs of these controls were small and had the
same order of smallness. The state cost was absent in the integral part of the game’s cost
function. This game also allowed a transformation to a scalar linear-quadratic cheap control
game. In this scalar game, the time realization of the optimal state-feedback pursuer’s
control against an open-loop bounded evader’s control was analyzed. Sufficient conditions,
guaranteeing that the time realization satisfied given constraints for all sufficiently small
values of the controls’ costs, were obtained. In [12], a robust tracking problem, modeled by
a linear-quadratic zero-sum differential game with time-dependent n-dimensional (n ≥ 1)
dynamics, was analyzed. The controls of both minimizing and maximizing players were
vector-valued. The costs of these controls were small and had the same order of smallness.
For this game, the limit behaviour of the state-dependent part of the cost function, gener-
ated by the optimal state-feedback control of the minimizing player (the minimizer) and
any L2-bounded open-loop control of the maximizing player (the maximizer), was studied.
Sufficient conditions, providing the tendency to zero of this part of the cost function as the
small controls’ costs approached zero (the exact tracking), were derived. Subject to these
conditions, necessary conditions for the boundedness of the time realization of the optimal
state-feedback minimizer’s control for all sufficiently small values of the controls’ costs
were obtained.

In the present work, we studied a much more general cheap control linear-quadratic
zero-sum differential game than those in [11,13,14]. For this game, an asymptotic analysis
of its solution was carried out in the case where the small control’s cost of the minimizer
tended to zero. In particular, the asymptotic behavior of the time realizations of both
players’ optimal state-feedback controls along the corresponding (optimal) trajectory of
the game was analyzed. The boundedness of these time realizations was established for
all sufficiently small values of the minimizer’s control cost. Moreover, in contrast to the
results of the work [12], the conditions for such boundedness were sufficient and they were
not restricted by any other specific conditions, such as the exact tracking in [12].

Also in the present work, we considered one more linear-quadratic zero-sum differ-
ential game. This game was obtained from the original cheap control game by replacing
the small control cost of the minimizer with zero. This new game was called a degenerate
game and was similar to the continuous/discrete time system obtained from a singularly
perturbed system by replacing a small parameter of singular perturbation with zero. The
relation between the original cheap control game and the degenerate game was established.

This paper is organised as follows. In Section 2, the problems of the paper (the cheap
control differential game and the degenerate differential game) are rigorously formulated,
main definitions and some preliminary results are presented and the objectives of the paper
are stated. In Section 3, the solution of the cheap control differential game is obtained and
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the asymptotic analysis of this solution is carried out. Section 4 is devoted to deriving
the solution of the degenerate differential game. In addition, some relations between the
solution of the cheap control differential game and the degenerate differential game are
established in this section. In Section 5, based on the theoretical results of the paper, one
interception problem in 3D space was studied. Conclusions of the paper are presented in
Section 6.

2. Preliminaries and Problem Statement

Consider the controlled system

ẋ = A(t)x + B(t)u + C(t)v, x(t0) = x0, t ∈ [t0, t f ], (1)

where x ∈ Rn, u ∈ Rr and v ∈ Rs are the state, the pursuer’s control and the evader’s
control, respectively; t0 is an initial time moment; t f is a final time moment; the matrix-
valued functions A(t), B(t) and C(t) of appropriate dimensions are continuous for t ∈
[t0, t f ]. The controls u(t) and v(t) are assumed to be measurable bounded functions for
t ∈ [t0, t f ].

The target set is a linear manifold

Tx = {x ∈ Rn : Dx + d = 0}, (2)

where D is a prescribed m × n-matrix (m < n) and d ∈ Rm is a prescribed vector. The
objective of the pursuer is to steer the system onto a target set at t = t f , whereas the evader
desires to avoid hitting the target set by exploiting feedback strategies u(t, x) and v(t, x),
respectively.

Let us consider the set Ux of all functions u = u(t, x) : [0, t f ]×Rn → Rr, which are
measurable w.r.t. t ∈ [0, t f ] for any fixed x ∈ Rn and satisfy the local Lipschitz condition
w.r.t. x ∈ Rn uniformly in t ∈ [0, t f ]. Similarly, we consider the set Vx of all functions
v = v(t, x) : [0, t f ]×Rn → Rs, which are measurable w.r.t. t ∈ [0, t f ] for any fixed x ∈ Rn

and satisfy the local Lipschitz condition w.r.t. x ∈ Rn uniformly in t ∈ [0, t f ].

Definition 1. Let us denote by Ux the set of all functions u(t, x) ∈ Ux satisfying the following con-
ditions: (1ux) the initial-value problem (1) for u(t) = u(t, x) and any fixed v(t) ∈ L2

(
[0, t f ],Rs)

has the unique absolutely continuous solution xu(t), t ∈ [0, t f ]; (2ux) u
(
t, xu(t)

)
∈ L2

(
[0, t f ],Rr).

Also, let us denote by Vx the set of all functions v(t, x) ∈ Vx satisfying the following conditions:
(1vx) the initial-value problem (1) for v(t) = v(t, x) and any fixed u(t) ∈ L2

(
[0, t f ],Rr) has the

unique absolutely continuous solution xv(t), t ∈ [0, t f ]; (2vx) v
(
t, xv(t)

)
∈ L2

(
[0, t f ],Rs).

In what follows, the set Ux is called the set of all admissible state-feedback controls (strategies)
of the pursuer, while the set Vx is called the set of all admissible state-feedback controls (strategies)
of the evader.

Below, two differential games modeling this conflict situation are formulated.

2.1. Cheap Control Differential Game

The first is the Cheap Control Differential Game (CCDG) with the dynamics (1) and
the cost function

J̃αβ(u, v) = |Dx(t f ) + d|2 + α

t f∫
t0

|u(t)|2dt− β

t f∫
t0

|v(t)|2dt, (3)

where |x| denotes the Euclidean norm of the vector x; α, β > 0 are the penalty coefficients
for the players’ control expenditure, and α is assumed to be small. The objectives of
the pursuer and the evader were to minimize and to maximize the cost function (3) by
u(·) ∈ Ux and v(·) ∈ Vx, respectively.
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The CCDG (1), (3) is a zero-sum linear-quadratic differential game (see, e.g., [18–22]).

Definition 2. Let u(t, x), (t, x) ∈ [t0, t f ]×Rn, be any given admissible pursuer strategy, i.e.,
u(·) ∈ Ux. Then, the value

J̃u
αβ(u(·); t0, x0) = sup

v(t)∈L2([t0,t f ],Rs)
J̃αβ

(
u(·), v(t)

)
, (4)

calculated along the corresponding trajectories of the system (1), is called the guaranteed result of
the strategy u(·) in the CCDG.

The value
J̃u∗
αβ(t0, x0) = inf

u(·)∈Ux
J̃u
αβ(u(·); t0, x0) (5)

is called the upper value of the CCDG.
If the infimum value (5) is attained for ũ0

αβ(t, x) ∈ Ux, i.e.,

inf
u(·)∈Ux

J̃u
αβ(u(·); t0, x0) = min

u(·)∈Ux
J̃u
αβ(u(·); t0, x0)

and
ũ0

αβ(t, x) = arg min
u(·)∈Ux

J̃u
αβ(u(·); t0, x0), (6)

the strategy ũ0
αβ(t, x) is called the optimal strategy of the pursuer in the CCDG.

Definition 3. Let v(t, x), (t, x) ∈ [t0, t f ] × Rn, be any given admissible evader strategy, i.e.,
v(·) ∈ Vx. Then, the value

J̃v
αβ(v(·); t0, x0) = inf

u(t)∈L2([t0,t f ],Rr)
J̃αβ

(
u(t), v(·)

)
, (7)

calculated along the corresponding trajectories of the system (1), is called the guaranteed result of
the strategy v(·) in the CCDG.

The value
J̃v∗
αβ(t0, x0) = sup

v(·)∈Vx

J̃v
αβ(v(·); t0, x0) (8)

is called the lower value of the CCDG.
If the supremum value (8) is attained for ṽ0

αβ(t, x) ∈ Vx, i.e.,

sup
v(·)∈Vx

J̃v
αβ(v(·); t0, x0) = max

v(·)∈Vx
J̃v
αβ(v(·); t0, x0)

and
ṽ0

αβ(t, x) = arg max
v(·)∈Vx

J̃v
αβ(v(·); t0, x0), (9)

the strategy ṽ0
αβ(t, x) is called the optimal strategy of the evader in the CCDG.

Definition 4. If
J̃u∗
αβ(t0, x0) = J̃v∗

αβ(t0, x0) , J̃0
αβ(t0, x0), (10)

then it is said that the CCDG has the game value J̃0
αβ.
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2.2. Singular (Degenerate) Differential Game

In this game the dynamics were the same as in the CCDG, i.e., (1), while the cost
function of this game was obtained from (3) by replacing α with zero:

J̃β(u, v) = |Dx(t f ) + d|2 − β

t f∫
0

|v(t)|2dt. (11)

The differential game (1), (11) is called the Singular Differential Game (SDG).

Remark 1. The sets of all admissible state-feedback controls (strategies) of the pursuer and the
evader in the SDG are the same as in the CCDG, i.e., Ux and Vx, respectively. The guaranteed
results J̃u

β (u(·); t0, x0) and J̃v
β(v(·); t0, x0) of any given strategies u(·) ∈ Ux and v(·) ∈ Vx in the

SDG are defined similarly to (4) and (7), respectively. Namely,

J̃u
β (u(·); t0, x0) = sup

v(t)∈L2([t0,t f ],Rs)
J̃β

(
u(·), v(t)

)
, (12)

J̃v
β(v(·); t0, x0) = inf

u(t)∈L2([t0,t f ],Rr)
J̃β

(
u(t), v(·)

)
. (13)

The upper J̃u∗
β (t0, x0) and lower J̃v∗

β (t0, x0) values of the SDG are defined similarly to (5)
and (8), respectively. Namely,

J̃u∗
β (t0, x0) = inf

u(·)∈Ux
J̃u
β (u(·); t0, x0), (14)

J̃v∗
β (t0, x0) = sup

v(·)∈Vx

J̃v
β(v(·); t0, x0). (15)

If
J̃u∗
β (t0, x0) = J̃v∗

β (t0, x0) , J̃∗β(t0, x0), (16)

then J̃∗β(t0, x0) is called the value of the SDG.

Definition 5. The sequence of state-feedback controls {ũβ,k(·)}, ũβ,k(·) ∈ Ux, (k = 1, 2, ...), is
called minimizing in the SDG if

lim
k→∞

J̃u
β (ũβ,k(·); t0, x0) = J̃u∗

β (t0, x0). (17)

If there exists ũ∗β(t, x) ∈ Ux, for which the upper value of the SDG is attained, this state-
feedback control is called an optimal state-feedback control of the pursuer in the SDG:

ũ∗β(t, x) = arg min
u(·)∈Ux

J̃u
β (u(·); t0, x0). (18)

Definition 6. The sequence of state-feedback controls {ṽβ,k(·)}, ṽβ,k(·) ∈ Vx, (k = 1, 2, ...), is
called maximizing in the SDG if

lim
k→∞

J̃v
β(ṽβ,k(·); t0, x0) = J̃v∗

β (t0, x0). (19)

If there exists ṽ∗β(t, x) ∈ Vx, for which the lower value of the SDG is attained, this state-
feedback control is called an optimal state-feedback control of the evader in the SDG:

ṽ∗β(t, x) = arg max
v(·)∈Vx

J̃v
β(v(·); t0, x0). (20)
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Remark 2. Since the cost function (11) of the SDG does not contain a quadratic control cost of
u, its solution (if it exists) cannot be obtained either by the Isaacs’s MinMax principle or by the
Bellman–Isaacs equation method (see [23]). This justified calling this game singular. The CCDG
could be considered as a singularly perturbed SDG, whereas the SDG was a degenerate CCDG.

2.3. Reduction of the Games

Let Φ(t, τ) be the transition matrix of the homogeneous system ẋ = A(t)x. By
applying the state transformation

z = DΦ(t f , t)x + d, (21)

the system (1) is reduced to

ż = H1(t)u + H2(t)v, z(t0) = z0, t ∈ [t0, t f ], (22)

where m× r and m× s matrices H1(t) and H2(t) are

H1(t) = DΦ(t f , t)B(t), H2(t) = DΦ(t f , t)C(t), (23)

z0 = DΦ(t f , t0)x0 + d. (24)

Due to (21), for the reduced system (22), the cost functions (3) and (11) of the CCDG
and SDG become

Jαβ = |z(t f )|2 + α

t f∫
t0

|u(t)|2dt− β

t f∫
t0

|v(t)|2dt, (25)

and

Jβ = |z(t f )|2 − β

t f∫
t0

|v(t)|2dt, (26)

respectively.
The games (22), (25) and (22), (26) are called the Reduced Cheap Control Differential

Game (RCCDG) and the Reduced Singular Differential Game (RSDG), respectively.
Let us consider the set Uz of all functions u = u(t, z) : [0, t f ]×Rm → Rr, which are

measurable w.r.t. t ∈ [0, t f ] for any fixed z ∈ Rm and satisfy the local Lipschitz condition
w.r.t. z ∈ Rm uniformly in t ∈ [0, t f ]. Similarly, we consider the set Vz of all functions
v = v(t, z) : [0, t f ]×Rm → Rs, which are measurable w.r.t. t ∈ [0, t f ] for any fixed z ∈ Rm

and satisfy the local Lipschitz condition w.r.t. z ∈ Rm uniformly in t ∈ [0, t f ].

Definition 7. Let us denote by Uz the set of all functions u(t, z) ∈ Uz satisfying the following con-
ditions: (1uz) the initial-value problem (22) for u(t) = u(t, z) and any fixed v(t) ∈ L2

(
[0, t f ],Rs)

has the unique absolutely continuous solution zu(t), t ∈ [0, t f ]; (2uz) u
(
t, zu(t)

)
∈ L2

(
[0, t f ],Rr).

In addition, let us denote by Vz the set of all functions v(t, z) ∈ Vz satisfying the following con-
ditions: (1vz) the initial-value problem (22) for v(t) = v(t, z) and any fixed u(t) ∈ L2

(
[0, t f ],Rr)

has the unique absolutely continuous solution zv(t), t ∈ [0, t f ]; (2vx) v
(
t, zv(t)

)
∈ L2

(
[0, t f ],Rs).

In what follows, the set Uz is called the set of all admissible state-feedback controls (strategies)
of the pursuer in both games RCCDG and RSDG, while the set Vz is called the set of all admissible
state-feedback controls (strategies) of the evader in both games RCCDG and RSDG.

Remark 3. Based on Definition 7, the guaranteed results Ju
αβ(u(·); t0, z0) and Jv

αβ(v(·); t0, z0) of
any given strategies u(·) ∈ Uz and v(·) ∈ Vz in the RCCDG are defined similarly to (4) and (7),
respectively. The upper Ju∗

αβ(t0, z0) and lower Jv∗
αβ(t0, z0) values of the RCCDG are defined similarly

to (5) and (8), respectively. The optimal state-feedback controls of the pursuer u0
αβ(t, z) and the
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evader v0
αβ(t, z), (t, z) ∈ [0, t f ]×Rm, are defined similarly to (6) and (9), respectively. The value

of the RCCDG J0
αβ(t0, z0) is defined similarly to (10).

Remark 4. Based on Definition 7, the guaranteed results Ju
β (u(·); t0, z0) and Jv

β(v(·); t0, z0) of
any given strategies u(·) ∈ Uz and v(·) ∈ Vz in the RSDG are defined similarly to (12) and (13),
respectively. The upper Ju∗

β (t0, z0) and lower Jv∗
β (t0, z0) values of the RSDG are defined similarly

to (14) and (15), respectively. The minimizing sequence {uβ,k(·)}, uβ,k(·) ∈ Uz, (k = 1, 2, ...),
and the optimal state-feedback control u∗β(t, z) of the pursuer in the RSDG are defined similarly
to (17) and (18), respectively. The maximizing sequence {vβ,k(·)}, vβ,k(·) ∈ Vz, (k = 1, 2, ...), and
the optimal state-feedback control v∗β(t, z) of the evader in the RSDG are defined similarly to (19)
and (20), respectively. The value of the RSDG J∗β(t0, z0) is defined similarly to (16).

Remark 5. If u0
αβ(t, z) and v0

αβ(t, z) are the optimal strategies of the pursuer and the evader in the
RCCDG, then the strategies

u0
αβ

(
t, DΦ(t f , t)x + d

)
and v0

αβ

(
t, DΦ(t f , t)x + d

)
, (27)

are optimal strategies of the pursuer and the evader in the CCDG.
If {uβ,k(t, z)}+∞

k=1 and {vβ,k(t, z)}+∞
k=1 are the minimizing sequence and the maximizing se-

quence in the RSDG, then the sequences{
uβ,k

(
t, DΦ(t f , t)x + d

)}+∞

k=1
and

{
vβ,k

(
t, DΦ(t f , t)x + d

)}+∞

k=1
(28)

are minimizing and maximizing sequences in the SDG. Moreover, if u∗β(t, z) and v∗β(t, z) are the
optimal strategies of the pursuer and the evader in the RSDG, then the strategies

u∗β
(

t, DΦ(t f , t)x + d
)

and v∗β
(

t, DΦ(t f , t)x + d
)

, (29)

are optimal strategies of the pursuer and the evader in the SDG.

2.4. Objectives of the Paper

In this paper, we investigated the asymptotic behaviour of the solution to the RCCDG
and the relation between the RCCDG and the RSDG solutions. In particular, the objectives
of the paper were:

(1) to establish the boundedness of the time realizations u0
αβ(t) = u0

αβ

(
t, z0

αβ(t)
)

,

v0
αβ(t) = v0

αβ

(
t, z0

αβ(t)
)

of the RCCDG optimal strategies along the corresponding

trajectory z0
αβ(t) of (22) for α→ 0;

(2) to establish the best achievable RCCDG value from the pursuer’s point of view:

J0
best(t0, z0)

4
= inf

α∈(0,α0]
J0
αβ(t0, z0), (30)

where α0 > 0 is some sufficiently small number;
(3) to obtain the RSDG value, and establish the limiting relation between the values of

the RCCDG and the RSDG:

lim
α→0

J0
αβ(t0, z0) = J∗β(t0, z0); (31)

(4) to construct the RSDG pursuer’s minimizing sequence
{

uβ,k(·)
}+∞

k=1
and the evader’s

optimal state-feedback control v∗β(·) based on the RCCDG solution.
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3. The RCCDG Solution and Its Asymptotic Properties

By virtue of [19–22], we obtained the RCCDG solution:

J0
αβ(t0, z0) = zT

0 Rαβ(t0)z0, (32)

u0
αβ(t, z) = − 1

α
HT

1 (t)Rαβ(t)z, (33)

v0
αβ(t, z) =

1
β

HT
2 (t)Rαβ(t)z, (34)

where the matrix-valued function Rαβ(t) is the solution of the Riccati matrix differential
equation

Ṙ = RQαβ(t)R, R(t f ) = Im, t ∈ [t0, t f ], (35)

Qαβ(t) =
1
α

H1(t)HT
1 (t)−

1
β

H2(t)HT
2 (t), (36)

HT denotes a transposed matrix and Im is the unit m×m-matrix.
The solution of (35) is readily obtained:

Rαβ(t) = S−1
αβ (t), t ∈ [t0, t f ], (37)

if and only if the matrix

Sαβ(t) = Im +

t f∫
t

Qαβ(τ)dτ (38)

is invertible for all t ∈ [t0, t f ].
Thus, the RCCDG is solvable if and only if

det
(
Sαβ(t)

)
6= 0, t ∈ [t0, t f ]. (39)

Condition S. The system (22) is controllable with respect to u(t) at any interval [t, t f ],
t ∈ [t0, t f ).

Remark 6. By using the t-dependent controllability gramians

G1(t) =

t f∫
t

H1(τ)HT
1 (τ)dτ, t ∈ [t0, t f ), (40)

Condition S can be rewritten [18] as

det G1(t) > 0, t ∈ [t0, t f ). (41)

The following statement is a direct consequence of (Theorem 3.1 [24]).

Proposition 1. Let Condition S hold. Then, for any β > 0 there exists α̃ = α̃(β) such that the
condition (39) holds for all α > 0 satisfying

α ≤ α̃. (42)

Let z0
αβ(t) denote the optimal motion of (22) for u = u0

αβ(t, z), v = v0
αβ(t, z).

Proposition 2. Let Condition S hold. Then, there exists the bounded limit function

z̃(t) = lim
α→0

z0
αβ(t), t ∈ [t0, t f ], (43)
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which is independent of β. Moreover

lim
α→0

z0
αβ(t f ) = z̃(t f ) = 0. (44)

Proof. Let α > 0 satisfy (42). By substituting the optimal strategies (33) and (34) into the
system (22), due to (36), (37) and (38), the dynamics become

ż = −Qαβ(t)Rαβ(t)z. (45)

Define

y , Rαβ(t)z =

Im +

t f∫
t

Qαβ(τ)dτ


−1

z. (46)

Then,

ẏ = −

Im +

t f∫
t

Qαβ(τ)dτ


−1(
−Qαβ(t)

)Im +

t f∫
t

Qαβ(τ)dτ


−1

z+

Im +

t f∫
t

Qαβ(τ)dτ


−1(
−Qαβ(t)

)Im +

t f∫
t

Qαβ(τ)dτ


−1

z = 0, (47)

yielding
y(t) ≡ c = const, t ∈ [t0, t f ]. (48)

For t = t0,

y(t0) = c =

Im +

t f∫
t0

Qαβ(τ)dτ


−1

z0. (49)

Thus, due to (46) and (48), the solution z0
αβ(t) of (45) is

z0
αβ(t) =

Im +

t f∫
t

Qαβ(τ)dτ


Im +

t f∫
t0

Qαβ(τ)dτ


−1

z0. (50)

Due to (36) and (40),

z0
αβ(t) =

Im +
1
α

G1(t)−
1
β

t f∫
t

H2(τ)HT
2 (τ)dτ


Im +

1
α

G1(t0)−
1
β

t f∫
t0

H2(τ)HT
2 (τ)dτ


−1

z0. (51)

By factoring
1
α

out of both matrices, (51) becomes

z0
αβ(t) =

αIm −
α

β

t f∫
t

H2(τ)HT
2 (τ)dτ + G1(t)


αIm −

α

β

t f∫
t

H2(τ)HT
2 (τ)dτ + G1(t0)


−1

z0. (52)

Since the gramian G1(t0) is non-singular, the limit (43) is readily calculated for
t ∈ [t0, t f ]:

lim
α→0

z0
αβ(t) = G1(t)G−1

1 (t0)z0 , z̃(t). (53)
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For t = t f , (51) is

z0
αβ(t f ) = α

αIm −
α

β

t f∫
t0

H2(τ)HT
2 (τ)dτ + G1(t0)


−1

z0, (54)

and
lim
α→0

z0
αβ(t f ) = 0. (55)

Since G1(t f ) = 0, (53) yields
z̃(t f ) = 0. (56)

Equations (55) and (56) prove (44). This completes the proof of the proposition.

Proposition 3. Let Condition S hold. Then the time realizations u0
αβ(t) = u0

αβ(t, z0
αβ(t)),

v0
αβ(t) = v0

αβ(t, z0
αβ(t)) of the optimal strategies (33)–(34) are bounded for α→ 0.

Proof. By substituting (50) into (33), by using (36) and (40), and by factoring
1
α

out of the
matrix, the time realization of the RCCDG optimal minimizer’s strategy is

u0
αβ(t) = −HT

1 (t)

αIm + G1(t0)−
α

β

t f∫
t0

H2(τ)HT
2 (τ)(τ)dτ


−1

z0. (57)

Thus, for any β > 0, there exists the bounded limit function

lim
α→0

u0
αβ(t) = −H1(t)G−1

1 (t0)z0 , ũ(t), t ∈ [t0, t f ]. (58)

Similarly, the time realization the RCCDG optimal maximizer’s strategy is

v0
αβ(t) =

α

β
HT

2 (t)

αIm + G1(t0)−
α

β

t f∫
t0

H2(τ)HT
2 (τ)(τ)dτ


−1

z0. (59)

yielding
lim
α→0

v0
αβ(t) = 0 , ṽ(t), t ∈ [t0, t f ]. (60)

Proposition 4. Let Condition S hold. Then the feedback strategies (33) and (34) are well defined
for α = 0 for all (t, z) ∈ [t0, t f )×Rm.

Proof. Similarly to (57), by factoring
1
α

from the gain of the strategy (33),

u0
αβ(t, z) = −HT

1 (t)

αIm + G1(t)−
α

β

t f∫
t

H2(τ)HT
2 (τ)(τ)dτ


−1

z, (61)

which is well defined for α = 0, (t, z) ∈ [t0, t f )×Rm:

lim
α→0

u0
αβ(t, z) = K̃(t)z , ũ(t, z), (62)
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where
K̃(t) = −HT

1 (t)G
−1
1 (t). (63)

Similarly to (59),

v0
αβ(t, z) =

α

β
HT

2 (t)

αIm + G1(t)−
α

β

t f∫
t

H2(τ)HT
2 (τ)(τ)dτ


−1

z, (64)

yielding
lim
α→0

v0
αβ(t, z) = 0 , ṽ(t, z), (65)

for all (t, z) ∈ [t0, t f )×Rm.

Remark 7. Due to (40), the gain (63) of the limit feedback ũ(t, z) is infinite for t→ t f :

lim
t→t f
||K̃(t)|| = ∞, (66)

where || · || is the Euclidean norm of a matrix.

Remark 8. The limit motion z̃(t) given in (53) is generated by the limit feedback strategies ũ(t, z)
and ṽ(t, z)) given in (62) and (65), respectively. Moreover, their time realizations along z̃(t) are
equal to ũ(t) and ṽ(t) given in (58) and (60), respectively:

ũ(t, z̃(t)) = ũ(t), ṽ(t, z̃(t)) = ṽ(t). (67)

Proposition 5. Let Condition S hold. Then for any β > 0, the RCCDG game value satisfies

lim
α→0

J0
αβ(t0, z0) = 0. (68)

Moreover, all the terms of the optimal cost function (25) tend to zero for α→ 0:

lim
α→0
|z0

αβ(t f )|2 = 0, (69)

lim
α→0

α

t f∫
t0

|u0
αβ(t)|

2dt

 = 0, (70)

lim
α→0

β

t f∫
t0

|v0
αβ(t)|

2dt

 = 0. (71)

Proof. By factoring
1
α

from the matrix Rαβ(t),

J0
αβ(t0, z0) = αzT

0

αIm + G1(t0)−
α

β

t f∫
t0

H2(τ)HT
2 (τ)(τ)dτ


−1

z0. (72)

Since the matrix G1(t0) is non-singular, (72) directly leads to (68).
The limiting Equation (69) is the consequence of (55); (70) holds, because, due to

Proposition 3, the limit time realization of the minimizer’s optimal strategy is bounded; (71)
follows from (60).
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Corollary 1. Let Condition S hold. Then,

J0
best(t0, z0) = 0. (73)

Proof. First of all, let us note that, due to Remark 6, the matrix G1(t0) is positive definite.
Therefore, using (72), we can conclude the following. There exists a positive number α0 ≤ α̃
such that, for all α ∈ (0, α0],

J0
αβ(t0, z0) ≥ 0. (74)

This inequality, along with the equality (68), directly yields the statement of the
corollary.

4. RSDG Solution

Lemma 1. Let Condition S hold. Then, there exists a positive number α0 < α̃, such that for all
α ∈ (0, α0] the guaranteed result Ju

β (u
0
αβ(·); t0, z0) of the pursuer’s state-feedback control u0

αβ(t, z)
in the RSDG satisfies the inequality

0 ≤ Ju
β (u

0
αβ(·); t0, z0) ≤ aα, (75)

where a > 0 is some value independent of α.

Proof. First of all, let us remember that u0
αβ(t, z) is the optimal pursuer’s control in the

RCCDG, and this control is given by Equation (33). Taking into account Remark 4 and
Equation (26), the guaranteed result of this control in the RSDG is calculated as follows:

Ju
β (u

0
αβ(·); t0, z0) = sup

v(t)∈L2

(
[t0,t f ],Rs

) Jβ(u0
αβ(·), v(·))

= sup
v(t)∈L2

(
[t0,t f ],Rs

)
(
|z(t f |2 − β

∫ t f

t0

|v(t)|2dt
)

(76)

along trajectories of the system

ż = H1(t)u0
αβ(t, z) + H2(t)v(t), t ∈ [t0, t f ], z(0) = z0. (77)

For any v(t) ∈ L2
(
[t0, t f ],Rs), we have the inequality

|z(t f )|2 − β
∫ t f

t0

|v(t)|2dt ≤ |z(t f |2 + α
∫ t f

t0

∣∣u0
αβ(t, z)

∣∣2dt− β
∫ t f

t0

|v(t)|2dt (78)

along trajectories of the system (77). Therefore,

0 ≤ sup
v(t)∈L2

(
[t0,t f ],Rs

)
(
|z(t f |2 − β

∫ t f

t0

|v(t)|2dt
)
≤

sup
v(t)∈L2

(
[t0,t f ],Rs

)
(
|z(t f |2 + α

∫ t f

t0

∣∣u0
αβ(t, z)

∣∣2dt− β
∫ t f

t0

|v(t)|2dt
)

. (79)

Since u0
αβ(t, z) is the optimal state-feedback control in the RCCDG, then using the form

of the cost function in this game (see Equation (25)) and the definition of the value in this
game (see Remark 3), we directly have

sup
v(t)∈L2

(
[t0,t f ],Rs

)
(
|z(t f |2 + α

∫ t f

t0

∣∣u0
αβ(t, z)

∣∣2dt− β
∫ t f

t0

|v(t)|2dt
)
= J0

αβ(t0, z0). (80)
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Remember that J0
αβ(t0, z0) is the RCCDG value given by Equation (32).

Further, using Equations (76), (80) and the inequality (79), we obtain immediately

0 ≤ Ju
β (u

0
αβ(·); t0, z0) ≤ J0

αβ(t0, z0). (81)

Now, the statement of the lemma directly follows from Equation (72) and the inequal-
ity (81).

Consider the following admissible state-feedback control of the maximizing player
(the evader) in the RSDG:

v̄0(t, z) ≡ 0, (t, z) ∈ [t0, t f ]×Rm. (82)

Lemma 2. Let Condition S hold. Then, the guaranteed result Jv
β(v̄

0(·); t0, z0) of v̄0(t, z) in the
RSDG is

Jv(v̄0(·); t0, z0) = 0. (83)

Proof. Substituting v(t) = v̄0(t, z) into the system (22) and the cost function (26) yields the
following system and cost function:

ż = H1(t)u, z(t0) = z0, t ∈ [t0, t f ], (84)

J̄(u(·)) = Jβ(u(·), v̄0(·)) = |z(t f )|2. (85)

Therefore, Jv(v̄0(·); t0, z0) is the infimum value with respect to u(t) ∈ L2

(
[t0, t f ],Rr

)
of the cost function (85) along trajectories of the system (84), i.e.,

Jv(v̄0(·); t0, z0) = inf
u(·)∈L2([t0,t f ],Rr)

J̄(u(·)). (86)

The optimal control problem (84) and (85) is singular (see, e.g., [3]), and the value
(86) can be derived similarly to this work. To do this, first, we replaced approximately the
singular problem (84) and (85) with the regular optimal control problem consisting of the
system (84) and the new cost function

J̄α(u(·))
4
= |z(t f )|2 + α

∫ t f

t0

|u(t)|2dt (87)

to be minimized by u(·) ∈ L2

(
[t0, t f ],Rr

)
along trajectories of the system (84). In (87),

α > 0 is a small parameter of the regularization.
For any given α > 0, the problem in (84), (87) is a linear-quadratic optimal control

problem. By virtue of the results of [25], we directly have that the solution (the optimal
control) of this problem is ū0

α(t) = −(1/α)HT
1 (t)R̄α(t)z̄α(t), and the optimal value of its

function has the form
J̄0
α = J̄α(ū0

α(·)) = zT
0 R̄α(t0)z0, (88)

where the m×m-matrix-valued function R̄α(t) is the solution of the terminal-value problem

˙̄Rα =
1
α

R̄α H1(t)HT
1 (t)R̄α, t ∈ [t0, t f ], R̄α(t f ) = Im, (89)

the vector-valued function z̄α(t) is the solution of the initial-value problem

˙̄zα = − 1
α

H1(t)HT
1 (t)R̄α(t)z̄α, t ∈ [t0, t f ], z(t0) = z0. (90)
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Using Remark 6, we obtain the unique solution of the problem (89) as follows:

R̄α(t) =
(

Im +
1
α

G1(t)
)−1

, t ∈ [t0, t f ], (91)

where the m×m-matrix-valued function G1(t) is given in Remark 6 (see (40) for t ∈ [t0, t f ]).
Substituting (91) into (88), we obtain after some rearrangement

J̄0
α = αzT

0
(
αIm + G1(t0

)−1z0, (92)

yielding the following inequality for all sufficiently small α > 0:

0 ≤ J̄0
α ≤ cα, (93)

where c > 0 is some value independent of α.
Using Equation (88) and inequality (93), we obtain for all sufficiently small α > 0:

0 ≤ inf
u(·)∈L2([t0,t f ],Rr)

J̄(u(·)) ≤ J̄(ū0
α(·)) ≤ J̄α(ū0

α(·)) = J̄0
α ≤ cα,

yielding

0 ≤ inf
u(·)∈L2([t0,t f ],Rr)

J̄(u(·)) ≤ cα.

The latter implies immediately

inf
u(·)∈L2([t0,t f ],Rr)

J̄(u(·)) = 0

which, along with Equation (86), proves the statement of the lemma.

Theorem 1. Let Condition S hold. Then, the RSDG value J∗β(t0, z0) exists and

J∗β(t0, z0) = 0. (94)

Proof. Let Ju∗
β (t0, z0) and Jv∗

β (t0, z0) be the upper and lower values of the RSDG, respec-
tively. Then, due to the definitions of these values (see Remark 4), we have

Ju∗
β (t0, z0) ≤ Ju

β (u
0
αβ(·); t0, z0), α ∈ (0, α0], (95)

Jv
β(v̄

0(·); t0, z0) ≤ Jv∗
β (t0, z0), (96)

Jv∗
β (t0, z0) ≤ Ju∗

β (t0, z0). (97)

Now, using the equality (83) and the inequalities (75), (95)–(97) yield

0 = Jv
β(v̄

0(·); t0, z0) ≤ Jv∗
β (t0, z0) ≤ Ju∗

β (t0, z0)

≤ Ju
β (u

0
αβ(·); t0, z0) ≤ aα, α ∈ (0, α0]. (98)

The latter implies

0 ≤ Jv∗
β (t0, z0) ≤ Ju∗

β (t0, z0) ≤ aα, α ∈ (0, α0]. (99)

From (99), for α→ 0, we directly have Jv∗
β (t0, z0) = Ju∗

β (t0, z0) = 0, which proves the
theorem.
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Corollary 2. Let Condition S hold. Then,

J0
best(t0, z0) = J∗β(t0, z0). (100)

Proof. The statement of the corollary directly follows from Theorem 1 and Equation (73).

Corollary 3. Let Condition S hold. Then, the limit Equality (31) is valid.

Proof. The statement of the corollary is a direct consequence of Equations (68) and (94).

By {αk}+∞
k=1, we denote a sequence of numbers, satisfying the following conditions: (I)

αk ∈ (0, α0], (k = 1, 2, ...); (II) limk→+∞ αk = 0.

Theorem 2. Let Condition S hold. Then, the sequence of the pursuer’s state-feedback controls{
u0

αk β(t, z)
}+∞

k=1 is the minimizing sequence in the RSDG. The state-feedback control v̄0(t, z), given
by (82), is the optimal evader’s strategy in the RSDG.

Proof. From the chain of the equality and the inequalities (98) we obtain

lim
k→+∞

Ju
β (u

0
αk β(·); t0, z0) = Ju∗

β (t0, z0), (101)

meaning the validity of the first statement of the theorem.
Similarly, we have

Jv
β(v̄

0(·); t0, z0) = Jv∗
β (t0, z0), (102)

which implies the validity of the second statement of the theorem.

Remark 9. It should be noted that the optimal evader’s strategy v̄0(t, z) in the RSDG coincides with
the limit (as α→ 0) of the optimal evader’s strategy in the RCCDG for all (t, z) ∈ [t0, t f )×Rm

(see Proposition 4 and Equation (65)). Also, it should be noted that the limit (as k→ +∞) of the
minimizing sequence

{
u0

αk β(t, z)
}+∞

k=1 in the RSDG is ū(t, z) for all (t, z) ∈ [t0, t f )×Rm (see
Proposition 4 and Equations (62) and (63)). However, the function ū(t, z) does not belong to the
set Uz. Therefore, this function does not belong to the set Uz, i.e., it is not an admissible pursuer’s
state-feedback control in the RSDG.

5. Example: Interception Problem in Three-Dimensional Space
5.1. Engagement Model and Its Reduction

Consider the engagement in 3D space of two flying vehicles (the interceptor or the
pursuer and the target or the evader), which has similar geometry to that considered
in [26,27]. In contrast to [26,27], we assumed that both the pursuer and the evader have
first-order dynamics controllers. Two mutually perpendicular control channels could have
different time constants: τp1 , τp2 for the pursuer’s controller and τe1 , τe2 for the evader’s one.

The equations of motion were written down in the line-of-sight coordinate system
where the axis X was the initial line-of-sight, the plane XY was the collision plane deter-
mined by the initial line-of-sight and the target’s velocity vectors and the plane XZ was
normal to XY.

Let (Xp, Yp, Zp) and (Xe, Ye, Ze) be the coordinates of the interceptor (the pursuer) and
the target (the evader), respectively. The relative separations in the Y and Z-directions were
Y = Yp −Ye and Z = Zp − Ze. By linearization along the initial line-of-sight, the equations
of motion were written down in the form (1) where the state vector was

x = (Y, Ẏ, Ÿp, Ÿe, Z, Ż, Z̈p, Z̈e)
T , (103)
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the players’ control vectors (lateral acceleration commands) were u = (u1, u2)
T (for the

pursuer) and v = (v1, v2)
T (for the evader); the final time t f was the time of achieving the

zero distance between the players along the axis X. The matrices in (1) were

A(t) ≡



0 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 −1/τp1 0 0 0 0 0
0 0 0 −1/τe1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 −1/τp2 0
0 0 0 0 0 0 0 −1/τe2


, (104)

B(t) ≡



0 0
0 0

1/τp1 0
0 0
0 0
0 0
0 1/τp2

0 0


, C(t) ≡



0 0
0 0
0 0

1/τe1 0
0 0
0 0
0 0
0 1/τe2


. (105)

In the pursuit problem, the target set was x1 = Y = 0, x5 = Z = 0, meaning that in (2),

D =

[
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

]
, d =

[
0
0

]
. (106)

Thus, in this example, n = 8, r = s = m = 2.
The transition matrix of the homogeneous system was readily obtained as

Φ(t f , t) =
[

Φ1(t f , t, τp1 , τe1) O4
O4 Φ1(t f , t, τp2 , τe2)

]
, (107)

where O4 is the zero 4× 4 matrix,

Φ1(t f , t, τp, τe) =


1 t f − t −h(t, τp) h(t, τe)

0 1 −τp

(
1− e−ϑ(t,τp)

)
τe

(
1− e−ϑ(t,τe)

)
0 0 e−ϑ(t,τp) 0
0 0 0 e−ϑ(t,τe)

, (108)

ϑ(t, τ) ,
t f − t

τ
, (109)

h(t, τ) , τ2
(

e−ϑ(t,τ) + ϑ(t, τ)− 1
)

. (110)

Then, by applying the transformation (21) with D and d as in (106), the original system
was reduced to the two-dimensional system of the form (22), where

H1(t) =
[
−h(t, τp1) 0

0 −h(t, τp2)

]
, H2(t) =

[
h(t, τe1) 0

0 h(t, τe2)

]
. (111)

Explicitly, the system (22) became

ż1 = −h(t, τp1)u1 + h(t, τe1)v1, z1(t0) = z01 , t ∈ [t0, t f ],
ż2 = −h(t, τp2)u2 + h(t, τe2)v2 z2(t0) = z02 , t ∈ [t0, t f ].

(112)
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5.2. Reduced Cheap Control Game

In this example, the RCCDG cost function (25) is

Jαβ = z2
1(t f ) + z2

2(t f ) + α

t f∫
t0

[
u2

1(t) + u2
2(t)

]
dt− β

t f∫
t0

[
v2

1(t) + v2
2(t)

]
dt. (113)

Due to (111), the gramian (40) is calculated as

G1(t) =



t f∫
t

h2(η, τp1)dη 0

0

t f∫
t

h2(η, τp2)dη

, (114)

and

det G1(t) =

 t f∫
t

h2(η, τp1)dη


 t f∫

t

h2(η, τp2)dη

. (115)

For all τ > 0, we have that h(t, τ) > 0, t ∈ [t0, t f ), and h(t f , τ) = 0. Therefore, the
condition (41), and, consequently, Condition S hold.

Due to the symmetry of the matrices (111), the matrix (37) is also symmetric:

Rαβ(t) =
[

rαβ1
(t) 0

0 rαβ2
(t)

]
, (116)

where
rαβi

(t) =
1

1 +
1
α

t f∫
t

h2(η, τpi )dη − 1
β

t f∫
t

h2(η, τei )dη

, i = 1, 2. (117)

Thus, the RCCDG is solvable if

1 +
1
α

t f∫
t

h2(η, τpi )dη − 1
β

t f∫
t

h2(η, τei )dη > 0, t ∈ [t0, t f ], i = 1, 2. (118)

Similarly to [24], it is proved that the solvability condition (118) yields the value α̃
in (42) as

α̃ = min{α̃1, α̃2}, (119)

where

α̃i = α̃i(β) =



µi(β)β, β <

t f∫
t0

h2(η, τei )dη,

+∞, β ≥
t f∫

t0

h2(η, τei )dη,

i = 1, 2, (120)

µi(β) =
1

max
t∈[t0,t̄i ]

Fi(t, β)
, i = 1, 2, (121)
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Fi(t, β) =

t̄i(β)∫
t

h2(η, τei )dη

t f∫
t

h2(η, τpi )dη

, i = 1, 2, (122)

the moments t̄i(β) ∈ (t0, t f ), i = 1, 2, satisfy

t f∫
t̄i(β)

h2(η, τei )dη = β, i = 1, 2. (123)

By using (32)–(34) and (116), the solution of the game (112) and (113) is

J0
αβ(t0, z0) = r1(t0)z2

01
+ r2(t0)z2

02
, (124)

u0
αβ(t, z) = − 1

α

(
h(t, τp1)r1(t)z1, h(t, τp2)r2(t)z2

)T
, (125)

v0
αβ(t, z) =

1
β

(
h(t, τe1)r1(t)z1, h(t, τe2)r2(t)z2

)T
. (126)

Let us consider the numerical example for t0 = 0 s, t f = 3 s, β = 0.1, τp1 = τp2 = 0.1 s,
τe1 = 0.15 s, τe2 = 0.2 s. For these parameters,

β = 0.1 <

t f∫
t0

h2(η, τe1)dη =

3∫
0

h2(η, 0.15)dη = 0.1737, (127)

β = 0.1 <

t f∫
t0

h2(η, τe2)dη =

3∫
0

h2(η, 0.2)dη = 0.293. (128)

In this example, the moments, defined by (123), are t̄1 = 0.4792 s, t̄2 = 0.8443 s (see
Figure 1).

Figure 1. Moments t̄i(β).

In Figure 2, the functions Fi(t, β), given by (122), are shown for t ∈ [t0, t̄i], i = 1, 2. It is
seen that these functions were decreasing. Therefore,

µi =
1

F1(0, β)
= 1.1035, µ2 =

1
F2(0, β)

= 0.4214. (129)



Axioms 2022, 11, 214 19 of 24

Due to (119) and (120), α̃ = β min{µ1, µ2} = 0.04214.

Figure 2. Functions Fi(t, β).

In Figures 3 and 4, the components of the optimal trajectories z0
αβ(t) are shown for

decreasing values of α < α̃, along with the components of the corresponding limiting
function z̃(t). It is clearly seen that the optimal trajectories tended to z̃(t) for α → 0, and
z0

αβ(t f ) tended to zero.

Figure 3. Trajectories z0
αβ1

(t) and limiting function z̃1(t).

Figure 4. Trajectories z0
αβ2

(t) and limiting function z̃2(t).

The respective components of time realizations of the optimal strategies u0
αβ(·) and

v0
αβ(·), along with the components of the corresponding limiting functions ũ(t) and ṽ(t),
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are depicted in Figures 5–8, respectively. It is seen that the time realizations of the optimal
strategies tended to the corresponding limiting functions for α→ 0, remaining bounded.

Figure 5. Time realizations u0
αβ1

(t) and limiting function ũ1(t).

Figure 6. Time realizations u0
αβ2

(t) and limiting function ũ2(t).

Figure 7. Time realizations v0
αβ1

(t) and limiting function ṽ1(t).
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Figure 8. Time realizations v0
αβ2

(t) and limiting function ṽ2(t).

The game value J0
αβ(t0, z0) is depicted in Figure 9 as a function of α. It is seen that it

tended to zero for α→ 0.

Figure 9. The game value.

The respective terminal and integral terms of the cost function are shown in
Figures 10 and 11, respectively. It is seen that all components of the optimal cost tended to
zero for α→ 0.

Figure 10. The terminal term of the cost function.
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Figure 11. Integral terms of the cost function.

Remark 10. From Equation (125), it was seen that the small control cost of the interceptor yielded
the high gain in its optimal state-feedback control. This important feature of the interceptor’s optimal
state-feedback control increased considerably the ability of the interceptor to capture the target.
One more important feature of the interceptor’s optimal state-feedback control was that the time
realization of this control along the optimal interception’s trajectory and, especially, the trajectory
itself, were bounded while the small parameter α tended to zero. Both aforementioned features
of the interceptor’s state-feedback control, obtained by solution of the cheap control game, were
extremely important in various real-life situations of a capture of a maneuverable flying target by a
maneuverable flying interceptor. It should be noted that if the small control cost of the interceptor
tended to zero, the ability of the interceptor to capture the target increased tending to the best
achievable result, which was the zero-miss distance at the end of the interception.

6. Conclusions

In this paper, a pursuit-evasion problem, modeled by a finite-horizon linear-quadratic
zero-sum differential game, was considered. In the game’s cost function, the penalty
coefficient for the minimizing player’s control expenditure was a small value α > 0.
Thus, the considered game was a zero-sum differential game with a cheap control of the
minimizing player. By the proper state transformation, the initially formulated game
was converted to a smaller Euclidean dimension differential game, called the reduced
game. This game, also was a cheap control game and it was treated in the sequel of
the paper. Due to the game’s solvability conditions, the solution of the reduced cheap
control game was converted to the solution of the terminal-value problem for the matrix
Riccati differential equation. Sufficient condition for the existence of the solution to this
terminal-value problem in the entire interval of the game’s duration was presented, and
the solution of this terminal-value problem was obtained. Using this solution, the value
of the reduced cheap control game, as well as the optimal state-feedback controls of the
minimizing player (the pursuer) and the maximizing player (the evader), were derived.
The trajectory of the game, generated by the optimal players’ state-feedback controls, (the
optimal trajectory), was obtained. The limits of the optimal trajectory, as well as of the time
realizations of the players’ optimal state-feedback controls along the optimal trajectory,
for α→ 0 were calculated. By this calculation, the boundedness of the optimal trajectory
and the corresponding time realizations of the players’ optimal state-feedback controls for
α→ 0 were shown. The limit of the game value for α→ 0 also was calculated, yielding the
best achievable game value from the pursuer’s viewpoint. Along with the cheap control
game, its degenerate version was considered. This version was obtained from the cheap
control game by setting there formally α = 0, yielding the new zero-sum linear-quadratic
pursuit-evasion game. This new game was singular, because it could not be solved either
by the Isaacs’s MinMax principle or by the Bellman–Isaacs equation method. For this
singular game, the notion of the pursuer’s minimizing sequence of state-feedback controls
(instead of the pursuer’s optimal state-feedback control) was proposed. It was established
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that the α-dependent pursuer’s optimal state-feedback control in the cheap control game
constituted the pursuer’s minimizing sequence of state-feedback controls (as α → 0) in
the singular game. It was shown that the limit of this minimizing sequence was not an
admissible pursuer’s state-feedback control in the singular game. However, the evader’s
optimal state-feedback control and the value of the singular game coincided with the limits
(for α→ 0) of the evader’s optimal state-feedback control and the value, respectively, of the
cheap control game. Based on the theoretical results of the paper, the interception problem
in 3D space, modeled by a zero-sum linear-quadratic game with the eight-dimensional
dynamics, was studied. Similarly to the theoretical part of the paper, the case of the small
penalty coefficient α > 0 for the pursuer’s (interceptor’s) control expenditure in the cost
function was considered. By proper linear state transformation, the original cheap control
game was reduced to the new cheap control game with the two-dimensional dynamics.
The asymptotic behaviour of the solution to this new game for α→ 0 was analyzed.
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8. Kokotović, P.V.; Khalil, H.K.; O’Reilly, J. Singular Perturbation Methods in Control: Analysis and Design; Academic Press: London,

UK, 1986.
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