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Abstract: We consider a boundary control problem for the equation of string vibration with given
initial and final conditions, given the deflection form at an intermediate moment of time. The control
is carried out by displacement of one end with the other end fixed. The problem is reduced to the
problem of a distributed action control with zero boundary conditions. We propose a constructive
approach to constructing a boundary control action by the separation of variables and methods of
the theory of control of finite-dimensional systems. The approach is applied to given functions. A
computational experiment was carried out with the construction of the corresponding graphs and
their comparative analysis. They confirm the obtained results.
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1. Introduction

Mathematical modeling of various controlled physical and engineering processes
associated with vibration systems leads to wave equations. Controlled vibration systems
are widespread in various theoretical and applied fields of science. In practice, control
problems often arise for both distributed and lumped systems, in particular, when forming a
given (desired) form of motion that satisfies multipoint intermediate conditions. Multipoint
boundary value problems of control and optimal control of dynamical systems given both
the classical boundary (initial and final) and multipoint intermediate conditions have
applied value and theoretical importance. Therefore, they require research. In the scientific
literature, multipoint boundary value problems of control are considered for systems
described both by ordinary differential equations and partial differential equations. Unlike
control problems for systems described by ordinary differential equations, control problems
for ones described by partial differential equations with multipoint intermediate conditions
are little studied.

Many researchers study problems of (optimal) control of vibrational processes. As a
rule, both distributed and boundary-concentrated impacts are considered [1–19]. Modeling
and control of dynamic systems is currently an actual scientific direction. At the same time,
mathematical models of dynamic systems use both ordinary differential equations and
partial differential equations with intermediate conditions. Studies of the above problems
are the subject of such research contributions as [4–9,20,21] and others.

In production processes associated with the longitudinal movement of materials (for
example, a paper web), undesirable transverse perturbations arise, which, for a vertical
section, is described by the wave equation of a longitudinally moving string [22]. As a
result, statements associated with generating the desired oscillation arise, i.e., oscillation
control problems over a finite time. One of the possible approaches designed to prevent
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the appearance of unwanted disturbances can be considered the control of oscillations
with given multipoint intermediate conditions. These conditions can be interpreted as a
driving force.

Control and optimal control problems for the string oscillation equation with given
initial and final conditions and undivided values of string point velocities at intermediate
times are considered in [5,6]. The presented work is close to these articles.

This study solves the problem of boundary control of vibrations of a homogeneous
string with given initial and final conditions, with a given form of deflection at an interme-
diate moment of time. Control is implemented by displacing the left end with the right end
fixed. The problem is reduced to a distributed action control problem with zero boundary
conditions. Using the method of separation of variables and methods of the theory of
control of finite-dimensional systems for the first n harmonics of vibrations, we construct
the required boundary control, under the action of which the deflection function of the
string takes a given (or close to a given) value at an intermediate moment of time. In the
paper, we formulate the corresponding statement and theorem for the first n harmonics.
The results obtained for the first n harmonics are illustrated for n = 1 and n = 2. The
presented study is located at the intersection of several scientific fields. We use terminology
and approaches from the fields of control of systems with distributed parameters and
control of finite-dimensional dynamic systems.

This paper is organized as follows. Section 2 contains formulas necessary for the
analytical construction of the solution. Further, in Section 3, using the method of separation
of variables and methods of the theory of control of finite-dimensional systems, for the first n
harmonics of vibrations, we construct the required boundary control and the corresponding
string deflection function. The presented formulas are necessary for the constructiveness of
constructing an analytical solution. The constructed analytical solution of the formulated
problem is compactly presented in Sections 2 and 3 with the corresponding formulations of
the obtained general results in the form of a statement and a theorem. Section 4 presents
formulas for fixed n = 1 and n = 2. They are also used in the Section 5 of the paper. In
Section 5, we realize a computational experiment, build corresponding graphs and make a
comparative analysis. They confirm the results of the study. The conclusion summarizes
the main results.

2. Problem Statement and Its Reduction to a Problem with Zero Boundary Conditions

Consider the small transverse vibrations of a taut homogeneous string described by
the function Q(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ T, which obeys the wave equation

∂2Q
∂t2 = a2 ∂2Q

∂x2 , 0 < x < l, t > 0, (1)

subject to boundary conditions

Q(0, t) = u(t), Q(l, t) = 0, 0 ≤ t ≤ T. (2)

In the Equation (1) a2 = T0
ρ , where T0 is string tension, ρ is density of the homogeneous

string, and the function u(t) is a boundary control (u(t) is unknown function).
Let the initial and final conditions be given as follows:

Q(x, 0) = ϕ0(x),
∂Q
∂t

∣∣∣∣
t=0

= ψ0(x), 0 ≤ x ≤ l, (3)

Q(x, T) = ϕT(x) = ϕ2(x),
∂Q
∂t

∣∣∣∣
t=T

= ψT(x) = ψ2(x), 0 ≤ x ≤ l, (4)

where T is some given moment of time. It is assumed that the function Q(x, t) ∈ C2(ΩT),
where the set ΩT = {(x, t) : x ∈ [0, l], t ∈ [0, T]}.
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Let at some moment of time t1 (0 < t1 < T) an intermediate state of points (deflection)
of the string be given:

Q(x, t1) = ϕ1(x), 0 ≤ x ≤ l. (5)

Let us state the following problem of boundary control of string vibrations.
Among possible boundary controls u(t), 0 ≤ t ≤ T, (2), it is required to find such

a control that would cause the vibrating motion of the system (1) to pass from the given
initial state (3) to the final state (4), taking a given form of deflection (5) at an intermediate
moment of time.

Let us assume that the functions ϕi(x)
(

i = 0, 2
)

belong to the space C2[0, l] and
the functions ψ0(x) and ψT(x) belong to the space C1[0, l]. The function u(t) ∈ C2[0, T]
is called an admissible control. It is also assumed that all functions are such that the
consistency conditions below are satisfied.

Since the boundary conditions (2) are not homogeneous, we reduce the solution to the
problem stated to a control problem with zero boundary conditions. Hence, following [23],
we find the solution to the Equation (1) in the form of the sum

Q(x, t) = V(x, t) + W(x, t), (6)

where V(x, t) is an unknown function to be determined, with homogeneous boundary
conditions

V(0, t) = V(l, t) = 0, (7)

and the function W(x, t) is the solution to the Equation (1) with non-homogeneous boundary
conditions

W(0, t) = u(t), W(l, t) = 0.

The function W(x, t) has the form

W(x, t) =
(

1− x
l

)
u(t). (8)

Substituting (6) into (1) and considering (8), we obtain the following equation for the
determination of the function V(x, t):

∂2V
∂t2 = a2 ∂2V

∂x2 + F(x, t), (9)

where
F(x, t) =

( x
l
− 1
)

u′′ (t). (10)

The function V(x, t) by virtue of conditions (2)–(5) must satisfy the initial conditions

V(x, 0) = ϕ0(x) +
( x

l
− 1
)

u(0),
∂V
∂t

∣∣∣∣
t=0

= ψ0(x) +
( x

l
− 1
)

u′(0), (11)

the intermediate condition

V(x, t1) = ϕ1(x) +
( x

l
− 1
)

u(t1) (12)

and final conditions

V(x, T) = ϕT(x) +
( x

l
− 1
)

u(T),
∂V
∂t

∣∣∣∣
t=T

= ψT(x) +
( x

l
− 1
)

u′(T). (13)

It follows from the condition (7) that

V(0, ti) = V(l, ti) = 0,
∂V(0, t)

∂t

∣∣∣∣
t=ti

=
∂V(l, t)

∂t

∣∣∣∣
t=ti

= 0, i = 0, 2. (14)
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From the conditions (11), (12) and (13), given (14), we obtain the following consistency
conditions:

u(0) = ϕ0(0), u′(0) = ψ0(0), ϕ0(l) = ψ0(l) = 0, (15)

u(t1) = ϕ1(0), ϕ1(l) = 0, (16)

u(T) = ϕT(0), u′(T) = ψT(0), ϕT(l) = ψT(l) = 0. (17)

Thus, taking into account the conditions (15)–(17), the conditions (11)–(13) are written
as follows:

V(x, 0) = ϕ0(x) +
( x

l
− 1
)

ϕ0(0),
∂V
∂t

∣∣∣∣
t=0

= ψ0(x) +
( x

l
− 1
)

ψ0(0), (18)

V(x, t1) = ϕ1(x) +
( x

l
− 1
)

ϕ1(0), (19)

V(x, T) = ϕT(x) +
( x

l
− 1
)

ϕT(0),
∂V
∂t

∣∣∣∣
t=T

= ψT(x) +
( x

l
− 1
)

ψT(0). (20)

Thus, the solution to the stated problem of boundary control of vibrations of a string
with a given form of deflection at an intermediate moment of time is reduced to the problem
of control of (9) with boundary conditions (7) and is stated as follows: to find such a control
u(t), 0 ≤ t ≤ T, under which the vibratory motion (9) with boundary conditions (7) from
the given initial state (18) through the intermediate state (19) passes to the final state (20).

3. Problem Solution

Given that the boundary conditions (7) are homogeneous and consistency conditions
are satisfied, according to the Fourier series theory, we find the solution to the Equation (9)
in the form

V(x, t) = ∑∞
k=1 Vk(t) sin

πk
l

x. (21)

Let us represent the functions F(x, t), ϕi(x)
(
i = 0, 2

)
, ψ0(x) and ψT(x) as Fourier

series, and by substituting their values together with V(x, t) in the Equations (9) and (10)
and in the conditions (18)–(20), we obtain

..
Vk(t) + λ2

kVk(t) = Fk(t), λ2
k =

(
aπk

l

)2
, Fk(t) = −

2a
λkl

u′′ (t), (22)

Vk(0) = ϕ
(0)
k −

2a
λkl

ϕ0(0),
.

Vk(0) = ψ
(0)
k −

2a
λkl

ψ0(0), (23)

.
Vk(0) = ψ

(0)
k −

2a
λkl

ψ0(0), (24)

Vk(T) = ϕ
(T)
k − 2a

λkl
ϕT(0),

.
Vk(T) = ψ

(T)
k − 2a

λkl
ψT(0), (25)

where Fk(t), ϕ
(i)
k
(
i = 0, 2

)
, ψ

(0)
k and ψ

(T)
k denote the Fourier coefficients of the functions

F(x, t), ϕi(x)
(
i = 0, 2

)
, ψ0(x) and ψT(x), respectively.

The general solution to the Equation (22) with the initial conditions (23) is of the form

Vk(t) = Vk(0) cos λkt +
1

λk

.
Vk(0) sin λkt +

1
λk

∫ t

0
Fk(τ) sin λk(t− τ)dτ. (26)

Now, given the intermediate (24) and final (25) conditions and the consistency condi-
tions (15)–(17), using the approaches given in [8,9], we obtain from (26) that the function
u(τ) for each k must satisfy the following integral relation:∫ T

0
Hk(τ)u(τ)dτ = Ck(t1, T), k = 1, 2, (27)
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Hk(τ) =

 sin λk(T − τ)
cos λk(T − τ)

h(1)k (τ)

, h(1)k (τ) =

{
sin λk(t1 − τ), 0 ≤ τ ≤ t1,
0 , t1 < τ ≤ T,

Ck(t1, T) =

 C1k(T)
C2k(T)
C1k(t1)

, (28)

C1k(T) =
1

λ2
k

[
λkl
2a

C̃1k(T) + X1k

]
, C̃1k(T) = λkVk(T)− λkVk(0) cos λkT −

.
Vk(0) sin λkT,

C2k(T) =
1

λ2
k

[
λkl
2a

C̃2k(T) + X2k

]
, C̃2k(T) =

.
Vk(T) + λkVk(0) sin λkT −

.
Vk(0) cos λkT, (29)

C1k(t1) =
1

λ2
k

[
λkl
2a

C̃1k(t1) + X(1)
1k

]
, C̃1k(t1) = λkVk(t1)− λkVk(0) cos λkt1 −

.
Vk(0) sin λkt1,

X1k = λk ϕT(0)− ψ0(0) sin λkT − λk ϕ0(0) cos λkT,

X2k = ψT(0)− ψ0(0) cos λkT + λk ϕ0(0) sin λkT, (30)

X(1)
1k = λk ϕ1(0)− ψ0(0) sin λkt1 − λk ϕ0(0) cos λkt1.

Thus, to find the function u(τ), τ ∈ [0, T], we obtain the infinite integral relations
(27). In practice, the first n harmonics of vibrations are selected and the problem of
control synthesis is solved using methods of the theory of control of finite-dimensional
systems [8,9,24].

For the first n harmonics, let us introduce the following block vector notations:

Hn(τ) =


H1(τ)
H2(τ)

...
Hn(τ)

, ηn =


C1(t1, T)
C2(t1, T)

...
Cn(t1, T)

. (31)

with the dimensionalities Hn(τ)− (3n× 1) and ηn − (3n× 1). Consequently, for the first n
harmonics, taking into account (31) from (27), we have∫ T

0
Hn(τ)un(τ)dτ = ηn (32)

(here and elsewhere, the designation of the letter “n” in the lower index will mean “for the
first n harmonics”).

The obtained relation (32) implies the validity of the following statement.

Statement. For each n, the process described by equation (22) with conditions (23)–(25) is com-
pletely controllable if and only if, for any given vector ηn (31), the control un(t), t ∈ [0, T], can be
found, satisfying condition (32).

For arbitrary numbers of first harmonics, the boundary control action un(t), satisfying
the integral relation (32), has the form [8,9,24]:

un(t) = HT
n (t)S

−1
n ηn + fn(t), (33)

where HT
n (t) is a transposed matrix and fn(t) is some vector function such that∫ T

0
Hn(t) fn(t)dt = 0, Sn =

∫ T

0
Hn(t)HT

n (t)dt. (34)

Here, Hn(t)HT
n (t) is the outer product, Sn is a known matrix of dimensionality

(3n× 3n) and it is assumed that detSn 6= 0.
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Thus, the following theorem is true.

Theorem 1 When the initial data of the problem specified in Section 1 are matched and the complete
controllability condition is fulfilled, problem (1)–(5) has a solution determined for each harmonic of
motion by the formula (33).

Substituting (33) into (22) and the expression obtained for Fk(t) into (26), we obtain
the function Vk(t), t ∈ [0, T]. Then, from (21), we have

Vn(x, t) = ∑n
k=1 Vk(t) sin

πk
l

x, (35)

and from (6) for the first n harmonics, the string deflection function Qn (x, t) is written as

Qn(x, t) = Vn(x, t) + Wn(x, t), (36)

where
Wn(x, t) =

(
1− x

l

)
un(t). (37)

4. Solution Construction in the Cases When n = 1 and n = 2

Applying the above approach, we construct the boundary control given n = 1 and
given n = 2 and the string deflection function, respectively.

4.1. Case n = 1

Given n = 1 (therefore, k = 1), according to (31), we have H1(τ) = H1(τ) and
η1 = C1(t1, T), and from (34) we obtain

S1 =
∫ T

0
H1(τ)HT

1 (τ)dτ =

 s(1)11 s(1)12 s(1)13

s(1)21 s(1)22 s(1)23

s(1)31 s(1)32 s(1)33

.

Elements of the matrix S1, according to the notation (28), have the following form:

s(1)11 =
T
2
− 1

4λ1
sin 2λ1T, s(1)12 = s(1)21 =

1
2λ1

sin2 λ1T, s(1)22 =
T
2
+

1
4λ1

sin 2λ1T,

s(1)33 = t1
2 −

1
4λ1

sin 2λ1t1, s(1)13 = s(1)31 = t1
2 cos λ1(T − t1)− 1

2λ1
sin λ1t1 cos λ1T,

s(1)23 = s(1)32 = 1
2λ1

sin λ1t1 sin λ1T − t1
2 sin λ1(T − t1),

and ∆ = detS1 6= 0. Denote by S−1
1 the symmetric matrix of dimension (3× 3) inverse to

the matrix S1.
From (33), it follows that u1(τ) = HT

1 (τ)S
−1
1 η1 + f1(τ). Assuming that f1(τ) = 0, we

obtain, given τ ∈ [0, t1],

u1(τ) = sin λ1(T − τ)[ŝ11C11(T) + ŝ12C21(T) + ŝ13C11(t1)]
+ cos λ1(T − τ)[ŝ21C11(T) + ŝ22 C21(T) + ŝ23C11(t1)]
+ sin λ1(t1 − τ)[ŝ31C11(T) + ŝ32C21(T) + ŝ33C11(t1)],

(38)

and given τ ∈ (t1, T],

u1(τ) = sin λ1(T − τ)[ŝ11C11(T) + ŝ12C21(T) + ŝ13C11(t1)]
+ cos λ1(T − τ)[ŝ21C11(T) + ŝ22C21(T) + ŝ23C11(t1)].

(39)
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Note that according to (36), we can write the expression for the function Q1 (x, t).
Assume that t1 = l

a , T = 2 l
a . Then, given λ1 = aπ

l , we obtain t1λ1 = π, Tλ1 = 2π and
λ1(T − t1) = π. For matrices S1 and S−1

1 , we have:

S1 =

 l
a 0 − l

2a
0 l

a 0
− l

2a 0 l
2a

, S−1
1 =

 2a
l 0 2a

l
0 a

l 0
2a
l 0 4a

l

,

and for the control from (38) and (39), we obtain

u1(τ) =

{ a
l cos λ1τ C21(T) + 2a

l sin λ1τ C11(t1), τ ∈ [0, t1],
a
l cos λ1τ C21(T)− 2a

l sin λ1τ (C11(T) + C11(t1)), τ ∈ (t1, T].
(40)

For the function V1(t) from (26), given (22), so that F1(t) = − 2a
λ1l u′′ 1(t), we obtain,

given t ∈ [0, t1],

V1(t) =
(

V1(0)−
aλ1t C11(t1)

πl

)
cos λ1t +

( .
V1(0)

λ1
+

a(2C11(t1) + λ1t C21(T))
2πl

)
sin λ1t,

and given t ∈ (t1, T],

V1(t) =
[

V1(0) +
a(t− t1)λ1

πl
C11(T) +

a(t− 2t1)λ1

πl
C11(t1)

]
cos λ1t

+

[ .
V1(0)

λ1
+

atλ1

2πl
C21(T)−

a(C11(T) + C11(t1))

πl

]
sin λ1t.

From (36), given (35) and (37), we have

Q1(x, t) = V1(t) sin
π

l
x +

(
1− x

l

)
u1(t). (41)

4.2. Case n = 2

Given n = 2 (i.e., k = 1, 2) from (31), according to (28)–(30), we have

H2(τ) =

(
H1(τ)
H2(τ)

)
=



sin λ1(T − τ)
cos λ1(T − τ)

h(1)1 (τ)
sin λ2(T − τ)
cos λ2(T − τ)

h(1)2 (τ)


, η2 =

(
C1(t1, T)
C2(t1, T)

)
=



C11(T)
C21(T)
C11(t1)
C12(T)
C22(T)
C12(t1)

,

where

h(1)1 (τ) =

{
sin λ1(t1 − τ), 0 ≤ τ ≤ t1,
0, t1 < τ ≤ T,

h(1)2 (τ) =

{
sin λ2(t1 − τ), 0 ≤ τ ≤ t1,
0 , t1 < τ ≤ T.

The values C11(T), C21(T), C11(t1), C12(T), C22(T) and C12(t1) can be easily calculated
using formulas (29) and (30). Their explicit form is omitted for brevity.

From (34), we obtain

S2 =

T∫
0

H2(τ)HT
2 (τ)dτ
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where S2 is a symmetric matrix of dimension (6× 6) and its elements s(2)ij are equal to ones
of the matrix S1, i.e.,

s(2)ij = s(1)ij for i, j = 1, 3; s(2)ij = s(2)ji for i, j = 1, 6, i 6= j.

Given λ2 = 2aπ
l and using the assumptions made in Section 4.1, for the matrix S2,

we obtain:

S2 =



l
a 0 − l

2a 0 0 0
0 l

a 0 0 0 − 4l
3aπ

− l
2a 0 l

2a 0 − 2l
3aπ 0

0 0 0 l
a 0 l

2a
0 0 − 2l

3aπ 0 l
a 0

0 − 4l
3aπ 0 l

2a 0 l
2a


,

where the calculation takes into account the following ratios: t1λ2 = 2π, Tλ2 = 4π,
λ2(T − t1) = 2π, (λ1 + λ2)T = 6π, λ1 + λ2 = 3aπ

l , λ1 − λ2 = − aπ
l , λ2

1 − λ2
2 = −3

( aπ
l
)2,

λ1T + λ2t1 = 4π, λ1T − λ2t1 = 0, λ2T + λ1t1 = 5π and λ2T − λ1t1 = 3π. Let us note that
detS2 = l6

64 a6 π4 p q , where p =
(
9π2 − 64

)−1, q =
(
9π2 − 16

)−1. Having the matrix S2, it is

not difficult to calculate the matrix S−1
2 , the inverse to it.

From (33), it follows that u2(τ) = HT
2 (τ)S

−1
2 η2 + f2(τ). For simplicity, assuming that

f2(τ) = 0, we obtain given τ ∈ [0, t1],

u2(τ) =
2a
l q
(
9π2C11(t1) + 8C11(T) + 6πC22(T)

)
sin λ1τ

+ 3aπ
l p(16C12(t1)− 8C12(T) + 3πC21(T)) cos λ1τ

+ 2a
l p
(
32C12(T)− 9π2C12(t1)− 12πC21(T)

)
sin λ2τ

+ 3aπ
l q(8C11(t1) + 4C11(T) + 3πC22(T)) cos λ2τ,

(42)

and given τ ∈ (t1, T],

u2(τ) =
2a
l q
[
8C11(T)− 9π2(C11(t1) + C11(T))− 6πC22(T)

]
sin λ1τ

+ 3aπ
l p(16C12(t1)− 8C12(T) + 3πC21(T)) cos λ1τ

+ 2a
l p
[
9π2(C12(t1)− C12(T)) + 32C12(T) + 12πC21(T)] sin λ2τ

+ 3aπ
l q(8C11(t1) + 4C11(T) + 3πC22(T)) cos λ2τ,

(43)

where

C11(T) =
l

2a
(V1(T)−V1(0)) +

ϕT(0)− ϕ0(0)
λ1

,

C21(T) =
l

2aλ1

( .
V1(T)−

.
V1(0)

)
+

ψT(0)− ψ0(0)
λ2

1
,

C11(t1) =
l

2a
(V1(t1) + V1(0)) +

ϕ1(0) + ϕ0(0)
λ1

,

C12(T) =
l

2a
(V2(T)−V2(0)) +

ϕT(0)− ϕ0(0)
λ2

, (44)

C22(T) =
l

2aλ2

( .
V2(T)−

.
V2(0)

)
+

ψT(0)− ψ0(0)
λ2

2
,

C12(t1) =
l

2a
(V2(t1)−V2(0)) +

ϕ1(0)− ϕ0(0)
λ2

.

From (26), for V2(t) given (22), so that F2(t) = − 2a
λ2l u′′ 2(t), we obtain,
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given t ∈ [0, t1]

V2(t) =
α1

λ2
1−λ2

2
cos λ1t− β1

λ2
1−λ2

2
sin λ1t +

(
V2(0)− β2t

2λ2
+ α1

λ2
1−λ2

2

)
cos λ2t

+

( .
V2(0)

λ2
+ α2t

2λ2
+ β1λ1

λ2(λ2
1−λ2

2)
+ β2

2λ2
2

)
sin λ2t

and given t ∈ (t1, T],

V2(t) =
γ1

λ2
1−λ2

2
sin λ1t− α1

λ2
1−λ2

2
cos λ1t

+

(
V2(0) +

α1
λ2

1−λ2
2
− γ2t

2λ2
+π(λ1−2λ2)(γ2−β2)

2λ2(λ2
1−λ2

2)

)
cos λ2t

+

( .
V2(0)

λ2
+ α2t

2λ2
+ γ2

2λ2
2
+ λ1(γ1+2β1)

λ2(λ2
1−λ2

2)

)
sin λ2t,

where

α1 =
3aλ2

1 p
l

[8(2C12(t1)− C12(T)) + 3 πC21(T)],

α2 =
3aλ2

2q
l

[4(2C11(t1) + C11(T)) + 3 πC22(T)],

β1 =
2aλ2

1q
πl

(
9 π2C11(t1) + 6πC22(T) + 8C11(T)

)
,

β2 =
2aλ2

2 p
πl

(
32C12(T)− 12πC21(T)− 9 π2C12(t1)

)
,

γ1 =
2aλ2

1q
πl

[
9 π2(C11(t1) + C11(T)) + 6πC22(T)− 8C11(T)

]
,

γ2 =
2aλ2

2 p
πl

[
32C12(T) + 12πC21(T)− 9 π2(C12(T)− C12(t1))

]
.

From (36), given (35) and (37), we have

Q2(x, t) = V2(x, t) + W2(x, t) = V1(t) sin
π

l
x + V2(t) sin

2π

l
x +

(
1− x

l

)
u2(t). (45)

5. Computational Experiment

Applying the above approach, we construct the boundary control given n = 1 and
n = 2 and the string deflection function, respectively. This section includes the initial data,
the results obtained and a discussion of the methodology’s effectiveness.

5.1. Initial Data

Let us present the results of a computational experiment for a given initial, interme-
diate and final state of the string given n = 1 and n = 2 assuming that a = 1

3 and l = 1
and compare the behavior of the string deflection function with the given initial functions.
Given the chosen values of a and l, we have

t1 =
l
a
= 3, T = 2

l
a
= 6, λ1 =

π

3
, λ2 =

2π

3
.

The choice of an intermediate value t1 = T
2 is due to practical recommendations [4].

We choose the specific initial functions from the functions class from the problem
statement (Section 2) that satisfied the consistency conditions (15)–(17).

Let the following initial state be specified given t = 0:

ϕ0(x) =
1
2

x2 − 2x
5
− 1

10
, ψ0(x) = − x2

3
+

x
3

,
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Given t1 = 3, an intermediate state is specified as follows:

ϕ1(x) =
x3

3
− x2 +

2x
3

,

Moreover, given T = 6, the next end state is specified:

ϕT(x) = 0, ψT(x) = 0.

The proposed approach is applicable for any initial functions that meet the necessary
requirements given in Section 2 so that the selected functions are some of them.

Note the choice of final zero values does not reflect the essence of the limitations of the
technique and is made to simplify the final formulas. In addition, the problem of stabilizing
string vibrations is relevant for damping transverse vibrations of a longitudinally moving
string (for example, a paper web) in production [22].

The coefficients of the Fourier series for the functions ϕ0(x), ψ0(x), ϕ1(x), ϕT(x) and
ψT(x) are equal, respectively, to:

ϕ
(0)
1 = − 4

π3 −
1

5π
, ϕ

(0)
2 = − 1

10π
, ψ

(0)
1 =

8
3π3 , ϕ

(1)
1 =

4
π3 , ϕ

(1)
2 =

1
2π3 ,

ψ
(0)
2 = ϕ

(T)
1 = ϕ

(T)
2 = ψ

(T)
1 = ψ

(T)
2 = 0.

The values of these functions at the ends of the string are as follows:

ϕ0(0) = − 1
10 , ϕ1(0) = ϕT(0) = ψT(0) = ψ0(0) = ϕ0(1) = ϕ1(1) = ϕT(1)

= ψT(1) = ψ0(1) = 0.

From (23)–(25), we have

V1(0) = −
4

π3 ,
.

V1(0) =
8

3π3 , V1(3) =
4

π3 , V1(6) = 0,
.

V1(6) = 0,

V2(0) = 0,
.

V2(0) = 0, V2(3) =
1

2π3 , V2(6) = 0,
.

V2(6) = 0.

From (44), we have

C11(6) =
6

π3 +
3

10π
, C21(6) = −

12
π4 , C11(3) = −

3
10π

,

C12(6) =
3

20π
, C22(6) = 0, C12(3) =

3
4π3 +

3
20π

.

5.2. Results

In this section, we present the calculation formulas obtained for the functions u1, u2,
V1, V2, Q1 and Q2. From (40), (42) and (43), we have

u1(t) =

{
− 4

π4 cos π
3 t − 1

5π sin π
3 t, t ∈ [0, 3],

− 4
π4 cos π

3 t − 4
π3 sin π

3 t , t ∈ (3, 6],
(46)

u2(t) = 6
5π2

(
π2 − 20

)
p cos π

3 t − 6
5π2

(
π2 − 20

)
q cos 2π

3 t

− 1
5π3

(
9π4 − 8π2 − 160

)
q sin π

3 t− 1
10π3

(
9π4 + 13π2 − 960

)
p sin 2π

3 t, t ∈ [0, 3],
(47)

u2(t) = 6
5π2

(
π2 − 20

)
p cos π

3 t − 6
5π2

(
π2 − 20

)
q cos 2π

3 t

− 4
5π3

(
43π2 − 40

)
q sin π

3 t + 1
10π3

(
77π2 − 960

)
p sin 2π

3 t, t ∈ (3, 6].
(48)
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Note that the following estimates are obtained for the functions u1(t) and u2(t):

max
0≤ t≤6

|u1(t)| ≈ 0.1354, max
0≤ t≤6

|u2(t)| ≈ 0.1193.

We obtain the following explicit expressions for the functions V1(t) and V2(t):

V1(t) =


tπ2−120

30π3 cos π
3 t − 20t+3π2−240

30π4 sin π
3 t, t ∈ [0, 3],

3π2+20t−180
30π3 cos π

3 t − 2(t−9)
3π4 sin π

3 t , t ∈ (3, 6],
(49)

V2(t) = 2
5π3

(
π2 − 20

)
p cos π

3 t − 1
15π4

(
9π4 − 8π2 − 160

)
q sin π

3 t

+ 1
30π3

((
9π4 + 13π2 − 960

)
t− 12π2 + 240

)
p cos 2π

3 t

−
(

2
5π2

(
π2 − 20

)
tq+ 1

60π4

(
81π6 + 1215π4 − 24, 688π2 + 25, 600

)
pq
)

sin 2π
3 t,

t ∈ [0, 3],

(50)

V2(t) = 2
5π3

(
π2 − 20

)
p cos π

3 t − 4
15π4

(
43π2 − 40

)
q sin π

3 t

+ 1
30π3

((
960− 77π2)t + 27π4 + 258π2 − 5520

)
p cos 2π

3 t

−
(

2
5π2

(
π2 − 20

)
tq + 1

60π4

(
−324π6 + 3609π4 + 8432π2 − 66, 560

)
pq
)

sin 2π
3 t,

t ∈ (3, 6].

(51)

Note that the following estimates take place for the functions V1(t) and V2(t):

max
0≤t≤6

|V1(t)| ≈ 0.1165, max
0≤t≤6

|V2(t)| ≈ 0.0321.

This confirms that the absolute value of each subsequent summand of series (21)
decreases.

From (41) and (45), given (46)–(51), we obtain the following explicit expressions for
the functions Q1(x, t) and Q2(x, t):

given t ∈ [0, 3],

Q1(t, x) =
(

tπ2 − 120
30π3 cos

π

3
t − 20t + 3π2 − 240

30π4 sin
π

3
t
)

sin πx

−
(

4
π4 cos

π

3
t +

1
5π

sin
π

3
t
)
(1− x),

given t ∈ (3, 6],

Q1(t, x) =
(

3π2 + 20t− 180
30π3 cos

π

3
t − 2(t− 9)

3π4 sin
π

3
t
)

sin πx

−
(

4
π4 cos

π

3
t +

4
π3 sin

π

3
t
)
(1− x),

given t ∈ [0, 3],

Q2(x, t) =
(

tπ2 − 120
30π3 cos

π

3
t − 20t + 3π2 − 240

30π4 sin
π

3
t
)

sin πx

+

(
2

5π3

(
π2 − 20

)
p cos

π

3
t − 1

15π4

(
9π4 − 8π2 − 160

)
q sin

π

3
t

+ 1
30π3

((
9π4 + 13π2 − 960

)
t− 12π2 + 240

)
p cos 2π

3 t

−
(

2
5π2

(
π2 − 20

)
tq + 1

60π4

(
81π6 + 1215π4 + 24, 688π2 + 25, 600

)
pq
)
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· sin
2π

3
t
)

sin 2πx +

(
6

5π2

(
π2 − 20

)
p cos

π

3
t − 6

5π2

(
π2 − 20

)
q cos

2π

3
t

− 4
5π3

(
43π2 − 40

)
q sin

π

3
t+

1
10π3

(
77π2 − 960

)
p sin

2π

3
t
)
(1− x),

and given t ∈ (3, 6],

Q2(x, t) =
(

3π2 + 20t− 180
30π3 cos

π

3
t − 2(t− 9)

3π4 sin
π

3
t
)

sin πx

+

(
2

5π3

(
π2 − 20

)
p cos

π

3
t − 4

15π4

(
43π2 − 40

)
q sin

π

3
t

+
1

30π3

((
960− 77π2

)
t + 27π4 + 258π2 − 5520

)
p cos

2π

3
t

−
(

2
5π2

(
π2 − 20

)
tq +

1
60π4

(
−324π6 + 3609π4 + 8432π2 − 66, 560

)
pq
)

· sin
2π

3
t
)

sin 2πx +

(
6

5π2

(
π2 − 20

)
p cos

π

3
t− 6

5π2

(
π2 − 20

)
q cos

2π

3
t

− 4
5π3

(
43π2 − 40

)
q sin

π

3
t +

1
10π3

(
77π2 − 960

)
p sin

2π

3
t
)
(1− x).

At the moment of time t = 0, the functions Q1(x, 0) and Q2(x, 0) are equal to:

Q1(x, 0) = − 4
π3 sin πx− 4

π4 (1− x),

Q2(x, 0) = − 4
π3 sin πx +

288
5π2

(
π2 − 20

)
pq(1− x).

Calculate

∂Q1(x, t)
∂t

∣∣∣∣
t=0

=
.

Q1(x, 0) =
8

3π3 sin πx− 1
15

(1− x),

∂Q2(x, t)
∂t

∣∣∣∣
t=0

=
.

Q2(x, 0) =
8

3π3 sin πx

− 1
15π2

(
162π6 − 675π4 − 9776π2 + 25, 600

)
pq(1− x).

We can check that the expression of the deflection functions Q1(x, 3) and Q2(x, 3) at
the final moment of the segment [0, 3] coincides with the corresponding expression at the
beginning of the next time interval, and the functions have the form:

Q1(x, 3) =
40− π2

10π3 sin πx +
4

π4 (1− x),

Q2(x, 3) =
40− π2

10π3 sin πx +
1

10π3

(
5π2 + 9π4 − 800

)
p sin 2πx

− 12
5π2

(
π2 − 20

)(
9π2 − 40

)
pq(1− x).

The deflection function and its derivative at the moment of time t = 6 are equal,
respectively, to:

Q1(x, 6) =
π2 − 20

10π3 sin πx− 4
π4 (1− x),

∂Q1(x, t)
∂t

∣∣∣∣
t=6

=
.

Q1(x, 6) =
4

3π3 sin πx− 4
3π2 (1− x),
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Q2(x, 6) =
π2 − 20

10π3 sin πx +
1

10π
sin 2πx +

288
5π2

(
π2 − 20

)
pq(1− x)

∂Q2(x, t)
∂t

∣∣∣∣
t=6

=
.

Q2(x, 6) =
4

3π3 sin πx− 6
5π

(
π2 − 20

)
q sin 2πx

− 1
15π2

(
855π4 − 2576π2 − 5120

)
pq(1− x).

5.3. Illustrative Material

Let us illustrate the obtained formulas on the graphs. The graphs of the functions
u1(t) and u2(t) are given in Figure 1.
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Figure 7 provides graphical illustrations of the dynamics of the behavior of the func-
tions Q1(x, t) and Q2(x, t) given t = 0, 1, 2, 3, 4, 5, 6.

Axioms 2022, 11, x FOR PEER REVIEW  15  of  18 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 7. Graphs of the functions 𝑄 𝑥, 𝑡   (solid line) and 𝑄 𝑥, 𝑡   (dashed line) at fixed points in 
time  𝑡: (a)  𝑡 0; (b)  𝑡 1; (c)  𝑡 2;(d)  𝑡 3; (e)  𝑡 4; (f)  𝑡 5; (g)  𝑡 6. 

5.4. Discussion of Results 

For  a  comparative  analysis  of  the  results  obtained,  we  denote  by  𝜀 𝑥, 𝑡
𝑄 𝑥, 𝑡 𝜑 𝑥   and  𝜀̃ 𝑥, 𝑡 𝑄 𝑥, 𝑡 𝜓 𝑥 ,  𝑛 1,2,  𝑚 0,2,  𝑗 0, 2  (here, 
𝑚 𝑗 2  corresponds to the moment of time  𝑡 𝑇), which illustrate the discrepancy 

between these functions. 

The maximum values of residuals  𝜀 𝑥, 𝑡 ,  𝜀̃ 𝑥, 𝑡 ,  𝐸 𝑥, 𝑡 𝜀 𝑥, 𝑡 𝑑𝑥  and 

𝐸 𝑥, 𝑡 𝜀̃ 𝑥, 𝑡 𝑑𝑥  are given in the following table. 

Tables 1 and 2 show that, under the constructed control, the behavior of the string 

deflection functions is quite close to that of the given initial ones. An illustration of the 

Figure 7. Cont.



Axioms 2022, 11, 157 15 of 17

Axioms 2022, 11, x FOR PEER REVIEW  15  of  18 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 7. Graphs of the functions 𝑄 𝑥, 𝑡   (solid line) and 𝑄 𝑥, 𝑡   (dashed line) at fixed points in 
time  𝑡: (a)  𝑡 0; (b)  𝑡 1; (c)  𝑡 2;(d)  𝑡 3; (e)  𝑡 4; (f)  𝑡 5; (g)  𝑡 6. 

5.4. Discussion of Results 

For  a  comparative  analysis  of  the  results  obtained,  we  denote  by  𝜀 𝑥, 𝑡
𝑄 𝑥, 𝑡 𝜑 𝑥   and  𝜀̃ 𝑥, 𝑡 𝑄 𝑥, 𝑡 𝜓 𝑥 ,  𝑛 1,2,  𝑚 0,2,  𝑗 0, 2  (here, 
𝑚 𝑗 2  corresponds to the moment of time  𝑡 𝑇), which illustrate the discrepancy 

between these functions. 

The maximum values of residuals  𝜀 𝑥, 𝑡 ,  𝜀̃ 𝑥, 𝑡 ,  𝐸 𝑥, 𝑡 𝜀 𝑥, 𝑡 𝑑𝑥  and 

𝐸 𝑥, 𝑡 𝜀̃ 𝑥, 𝑡 𝑑𝑥  are given in the following table. 

Tables 1 and 2 show that, under the constructed control, the behavior of the string 

deflection functions is quite close to that of the given initial ones. An illustration of the 

Figure 7. Graphs of the functions Q1(x, t) (solid line) and Q2(x, t) (dashed line) at fixed points in
time t: (a) t = 0; (b) t = 1; (c) t = 2; (d) t = 3; (e) t = 4; (f) t = 5; (g) t = 6.

5.4. Discussion of Results

For a comparative analysis of the results obtained, we denote by εn
(

x, tj
)
=∣∣Qn

(
x, tj

)
− ϕj(x)

∣∣ and ε̃n(x, tm) =
∣∣∣ .
Qn
(
x, tj

)
− ψm(x)

∣∣∣, n = 1, 2, m = 0, 2, j = 0, 2 (here,
m = j = 2 corresponds to the moment of time t2 = T), which illustrate the discrepancy
between these functions.

The maximum values of residuals εn
(
x, tj

)
, ε̃n(x, tm), En

(
x, tj

)
=
∫ 1

0 εn
(

x, tj
)
dx and

Ẽn(x, tm) =
∫ 1

0 ε̃n(x, tm)dx are given in the following table.
Tables 1 and 2 show that, under the constructed control, the behavior of the string

deflection functions is quite close to that of the given initial ones. An illustration of the
residuals at the initial and intermediate time points is shown in the following figures. The
graphical representation of the functions εn(x, 0), n = 1, 2, is shown in Figure 8.

Table 1. Comparison of residuals for ϕj.

t0=0 t1=3 t2=6

n=1 n=2 n=1 n=2 n=1 n=2

max
0≤x≤1

εn

(
x, tj

)
0.0589 0.0673 0.0411 0.0665 0.0559 0.0669

max
0≤x≤1

En

(
x, tj

)
0.0307 0.0349 0.0068 0.0170 0.0413 0.0371

Table 2. Comparison of residuals for ψm.

t0=0 t2=6

n=1 n=2 n=1 n=2

max
0≤x≤1

ε̃n(x, tm) 0.0667 0.0714 0.1351 0.1970

max
0≤x≤1

Ẽn(x, tm) 0.0341 0.0365 0.0402 0.0711
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The graphical representation of the functions εn(x, 3), n = 1, 2, is shown in Figure 9.
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Figure 9. Graphs of the functions ε1(x, 3) (solid line) and ε2(x, 3) (dashed line).

The proposed analytical constructions are valid for any first n harmonics of string
vibrations. Numerical calculations, illustrations of the results and their analysis were
carried out with the help of the developed general approach for n = 1, 2. The series (21) is
uniformly convergent for functions from the above classes. The behavior of the functions
V1(t) and V2(t) shows it (see Figure 2).

Thus, given n = 1 and n = 2, we construct explicit expressions of the boundary control
u1(t) and u2(t) and those of the string deflection functions Q1(x, t) and Q2(x, t).

6. Conclusions

We proposed a constructive method for constructing the control of vibrations of
a homogeneous string with a given deflection shape at an intermediate moment. We
also proposed a constructive method for constructing the control of homogeneous string
vibrations with a given deflection shape at an intermediate moment. The control was carried
out by shifting one end with the other end fixed. The construction scheme was as follows:
We reduced the original problem to the control problem of distributed influences with zero
boundary conditions. Further, we used the method of separation of variables and methods
of control theory for finite-dimensional systems with multipoint intermediate conditions.

We formulated the corresponding statement and theorem for the first n harmonics. A
specific example illustrated the obtained results. We realized a computational experiment,
constructed the corresponding graphs and made a comparative analysis. They confirm the
results of the study. The proposed method can be extended to other non-one-dimensional
vibrational systems. The results presented in the paper can be used in the design of
boundary control of vibration processes in physical and technological systems.
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