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Abstract: Confirmatory factor analysis is some of the most widely used statistical techniques in the
social sciences. Frequently, variables (i.e., items) stemming from questionnaires are analyzed. Two
competing approaches for estimating confirmatory factor analysis can be distinguished. First, ordinal
variables could be treated as in the case of continuous variables using Pearson correlations, and
maximum likelihood estimation method would be applied. Second, an ordinal factor analysis based
on polychoric correlations can be fitted. In the majority of the psychometric literature, there is a
preference for the ordinal factor analysis based on polychoric correlations because the continuous
treatment of variables results in biased factor loadings and biased factor correlations. This article
argues that it is not legitimate to speak about bias when comparing the two competing factor analytic
approaches because it depends on how true model parameters are defined. This decision can be made
individually by a researcher. It is shown in simulation studies and analytical derivations that treating
variables ordinally using polychoric correlations instead of continuous using Pearson correlations
can also lead to biased estimates of factor loadings and factor correlations. Consequently, it should
only be stated that different model parameters are defined in a continuous and an ordinal treatment,
and one approach should not generally be preferred over the other.
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1. Introduction

Confirmatory factor analysis is frequently applied in social science research. Fre-
quently, variables (i.e., items) stemming from questionnaires are analyzed. The variables
are often discrete and have a finite number of ordered categories. Applied researchers are
often searching for an adequate approach for factor analysis for ordinal variables. Two
competing approaches can be distinguished. First, ordinal variables could be treated as
in the case of continuous variables using Pearson correlations, and the same maximum
likelihood estimation method would be applied. Second, an ordinal factor analysis based
on polychoric correlations can be fitted that is claimed to take the ordinal nature of the
variables into account. In the majority of the psychometric literature, there is a preference
for the ordinal factor analysis based on polychoric correlations [1–7]. The main message of
these articles is that ordinal variables should be treated as ordinal (i.e., not being treated as
continuous variables) if there are only a few categories per item or the marginal distribu-
tions are skewed (e.g., [6]). In a previous article, we argued that treating ordinal variables
as continuous can always be defended. The argument for doing so does neither depend on
the number of categories nor the marginal distribution of ordinal variables [8]. Moreover,
we argued that no simulation studies would be required to demonstrate this reasoning [8].
However, we feel that it is valuable to provide further evidence for our reasoning by pre-
senting simulation studies and analytical results. We conclude that it is not legitimate to
speak about bias when comparing the two competing factor analytic approaches.
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The rest of the article is structured as follows. In Section 2, we discuss the two
competing approaches for the factor analysis model. Section 3 presents results from two
simulation studies. In Section 4, we discuss analytical findings. Finally, the paper closes
with a discussion in Section 5.

2. Factor Analysis for Ordinal Items
2.1. Gaussian Copula Model for Ordinal Items

In the following, we present a multivariate distribution for discrete data. This distribu-
tion is referred to as the Gaussian copula [9–11]. In psychometrics, it is also known as the
underlying latent variable approach [12].

Assume that there is a vector of variables (i.e., items) Y = (Y1, . . . , YI). Each of the
variables has integer categories 1, . . . , Ki. Now, assume that there are underlying standard
normally distributed latent variables Y∗i for the integer-valued variable Yi for i = 1, . . . , I.
Denote by Y∗ the vector containing the underlying latent variables. and Y∗i is discretized
by means of a vector of thresholds −∞ = τYi ,0 < τYi ,1 < . . . < τYi ,Ki < τYi ,Ki+1 = ∞. Then,
the discrete variable Yi takes the value h if Y∗i lies within the interval [τYi ,h−1, τYi ,h). The
multivariate vector Y∗ follows a multivariate normal distribution with a correlation matrix
Σ∗. Recall that all variables in Y∗ have zero means and variances of one. By prescribing
thresholds τ for all variables, the discrete probability distribution is given as

P(Yi = h, Yj = l) = Φ2(τYi ,h, τYi ,l ; ρ
∗
YiYj

)−Φ2(τYi ,h−1, τYi ,l ; ρ
∗
YiYj

)−Φ2(τYi ,h, τYi ,l−1; ρ∗YiYj
) +Φ2(τYi ,h−1, τYi ,l−1; ρ∗YiYj

) , (1)

where ρ∗YiYj
is the correlation of the underlying latent variables andΦ2(x, y; ρ) is the cumu-

lative distribution function of the bivariate standard normal distribution.
Means, variances, and covariances of the components of the discrete variable Y can

be computed using the discrete distribution in Equation (1) (see [13]). Hence, one can
also determine the manifest correlation ρYiYj = Cov(Yi, Yj)/(SD(Yi)SD(Yj)) (i.e., Pearson
correlation) for the integer-valued variables Yi and Yj. While ρY∗i Y∗j

can take values within

the interval [−1, 1], the Pearson correlation is bounded, where the bounds are determined
by the marginal distribution of Yi and Yj [14–16].

Given an observed discrete distribution of Y , one can determine the so-called poly-
choric correlation ρ∗YiYj

[12,17]. It can be shown that there is a monotone relation between
the polychoric correlation ρ∗YiYj

and the Pearson correlation ρYiYj [18]. This property can
be used to simulate discrete ordinal data [19,20]. First, the discrete marginal distributions
P(Yi = h) are fixed. These probabilities directly translate into thresholds τYi ,h by noting that

Φ(τYi ,h) =
h

∑
l=1

P(Yi = l) , (2)

where Φ is the distribution function of the standard normal distribution. The specification
in Equation (2) implies that a Gaussian marginal distribution is assumed for the underlying
latent variables Y∗i (i.e., latent normality; see [8]). Next, fix a correlation matrix Σ for the
vector of discrete variables Y . Using (1), one solves a nonlinear equation ρYiYj = f (ρ∗YiYj

)

for every pair of variables Yi and Yj for obtaining the polychoric correlation ρ∗YiYj
[20]. As

a result, a matrix Σ∗ involving the polychoric correlations is obtained as a function of all
thresholds τ and the Pearson correlation matrix Σ.

In simulations in psychometrics, one often generates data from Y∗ and a prespecified
polychoric correlation matrix Σ∗. As a consequence, a Pearson correlation matrix Σ is
obtained for the discrete data Y . A frequent reasoning is that by treating variables continu-
ously when Pearson correlations are computed, biased estimates are obtained because the
estimates are usually smaller (in absolute values) than the “true” polychoric correlations.
However, this reasoning depends on how truth is defined. Indeed, one can also argue
that Pearson correlations are the quantity of interest. When polychoric correlations are
computed, biased estimations will emerge. These reflections demonstrate that it does not
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make sense to speak about bias. It is up to the choice of a researcher whether Pearson or
polychoric correlations are of interest. Instead of speaking about bias, one can only argue
that one statistical parameter is of less interest (i.e., less adequate in a practical application)
than another.

2.2. Factor Model for Pearson Correlations and Polychoric Correlations

In factor analysis, the vector of multivariate variables is represented by a vector of
factor variables of lower dimension. This means that a covariance (or a correlation) matrix
is represented by a common part that is attributed to factors and a residual part that
represents item uniqueness [21]. A correlation is represented as

Σ ≈ ΛΨΛ> +Θ ,

where Λ is the matrix of factor loadings, Ψ is the correlation matrix of factor variables,
andΘ is a diagonal matrix of residual variances. Frequently, a particular structure in Λ
(i.e., a loading structure) is prescribed that determines which variables Yi load on which
factors [21]. Such a specification is labeled as confirmatory factor analysis (CFA).

The most prominent options appearing in the literature for modeling ordinal variables
in CFA are treating the variables continuously and ordinally [13]. In the first case, Pearson
correlations Σ are used for modeling the factor structure. In the latter case, polychoric cor-
relations Σ∗ are used for modeling the factor structure. Hence, there can be two alternative
modeling strategies for the variables Y :

Σ ≈ ΛΨΛ> +Θ and Σ∗ ≈ Λ∗Ψ∗Λ∗> +Θ∗ . (3)

In general, factor loadingsΛ andΛ∗ obtained from factor models for Pearson corre-
lations and polychoric correlations differ from each other. The same is true for the factor
correlation matrices Ψ and Ψ∗. Hence, researchers are often unsure which of the two
approaches should be chosen. In psychometrics, it is often claimed that factor loadings and
factor correlations from Pearson correlations are biased for ordinal data (e.g., [6,13]). As
argued in Section 2.1, we think that it is illegitimate to speak about bias because both Pear-
son correlations Σ and polychoric correlations Σ∗ are well-defined parameters for a vector
of discrete variables. Hence, both representations in (3) for modeling the factor structure
are well-defined, and it is not justified to speak about a bias when utilizing one of the two
alternatives. Alternatively, it is equally true that factor loadingsΛ∗ and factor correlations
Ψ∗ obtained from polychoric correlations are biased if a researcher is interested inΛ and Ψ
stemming from the factor model for Pearson correlations. In fact, one can simulate discrete
multivariate data with the factor representation in (3) for Pearson correlations and show
that applying the CFA for polychoric correlations provides biased estimates (see [8]).

In the rest of the article, we want to show the differences between the two competing
approaches. We illustrate that biases can occur in both approaches. If a researcher defines
one approach (e.g., ordinal CFA) as the true model, then parameter estimates from the
other approach (e.g., CFA based on Pearson correlations for continuous data) will be biased.
However, the converse also holds true. We simulate a factor model based on Pearson
correlations (as outlined in Section 2.1) and demonstrate that bias for an ordinal CFA
will result. In the simulations and the analytical derivations, we are not concerned with
sampling errors and compare the different estimators only at the population level (see
also [13]).

3. Simulation Studies

In this section, we present two simulation studies with two-dimensional CFA models.
In Simulation Study 1 (Section 3.1), we consider equal factor loadings. Simulation Study 2
(Section 3.2) replicates [6,13] and considers unequal factor loadings.
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3.1. Simulation Study 1
3.1.1. Method

In Simulation Study 1, we studied a two-dimensional CFA. Each of the two factors
is measured by three items (i.e., variables). We employed the same distributions as in [6].
There were discrete variables with 2 to 7 categories and were symmetric (S2, . . ., S7), moder-
ately asymmetric (MA2, . . ., MA7), and extremely asymmetric (EA2, . . ., EA7) distributed.
The shapes of the discrete distributions are displayed in Figure 1. Table A1 in Appendix A
contains the numerical values of the marginal distributions. In each of the simulated
conditions, all items had the same marginal distribution.

We varied the factor correlations ψ in three levels (i.e., 0.3, 0.5, and 0.7). We also
used three factor levels for factor loadings (i.e., 0.3, 0.5, 0.7). All factor loadings in the
two-dimensional CFA were set equal to each other. The residual variances were determined
to obtain standardized variables (i.e., variables with a variance of 1).

Two data-generating models were used. Discrete items were simulated in which the
factor model involving loadings, factor correlations, and residual variances either holds
for the discrete data Y (“Simulated cont”) or the underlying continuous data Y∗ (“Simu-
lated cat”). If the factor model holds for Pearson correlations, the simulation approach in
Section 2.2 was used. According to the factor model parameters and the marginal distribu-
tions, a Pearson correlation matrix Σ was determined in the first step. In a second step, the
corresponding population polychoric correlation matrix Σ∗ was computed.

Moreover, three analysis models were utilized. First, one uses the population Pearson
correlation matrix of the original integer-valued variable Y (method “cont”) and maximum
likelihood estimation for determining model parameters. Second, the original scores were
transformed to normal scores Ỹ [22,23], where score h of item Yi received the score

zh =
φ(τYi ,h−1)−φ(τYi ,h)

Φ(τYi ,h)−Φ(τYi ,h−1)
,

where φ is the density function of the standard normal distribution. In the method “cont-
adj”, a CFA model of the Pearson correlation matrix of normal scores is estimated with
ML. Finally, the CFA based on polychoric correlations (method “cat”) was estimated using
unweighted least squares estimation. All models were estimated using the R [24] package
lavaan [25]. Note that in all simulation conditions, only population-level data is used.
Hence, only asymptotic bias is investigated.

3.1.2. Results

We now show biases for factor loadings and factor correlations in the different simula-
tion conditions. Table 1 shows the estimated factor loadings for a factor correlation of 0.5.
The results for the factor correlations 0.3 and 0.7 coincide with those in Table 1. The general
pattern was that biases in estimated factor loadings were more pronounced for a higher
true factor loading of 0.7 than for a true loading of 0.3. If discrete items were simulated
according to the CFA model for Pearson correlations (“Simulated cont”), it is evident that
treating variables as categorical resulted in positively biased factor loadings. In contrast, if
the CFA model was simulated for polychoric correlations (“Simulated cat”), continuous
treatment of the items resulted in negatively biased factor loadings. Interestingly and
similar to [22], CFA based on normal scores provided very similar estimated factor loadings
to the CFA model for Pearson correlations based on the original integer scores. Similar
to the findings in the literature, it can also be concluded that biases in estimated factor
loadings were less pronounced for less asymmetric distributions and an increasing number
of item categories.
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Figure 1. Distribution types used in simulation studies 1 and 2. S2, . . ., S7 = symmetric distribution
with 2 to 7 categories; MA2, . . ., MA7 = moderate asymmetric distribution with 2 to 7 categories;
EA2, . . ., EA7 = extreme asymmetric distribution with 2 to 7 categories.
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Table 1. Simulation Study 1: Estimated factor loadings for a factor correlation of 0.5 as a function of
data-generating models, estimation methods, and true factor loadings.

True Loading = 0.3 True Loading = 0.7

Simulated cont Simulated cat Simulated cont Simulated cat

Estimation Methods Estimation Methods Estimation Methods Estimation Methods

Dist cont cont-
adj cat cont cont-

adj cat cont cont-
adj cat cont cont-

adj cat

S2 0.300 0.300 0.375 0.240 0.240 0.300 0.700 0.700 0.834 0.571 0.571 0.700
S3 0.300 0.300 0.338 0.266 0.266 0.300 0.700 0.700 0.785 0.623 0.623 0.700
S4 0.300 0.300 0.321 0.280 0.280 0.300 0.700 0.700 0.748 0.654 0.654 0.700
S5 0.300 0.300 0.314 0.286 0.287 0.300 0.700 0.700 0.732 0.669 0.669 0.700
S6 0.300 0.300 0.310 0.291 0.291 0.300 0.700 0.700 0.721 0.679 0.679 0.700
S7 0.300 0.300 0.307 0.293 0.293 0.300 0.700 0.700 0.716 0.684 0.684 0.700
MA2 0.300 0.300 0.383 0.234 0.234 0.300 0.700 0.700 0.839 0.564 0.564 0.700
MA3 0.300 0.300 0.334 0.269 0.269 0.300 0.700 0.700 0.772 0.633 0.633 0.700
MA4 0.300 0.301 0.330 0.273 0.273 0.300 0.700 0.698 0.756 0.646 0.645 0.700
MA5 0.300 0.301 0.322 0.280 0.281 0.300 0.700 0.699 0.743 0.659 0.658 0.700
MA6 0.300 0.302 0.316 0.285 0.287 0.300 0.700 0.701 0.731 0.670 0.672 0.700
MA7 0.300 0.303 0.312 0.289 0.291 0.300 0.700 0.703 0.723 0.677 0.681 0.700
EA2 0.300 0.300 0.447 0.195 0.195 0.300 0.700 0.700 0.873 0.511 0.511 0.700
EA3 0.300 0.301 0.379 0.236 0.237 0.300 0.700 0.697 0.808 0.587 0.585 0.700
EA4 0.300 0.302 0.356 0.252 0.254 0.300 0.700 0.699 0.780 0.617 0.618 0.700
EA5 0.300 0.304 0.342 0.262 0.266 0.300 0.700 0.701 0.762 0.636 0.638 0.700
EA6 0.300 0.304 0.331 0.272 0.275 0.300 0.700 0.702 0.747 0.652 0.654 0.700
EA7 0.300 0.304 0.325 0.276 0.280 0.300 0.700 0.702 0.739 0.660 0.663 0.700

Note. Dist = distribution type of categorical data; S2, . . ., S7 = symmetric distribution with 2 to 7 categories;
MA2, . . ., MA7 = moderate asymmetric distribution with 2 to 7 categories; EA2, . . ., EA7 = extreme asymmetric
distribution with 2 to 7 categories; cont = ML estimation using Pearson correlations of integer scores; cont-adj = ML
estimation using Pearson correlations of normal scores; cat = DWLS estimation based on polychoric correlations;
Entries with absolute biases larger than 0.025 are printed in bold.

In Table 2, estimated factor correlations are displayed as a function of true factor
loading and true factor correlations. Overall, biases in factor correlations were smaller
than in factor loadings. Moreover, the bias in factor correlations was more pronounced for
larger true factor loadings. Biases were only of practical relevance for a few item categories
(i.e., two categories) or extreme asymmetric distributions (i.e., EA). In addition, estimated
factor correlations were positively biased if the CFA model holds for Pearson correlations
(“Simulated cont”). At the same time, negative biases existed in a continuous treatment
of items when the CFA model holds for polychoric correlations (“Simulated cat”). The
latter findings replicate the simulation studies found in the literature. Unfortunately, the
psychometric literature conceals the former finding.

3.1.3. Summary

As argued in Section 2.2, it is questionable speaking about bias in the comparison of a
continuous or an ordinal CFA approach. Simulation Study 1 shows that can either claim
that there is bias when the items are treated ordinally (i.e., using polychoric correlations) or
when treated continuously (i.e., using Pearson correlations). It might be more neutral to
only speak about parameter differences using different approaches.

3.2. Simulation Study 2: Unequal Loadings

Simulation Study 2 considers the case of unequal loadings in a two-dimensional CFA
and is a replication of [6,13].
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Table 2. Simulation Study 1: Estimated factor correlations as a function of data-generating models,
estimation methods, true factor loadings, and true factor correlations.

True Factor Correlation = 0.3 True Factor Correlation = 0.7

Simulated cont Simulated cat Simulated cont Simulated cat

Estimation Methods Estimation Methods Estimation Methods Estimation Methods

Dist cont cont-
adj cat cont cont-

adj cat cont cont-
adj cat cont cont-

adj cat

True loading = 0.3
S2 0.300 0.300 0.301 0.300 0.300 0.300 0.700 0.700 0.701 0.700 0.700 0.700
S3 0.300 0.300 0.300 0.300 0.300 0.300 0.700 0.700 0.700 0.700 0.700 0.700
S4 0.300 0.300 0.300 0.300 0.300 0.300 0.700 0.700 0.700 0.700 0.700 0.700
S5 0.300 0.300 0.300 0.300 0.300 0.300 0.700 0.700 0.700 0.700 0.700 0.700
S6 0.300 0.300 0.300 0.300 0.300 0.300 0.700 0.700 0.700 0.700 0.700 0.700
S7 0.300 0.300 0.300 0.300 0.300 0.300 0.700 0.700 0.700 0.700 0.700 0.700
MA2 0.300 0.300 0.303 0.298 0.298 0.300 0.700 0.700 0.703 0.698 0.698 0.700
MA3 0.300 0.300 0.300 0.300 0.300 0.300 0.700 0.700 0.700 0.700 0.700 0.700
MA4 0.300 0.301 0.302 0.299 0.299 0.300 0.700 0.701 0.702 0.699 0.699 0.700
MA5 0.300 0.301 0.301 0.299 0.300 0.300 0.700 0.701 0.701 0.699 0.700 0.700
MA6 0.300 0.301 0.301 0.299 0.300 0.300 0.700 0.701 0.701 0.699 0.700 0.700
MA7 0.300 0.300 0.300 0.300 0.300 0.300 0.700 0.700 0.700 0.700 0.700 0.700
EA2 0.300 0.300 0.325 0.289 0.289 0.300 0.700 0.700 0.723 0.689 0.689 0.700
EA3 0.300 0.301 0.309 0.294 0.295 0.300 0.700 0.701 0.709 0.694 0.695 0.700
EA4 0.300 0.301 0.306 0.296 0.297 0.300 0.700 0.701 0.706 0.696 0.697 0.700
EA5 0.300 0.301 0.304 0.297 0.298 0.300 0.700 0.701 0.704 0.697 0.698 0.700
EA6 0.300 0.301 0.302 0.298 0.299 0.300 0.700 0.701 0.702 0.698 0.699 0.700
EA7 0.300 0.301 0.302 0.298 0.299 0.300 0.700 0.701 0.702 0.698 0.699 0.700

True loading = 0.7
S2 0.300 0.300 0.329 0.288 0.288 0.300 0.700 0.700 0.737 0.684 0.684 0.700
S3 0.300 0.300 0.302 0.299 0.299 0.300 0.700 0.700 0.704 0.698 0.698 0.700
S4 0.300 0.300 0.301 0.299 0.299 0.300 0.700 0.700 0.701 0.699 0.699 0.700
S5 0.300 0.300 0.301 0.299 0.300 0.300 0.700 0.700 0.701 0.699 0.700 0.700
S6 0.300 0.300 0.301 0.299 0.300 0.300 0.700 0.700 0.701 0.699 0.699 0.700
S7 0.300 0.300 0.301 0.300 0.300 0.300 0.700 0.700 0.701 0.699 0.700 0.700
MA2 0.300 0.300 0.337 0.283 0.283 0.300 0.700 0.700 0.744 0.679 0.679 0.700
MA3 0.300 0.300 0.306 0.296 0.296 0.300 0.700 0.700 0.707 0.695 0.695 0.700
MA4 0.300 0.303 0.310 0.292 0.294 0.300 0.700 0.702 0.710 0.691 0.694 0.700
MA5 0.300 0.303 0.306 0.295 0.298 0.300 0.700 0.703 0.706 0.695 0.697 0.700
MA6 0.300 0.303 0.305 0.296 0.299 0.300 0.700 0.703 0.705 0.696 0.699 0.700
MA7 0.300 0.303 0.303 0.297 0.300 0.300 0.700 0.703 0.703 0.697 0.699 0.700
EA2 0.300 0.300 0.403 0.246 0.246 0.300 0.700 0.700 0.788 0.642 0.642 0.700
EA3 0.300 0.304 0.350 0.268 0.271 0.300 0.700 0.703 0.748 0.665 0.668 0.700
EA4 0.300 0.305 0.334 0.275 0.279 0.300 0.700 0.704 0.734 0.673 0.677 0.700
EA5 0.300 0.306 0.325 0.281 0.285 0.300 0.700 0.705 0.726 0.679 0.684 0.700
EA6 0.300 0.305 0.317 0.286 0.290 0.300 0.700 0.705 0.718 0.684 0.689 0.700
EA7 0.300 0.305 0.314 0.288 0.292 0.300 0.700 0.705 0.715 0.686 0.691 0.700

Note. Dist = distribution type of categorical data; S2, . . ., S7 = symmetric distribution with 2 to 7 categories;
MA2, . . ., MA7 = moderate asymmetric distribution with 2 to 7 categories; EA2, . . ., EA7 = extreme asymmetric
distribution with 2 to 7 categories; cont = ML estimation using Pearson correlations of integer scores; cont-adj = ML
estimation using Pearson correlations of normal scores; cat = DWLS estimation based on polychoric correlations;
Entries with absolute biases larger than 0.025 are printed in bold.

3.2.1. Method

In this study, we investigate a two-dimensional CFA in which each of the two factors
is measured by five items. The factor loadings of the five items for each factor were 0.3,
0.4, 0.5, 0.6, and 0.7. The factor correlation was fixed to 0.3. As in Simulation Study 1, all
marginal distributions of the items were equal in each simulation condition. The identical
18 marginal distributions as in Simulation Study 1 were utilized. According to the findings
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of Simulation Study 1, the CFA model for normal scores was not considered anymore be-
cause the results were very similar to those using Pearson correlations. Like in Simulation 1,
we either assumed that the CFA model holds for Pearson correlations (“Simulated cont”)
or polychoric correlations (“Simulated cat”). Then, we estimated the CFA model based on
the other correlation matrix that did not correspond to the data-generating parameters. It
is obvious that fitting the corresponding correlation matrix provides unbiased estimates
(see also Simulation Study 1).

3.2.2. Results

Table 3 presents estimated factor loadings and factor correlations. The factor loadings
are positively biased if the factor model holds for Pearson correlations, but it is fitted for
polychoric correlations. Only in cases of extreme asymmetry, positive biases in factor
correlations were non-negligible. In other cases, the bias in factor correlations can be
considered small. In contrast, and as shown in several simulation studies such as [6],
estimated factor loadings are negatively biased if the items are treated as continuous
variables when the factor model holds for the polychoric correlations. Estimated factor
correlations were only substantially biased for extreme asymmetric distributions and a few
item categories.

Table 3. Simulation Study 2: Estimated factor loadings λ1, . . . , λ5 and factor correlations ψ as a
function of data-generating models and estimation methods.

Simulated cont, Estimated cat Simulated cat, Estimated cont

Parm λ1 λ2 λ3 λ4 λ5 ψ λ1 λ2 λ3 λ4 λ5 ψ

True 0.3 0.4 0.5 0.6 0.7 0.3 0.3 0.4 0.5 0.6 0.7 0.3

Dist

S2 0.379 0.501 0.618 0.730 0.846 0.313 0.238 0.319 0.401 0.485 0.568 0.294
S3 0.338 0.451 0.563 0.674 0.786 0.301 0.266 0.355 0.444 0.533 0.622 0.299
S4 0.322 0.429 0.535 0.642 0.749 0.301 0.280 0.373 0.467 0.561 0.654 0.300
S5 0.314 0.419 0.524 0.628 0.733 0.300 0.286 0.382 0.477 0.573 0.669 0.300
S6 0.310 0.413 0.516 0.619 0.722 0.300 0.291 0.388 0.485 0.582 0.679 0.300
S7 0.307 0.410 0.512 0.614 0.717 0.300 0.293 0.390 0.488 0.586 0.684 0.300
MA2 0.388 0.510 0.626 0.738 0.853 0.318 0.232 0.312 0.394 0.478 0.560 0.290
MA3 0.335 0.445 0.555 0.664 0.774 0.303 0.269 0.359 0.450 0.541 0.645 0.298
MA4 0.331 0.439 0.546 0.652 0.758 0.306 0.272 0.364 0.457 0.551 0.658 0.294
MA5 0.322 0.429 0.534 0.639 0.744 0.304 0.279 0.373 0.468 0.563 0.669 0.297
MA6 0.316 0.421 0.525 0.628 0.732 0.303 0.284 0.380 0.476 0.573 0.677 0.297
MA7 0.312 0.415 0.518 0.621 0.724 0.302 0.288 0.385 0.482 0.580 0.504 0.298
EA2 0.454 0.575 0.686 0.789 0.893 0.367 0.191 0.263 0.341 0.423 0.582 0.262
EA3 0.383 0.498 0.608 0.712 0.819 0.331 0.232 0.316 0.403 0.493 0.613 0.278
EA4 0.359 0.470 0.578 0.682 0.787 0.321 0.249 0.337 0.428 0.521 0.633 0.283
EA5 0.344 0.454 0.560 0.663 0.768 0.315 0.260 0.351 0.444 0.539 0.649 0.287
EA6 0.332 0.440 0.545 0.648 0.752 0.310 0.270 0.363 0.457 0.554 0.658 0.291
EA7 0.327 0.433 0.537 0.640 0.743 0.309 0.275 0.369 0.464 0.561 0.632 0.292

Note. Parm = parameter; True = true parameter value; Dist = distribution type of categorical data; S2, . . .,
S7 = symmetric distribution with 2 to 7 categories; MA2, . . ., MA7 = moderate asymmetric distribution with 2
to 7 categories; EA2, . . ., EA7 = extreme asymmetric distribution with 2 to 7 categories; cont = ML estimation
using Pearson correlations of integer scores; cont-adj = ML estimation using Pearson correlations of normal
scores; cat = DWLS estimation based on polychoric correlations; Entries with absolute biases larger than 0.025 are
printed in bold.

3.2.3. Summary

In the original Rhemtulla et al. [6] study, it was stated that “Normal theory ML
[applying CFA to Pearson correlations; added by the author] was found to be more sensitive
to asymmetric category thresholds and was especially biased when estimating large factor
loadings”. We demonstrated that treating discrete items ordinally by using polychoric
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correlations is also biased if the true CFA model holds for Pearson correlations. Statements
like the one cited above are particularly dangerous in applied research because it seems
to imply that there would be a univocal voice under methodologists and statisticians
that either one of two approaches must always be preferred for reasons of statistical bias.
We argued that these kinds of statements cannot be used to give advice on choosing an
adequate estimation approach in a concrete empirical application.

4. Analytical Findings

We now provide an analytical treatment of the two-dimensional factor model for
ordinal variables. The basis of our derivations is an empirically obtained relation of the
polychoric correlation ρ∗ and the Pearson correlation ρ. We assume that the bivariate
distribution of two discrete variables is represented by a Gaussian copula model (see
Section 2.1). It was shown that there exists an injective relationship of ρ∗ and ρ. By studying
the relationship for the distributions presented in Section 3.1.1, it turned out that a quadratic
relationship of the square root of the correlations provided a close approximation. That is,
we can empirically determine coefficients ν1 and ν2 such that

√
ρ∗ ' ν1

√
ρ(1− ν2

√
ρ) . (4)

Table A2 in Appendix A shows the estimated coefficients of the approximating function
of the square root of the polychoric correlation

√
ρ∗ as a function of the square root of the

Pearson correlation
√
ρ. The coefficient ν1 is larger than 1 and is close to 1 for variables

with many categories. Moreover, ν1 is substantially larger than 1 for more asymmetric
variables. The coefficient ν2 is larger than 0 (except for the combination of distributions S2
and EA2; see Table A2). The coefficient ν2 reaches 0 for variables with many categories and
less asymmetrical distributions. The absolute error of the numerical approximation (4) for
the range ρ ∈ [0, 0.8] is also displayed in Table A2. It turned out that the approximation
error is negligible (i.e., smaller than 0.01) for variables with at least 3 categories.

Figure 2 illustrates the relationship between the square roots of the polychoric correla-
tion and the Pearson correlation. For two 3-category items with extreme asymmetry (i.e.,
EA3; see Figure 1), the functional form can be well represented as a quadratic function if
the Pearson correlation is smaller than 0.8 (i.e., |ρ| < 0.8).

4.1. Case 1: Equal Loadings

Now, we turn to the determination of factor loadings λ and a factor correlation ψ in
confirmatory factor analysis.

We assume that a two-dimensional factor model holds. Each of the two factors, X
and Y, is measured by three variables. Furthermore, we assume that there are nonnegative
common factor loadings λX and λY for all items of a factor. Assuming three variables, the
measurement model is just identified in case of unequal loadings, and there is no model
misfit. For equal loadings, all pairs of correlations (i.e., polychoric and Pearson correlations)
corresponding to the same factor are equal. Let λX, λY, and ψ denote the parameters
defined in the factor model by treating the variables continuously (i.e., using Pearson
correlations) and λ∗X , λ∗Y, and ψ∗ in the factor model relying on polychoric correlations. The
correlation of two items from the same scale X is given as

ρX = λ2
X and ρ∗X = (λ∗X)

2 (similarly for Y) . (5)

For two items that measure the different factors X and Y, we get

ρXY = λXλYψ and ρ∗XY = λ∗Xλ
∗
Yψ
∗ . (6)
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Figure 2. Relation of the square root of the polychoric correlation (i.e.,
√
ρ∗) and the square root of the

Pearson correlation (i.e.,
√
ρ) and its linear and quadratic approximation for two items with extreme

asymmetry and three categories (i.e., distribution type EA3).

The Equations (5) and (6) can be used for deriving estimates for λh and φ:

λX =
√
ρX and λ∗X =

√
ρ∗X and (7)

ψ =
ρXY√
ρXρY

and ψ∗ =
ρ∗XY√
ρ∗Xρ

∗
Y

.

We now analyze the relations of estimated factor loadings λ∗X and λX and the estimated
factor correlation ψ∗ and ψ. Using (7), we compute by relying on the approximation (4)

λ∗X =
√
ρ∗X = ν1,X

√
ρX(1− ν2,X

√
ρX) = ν1,XλX(1− ν2,XλX) . (8)

For values of ν2,X near to zero, we get from (8)

λ∗X ' ν1,XλX (9)

The estimated factor loadings in the two competing approaches are approximately lin-
early related. Moreover, factor loadings obtained from polychoric correlations will be larger
than those from Pearson correlations because ν1 is typically larger than 1 (see Table A2).
Thus, the finding (9) confirms the findings obtained for Simulation Study 1 (Section 3.1).

We now derive the relation for the factor correlations for the two factors. We get by
again using (4)
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ψ∗ =
ρ∗XY√
ρ∗Xρ

∗
Y
=

ν2
1,XYλXλYψ

[
1− ν2,XY

√
λXλYψ

]2√
ν2

1,Xλ
2
1(1− ν2,XλX)2

√
ν2

1,Yλ
2
Y(1− ν2,YλY)2

(10)

By simplifying (10), we obtain

ψ∗ = ψν∗1

[
1− ν2,XY

√
λXλYψ

]2
(1− ν2,XλX)(1− ν2,YλY)

, (11)

where ν∗1 =
ν2

1,XY
ν1,Xν1,Y

. Note that ν∗1 equals 1 if all variables have the same marginal

distribution. By applying the Taylor approximation (1 − x)−1 ' 1 + x for the terms
(1 − ν2,XλX) and (1 − ν2,YλY), and by ignoring higher-order terms in ν2, we get by
further simplifying (11)

ψ∗ ' ψν∗1
[
1 + ν2,Xλ1 + ν2,Yλ2 − 2ν2,XY

√
λ1λ2ψ

]
(12)

For ν2 ≡ ν2,X = ν2,Y = ν2,XY and ν∗1 = ν1,X = ν1,Y = ν1,XY, we obtain from (12)

ψ∗ ' ψ
[
1 + ν2

{
λX + λY −

√
λXλYψ

}]
(13)

We now analyze the term in curly brackets in (14). First, assume λX ≥ λY ≥ 0. Then,
we can write λX = λY + e with e ≥ 0. We obtain

λX + λY −
√
λXλYψ = 2λY + e−

√
λY + e

√
λY
√
ψ ≥ 2λY + e−

√
λY + e

√
λY + e = λY ≥ 0

Similarly, we get the same result with λY ≥ λX ≥ 0. Hence, the latent correlation
based on polychoric correlations is expected to be larger than based on Pearson correlations
because Equation (14) can be written as

ψ∗ ' ψ(1 + ν2C) , (14)

where C and ν2 are larger than 0. This finding also confirms the result from the simulation
studies. Because the quadratic coefficient ν2 turned out to be smaller than the deviation
of linear coefficient ν1 from 1 (see Table A2), differences between the approaches using
polychoric and Pearson correlations are expected to be larger for factor loadings than for
factor correlations.

4.2. Case 2: Unequal Loadings

We now turn to the case of unequal factor loadings in the two-dimensional factor
model. This situation was considered in Simulation Study 2 (Section 3.2). For two items Xi
and Xj that measure the same factor X, it holds that

ρXiXj = λXiλXj and ρ∗XiXj
= λ∗Xi

λ∗Xj

Hence, we can estimate the factor loadings λX1 and λ∗X1
of the first item X1 as (see [26])

λX1 =

√
ρX1X2ρX1X3

ρX2X3

We now derive the estimate based on polychoric correlations. By using the approxi-
mation (4), we obtain

λ∗X1
=
ν1,X1X2

√
λX1λX2(1− ν2,X1X2

√
λX1λX2)ν1,X1X3

√
λX1λX3(1− ν2,X1X3

√
λX1λX3)

ν1,X2X3

√
λX2λX3(1− ν2,X2X3

√
λX2λX3)

. (15)

By rearranging terms in (15), we get
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λ∗X1
= λX1ν

∗
X1

(1− ν2,X1X2

√
λX1λX2)(1− ν2,X1X3

√
λX1λX3)

1− ν2,X2X3

√
λX2λX3

, (16)

where ν∗X1
=

ν1,X1X2ν1,X1X3
ν1,X2X3

. If the quadratic terms involving ν2 can be neglected, we get

from (16) the approximation
λ∗X1
' λX1ν

∗
X1

Since ν∗X1
will typically be larger than 1, estimated factor loadings based on polychoric

correlations will be larger than those obtained with Pearson correlations. This finding is also
in agreement with the findings of Simulation Study 2 in Section 3.2. The factor correlation
ψ is no longer be uniquely determined in the case of unequal loadings. However, one can
imagine that the finding from the case of equal loadings would still be valid if reasonable
assumptions would be used in a derivation. Because our analytical treatment has only
illustrative character, we also do not think that a more rigorous treatment would provide
more insights.

4.3. Case 3: General CFA with Simplifying Linear Assumptions

We now consider the general CFA model but make simplifying assumptions on the
relationship of polychoric and Pearson correlations. In (4), we empirically demonstrated
that there is a quadratic relation of

√
ρ∗ and

√
ρ. Now, we further assume that the quadratic

coefficient ν2 can be neglected. A linear relationship translates into a quadratic relationship
ρ∗ = ν2

1ρ of ρ∗ and ρ. We also impose the additional assumption that

ν1,YiYj = κYiκYj (17)

for variables Yi and Yj. This means that the strength of the linear relationship is determined
by parameters κYi referring to the marginal distributions. This includes the special case that
all marginal distributions in Y = (Y1, . . . , YI) coincide such that ν1 = κ2 with a common
parameter κ. Now, assume that the factor model holds for Pearson correlations:

Σ = ΛΨΛ> +Θ .

Denote by λ>i the i-th row vector inΛ. Because Σ is a correlation matrix, we get the
identity λ>i Ψλi + θi = 1, where θ is the i-th diagonal element inΘ. Using Equation (17),
we have ρY∗i Y∗j

= κYiκYjρYiYj . Hence, we obtain

ρY∗i Y∗j
= κYiκYjρYiYj = κYiκYjλ

>
i Ψλi = λ

∗
i
>
Ψ∗λ∗j ,

where λ∗i = κYiλi and Ψ∗ = Ψ. Moreover, define the i-th diagonal element in Θ∗ by
θ∗i = −θi(κYi − 1)λ>i Ψλi. Consequently, factor loadings are multiplied by a factor, and
factor correlations remain constant. This finding resembles those in simulation studies
1 and 2 in which there is no strong deviation from the linearity assumption of

√
ρ∗ and√

ρ. Because the parameters from the ordinal CFA model (i.e., Λ∗, Ψ∗, and Θ∗) can be
computed from the CFA based on Pearson correlations (i.e.,Λ, Ψ, andΘ), deciding among
the Pearson or the polychoric CFA model cannot be made based on model fit because either
both or none of the two models will fit the data.

5. Discussion and Conclusions

This article argues that the often found recommendation for not treating ordinal
variables in factor models and structural equation models as continuous is not justified.
The choice for a particular modeling strategy implies that it is assumed whether the factor
analysis model holds for Pearson correlations or polychoric correlations. We demonstrated
that the choice could not be based on simulation studies, although some psychometric
literature argues otherwise.
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Our simulation studies and analytical findings illustrate that always treating items
as ordinal by employing a polychoric correlation can result in biased factor loadings and
factor correlations if the factor model holds for Pearson correlations. However, and in
coherence with the literature, one can also show that biases were obtained when incorrectly
treating ordinal variables as continuous. Hence, the discussion about potential biases relies
on how the true parameters are defined. It is up to a researcher whether the factor model
should be imposed on Pearson correlations or polychoric correlations. The widespread
statements about the bias of model parameter when treating items as continuous instead of
ordinal are therefore unjustified.

Our simulation studies and analytical derivations show that the factor loadings based
on polychoric correlations are typically larger than those based on Pearson correlations.
As argued in this article, loadings based on Pearson correlations are often characterized
as negatively biased in the literature. The loadings are particularly small if the marginal
distribution of the ordinal items is (strongly) asymmetrically distributed. However, we
tend to argue that loadings based on Pearson correlations tell the researcher the right
imprecision that those items provide limited information on the latent variable because
the distributions of ordinal items are not well aligned with the center of the distribution
of the latent factor. In item response theory, the information function can quantify such a
decrease. Consequently, there are well-justified arguments for using factor loadings based
on Pearson correlation and item-total correlations instead of loadings based on polychoric
correlations and point-biserial correlations.

In applied research, one is frequently confronted with the argument that the normal
distribution assumption is violated for ordinal items. Consequently, factor analysis must
be performed based on polychoric correlations. However, it must be emphasized that the
ordinal treatment presupposes that the underlying latent variables are normally distributed.
It has been shown that this latent normality assumption can be tested. However, other
distributional assumptions are seldom applied in research practice. In more detail, the
probabilities P(Yi ≤ k) = Gi(λ

∗
i
>F + ν∗ik) using a vector of factors F can be modeled using

any monotone linking function Gi. Using the probit link function Gi = Φwhen modeling
polychoric correlations is mainly justified by computational simplicity and not model fit
arguments or substantive reasons. In item response theory, the link functions Gi can be
more flexibly estimated using shape parameters that describe asymmetry. As we have
argued elsewhere, the distributional modeling assumptions of normality (when using
Pearson correlations) and latent normality (when using polychoric correlations) can be
both misspecified, and there should be no general preference for one modeling strategy
over the other.

Finally, in social science research, we frequently find the argument that discrete items
are only “measured” at an ordinal scale level. Because variables would be attributed to an
ordinal scale, only particular statistical techniques would be meaningful (i.e., defensible).
We generally find such statements flawed because, in our view, the meaningfulness of
a statistical operation is not a property of a variable in general but has to be separately
evaluated for all statistical analyses involving this variable. Moreover, we think that the
concept of ordinal scales in representational measurement theory cannot be connected
to empirically testable consequences. Hence, their set of axioms is entirely unrelated to
substantive theory that motivates the use of particular items and, hence, the measurement
instrument as a whole. It might be wise to abandon the concept of ordinal and interval
scales in social science research and from the introductory methodology course because its
theory does not have foundations connected to the application of statistical techniques.
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Appendix A. Data-Generating Parameters in the Simulation Studies

Table A1 contains the data-generating parameters for the marginal distributions of
items. These distributions are used in Simulation Study 1 (Section 3.1), Simulation Study 2
(Section 3.2) and the empirically obtained result in Equation (4) that forms the basis of the
analytical findings presented in Section 4.

Table A1. Data-generating parameters for marginal distributions of items (i.e., item-category proba-
bilities P(Yi = h) for h = 1, . . . , Ki).

Dist Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7

S2 0.500 0.500
MA2 0.648 0.352
EA2 0.867 0.133
S3 0.206 0.589 0.206
MA3 0.303 0.486 0.211
EA3 0.719 0.151 0.130
S4 0.112 0.388 0.388 0.112
MA4 0.378 0.420 0.154 0.049
EA4 0.620 0.155 0.120 0.106
S5 0.067 0.242 0.383 0.242 0.067
MA5 0.248 0.440 0.213 0.085 0.014
EA5 0.531 0.163 0.116 0.102 0.088
S6 0.064 0.154 0.282 0.282 0.154 0.064
MA6 0.146 0.368 0.271 0.125 0.076 0.014
EA6 0.441 0.151 0.132 0.112 0.092 0.072
S7 0.048 0.108 0.210 0.269 0.210 0.108 0.048
MA7 0.075 0.247 0.301 0.164 0.116 0.082 0.014
EA7 0.388 0.151 0.132 0.112 0.092 0.072 0.053

Note. Dist = distribution type of categorical data; Cat1, . . ., Cat7 = category 1, . . ., 7; S2, . . ., S7 = symmetric
distribution with 2 to 7 categories; MA2, . . ., MA7 = moderate asymmetric distribution with 2 to 7 categories;
EA2, . . ., EA7 = extreme asymmetric distribution with 2 to 7 categories.

Appendix B. Approximation of the Relation of the Polychoric Correlation and the
Pearson Correlation

Table A2 shows the estimated coefficients of the approximating function of the square
root of the polychoric correlation

√
ρ∗ as a function of the square root of the Pearson

correlation
√
ρ.
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Table A2. Approximation
√
ρ∗ ' ν1

√
ρ(1− ν2

√
ρ) of the square root of the polychoric correlation√

ρ∗ as a function of the square root of the Pearson correlation
√
ρ.

Dist1 Dist2 ν1 ν2 Error

S2 S2 1.339 0.161 0.013
MA2 MA2 1.380 0.191 0.012
EA2 EA2 1.692 0.377 0.006
S2 MA2 1.347 0.144 0.011
S2 EA2 1.331 −0.154 0.041
MA2 EA2 1.455 0.130 0.020
S3 S3 1.137 0.021 0.003
MA3 MA3 1.130 0.035 0.003
EA3 EA3 1.367 0.224 0.006
S3 MA3 1.130 0.021 0.002
S3 EA3 1.224 0.032 0.007
MA3 EA3 1.219 0.049 0.003
S4 S4 1.075 0.007 0.001
MA4 MA4 1.121 0.054 0.002
EA4 EA4 1.258 0.166 0.005
S4 MA4 1.092 0.009 0.001
S4 EA4 1.141 0.014 0.001
MA4 EA4 1.181 0.091 0.002
S5 S5 1.049 0.004 0.000
MA5 MA5 1.085 0.031 0.001
EA5 EA5 1.194 0.127 0.004
S5 MA5 1.063 0.004 0.000
S5 EA5 1.102 0.010 0.001
MA5 EA5 1.131 0.060 0.001
S6 S6 1.034 0.005 0.000
MA6 MA6 1.062 0.025 0.001
EA6 EA6 1.140 0.092 0.003
S6 MA6 1.045 0.004 0.000
S6 EA6 1.074 0.011 0.001
MA6 EA6 1.096 0.047 0.001
S7 S7 1.026 0.004 0.000
MA7 MA7 1.046 0.018 0.001
EA7 EA7 1.116 0.078 0.003
S7 MA7 1.034 0.004 0.000
S7 EA7 1.060 0.009 0.000
MA7 EA7 1.077 0.038 0.001

Note. Dist1 = distribution type of first variable; Dist2 = distribution type of second variable; S2, . . .,
S7 = symmetric distribution with 2 to 7 categories; MA2, . . ., MA7 = moderate asymmetric distribution with 2 to
7 categories; EA2, . . ., EA7 = extreme asymmetric distribution with 2 to 7 categories; Error = maximum function
approximation error for Pearson correlations ρ smaller than 0.8. Error entries with absolute errors larger than 0.01
are printed in bold.
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