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Abstract: This study aimed to theoretically identify the impact factors of the financial market on
house prices. Developed upon the two-asset model and with the consideration of risky financial
assets, our three-asset model reveals a new derivation of house prices. Compared with the two-asset
model, the newly emerged term is similar to the Sharpe β; therefore, it is a risk premium term. Based
on China’s 2001–2018 panel data, theoretical derivations are examined. However, the short-term
effect of this risk term on house prices is practically small. Given the nonlinear pattern, the long-term
effect of the risk term is checked by repeated stochastic simulation. The results imply the following:
(i) real house prices are nonlinearly affected by three financial market factors, namely, the expected
financial market return, financial market volatility, and the correlation between housing and financial
markets; (ii) the correlation determines the signs and the significance of the effects of the other two
factors; and (iii) the naturally changed correlation causes periodic house price fluctuations. Therefore,
to stabilize real house prices, it is recommended that the government control the money flow between
the two markets.

Keywords: house price; risk premium; financial market factors
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1. Introduction

House prices have been sharply inflated internationally in recent decades. Most people
believe that the financial market plays an important role in housing market appreciation. It
seems that house prices always increase in boom periods and decrease during financial
crises. However, related empirical works have not supported this view. Muellbauer
and Murphy [2] pointed out that house price changes are related to financial market
liberalization in the UK. Green [3] showed that the impact of stock prices on house prices is
high in Northern California but low in Southern California in the US. Lee et al. [4] focused
on the relationship between Australian housing and stock markets and found that stock
market prices were affected by house prices before the recent GFC but affected house price
after the crisis. Kakes and Van Den End [5] found that house prices are significantly affected
by stock market prices in the Netherlands. Takala and Pere [6] found that house prices are
Granger-caused by stock prices in Finland. Ibrahim [7] applied the same method but found
that there was no significant Granger-causality between housing and financial markets in
Thailand. All of these related empirical works have suggested the following: (i) the impact
factors of the financial market on house prices are unclear; (ii) their influence mechanisms
are unclear; and (iii) the effects of the financial market factors on house prices should be
much more complicated than we believed. Therefore, related theoretical work on the effects
of financial market factors on house prices is necessary.
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Housing is different from most financial assets since houses not only have investment
demand but also have consumption demand, usually known as the dual property [8]. Houses
provide housing services at every moment for people living in the house. Due to the consump-
tion demand, house prices are affected by several economic factors, such as household income,
family wealth, and construction costs [8]. These impacts are usually theoretically derived by
consumption type models, especially the housing life-cycle model [9]. In contrast, housing is a
type of asset that can be selected and invested in by investors. Based on the determinants of
housing investment demand, the prices of houses are affected by many financial factors, such
as (mortgage) interest rates, expected financial market return, the variances (or the standard
deviations) of both housing and financial market returns, and the covariance (or the correlation)
between the returns of the two markets [10–12]. These factors are derived from financial theories,
for example, the Consumption-based Capital Asset Pricing Model (C-CAPM) and Housing
CAPM [10,13–16]. However, although some studies [17] have nested the economic and financial
factors in their empirical analyses and found that both of these factors are significant, it remains
controversial whether it is appropriate to assume housing to be a type of pure financial assets
and then to analyse house prices using financial theories [18].

In economics, the housing life-cycle model [9] is popularly used in analysing housing
issues since houses are clearly defined as both consumption and investment products in
the model. Despite the standard housing life-cycle model allowing for the consideration
of the dual property of housing, as a result of the underlying assumption of certainty, it
still has no position in risk issues. The expected utility two-asset housing life-cycle model
(hereinafter, two-asset model) that [1] developed had a theoretical framework based on the
standard model, in which (i) housing is assumed to be risky, and thus future house prices
are assumed to be uncertain, like a normal distribution; and (ii) households maximize their
expected lifetime utility. The results showed that the volatility of housing capital return
has significant and non-negligible negative impacts on real house prices, particularly in
long-run forecasting. The missing consideration of the effect of the volatility will cause
over-estimation. However, the two-asset model remains incomplete since to assume houses
are the only risky asset in the market is not sufficient. The effects of financial market factors
on housing variables are also worth being analysed. In addition, the time-varying [19] and
regional differed [20] distributions of house prices as well as the volatilises are also possibly
caused by the factors from financial market or related government policies. These issues
will be discussed in the future studies.

In light of these discussions, there have been three main gaps recently in this area. First,
it is necessary to have a theoretical base in which, at least, risky housing and risky financial
assets are jointly considered. Second, given the consumption-based model, households’
choices of risky assets, including housing and risky financial assets, should be derived and
compared with those implied in financial theories. Further, the reasons why the results are
consistent or different should be discussed. Third, the theoretical derivation should reflect
the pattern of how financial market factors affect house prices, which would be particularly
helpful for related empirical works.

Therefore, this article is organized as follows. Section 2 is the theoretical section, which
provides the details of the three-asset model, including related theoretical derivations.
Section 3 is the empirical section that practically estimates the short-term effect of housing
market risk premiums on house prices. In Section 4, based on reasonable assumptions,
the dynamic impact of the cyclically fluctuated correlation with real house prices is simu-
lated. Section 5 provides the conclusion and some political suggestions. References and
appendices are provided at the end.

2. Theory

In this section, the expected utility three-asset housing life-cycle model (hereinafter,
three-asset model) is introduced. In related work [1], housing was assumed to be risky,
and the housing market risk premium appeared in the housing user cost of capital (UCC),
as well as the house price derivation. However, when risk issues are considered, the as-
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sumption of merely unique risk housing assets is insufficient. At least, all other financial
assets should be categorized into two groups: risk-free and risky. Therefore, the theoretical
structure and some details of the three-asset model are first provided, and then the gen-
eral solution of the model is derived. Under two specific utilities, the Constant Absolute
Risk Aversion (CARA) and the Constant Relative Risk Aversion (CRRA) utilities, special
solutions are derived. Because of the joint consideration of two risk assets, the potential
households’ portfolio decisions are derived and discussed.

2.1. The Expected Utility Three-Asset Housing Life-Cycle Model

Based on the standard inter-temporal housing life-cycle model [9] and the expected
utility two-asset housing life-cycle model [1], household temporal utility is determined
by non-housing consumption (C) and the used volume of housing services, which is
proportional to the housing stock (H) as µ[H(t), C(t)]. For “now,” household’s utility
µ[H(0), C(0)] is certain, but all future t > 0 utilities are uncertain. Inter-temporally, given an
assumed constant real discount rate (r), the present value of the lifetime utility is described
for an infinite horizon discrete time (t) as ∑∞

0
1

(1+r)t µ[H(t), C(t)] or continuous time (t) as∫ ∞
0 e−rtµ[H(t), C(t)]dt. A rational household now will make decisions to maximize the

expectation of the continuous type present value of its uncertain lifetime utility (U), given
by Equation (1).

U = E
{ ∫ ∞

0
e−rtµ[H(t), C(t)]dt

}
(1)

Households’ expected lifetime utility is maximized with respect to budget constraint (2)
and technical constraints (3)–(5), which describe changes in the three real asset stocks (risky
housing, risk-free assets, and risky financial assets, respectively) over time. Generally,
based on the expected returns of these three assets, households will make an investment
decision on the three assets for the purpose of maximizing their expected lifetime utility.
In addition, for the purpose of simplicity, the issues of taxes [21,22], transaction costs [23],
liquidity [24], and restrictions on lending [25] are removed.

p(t)C(t) + pH(t)X(t) + p(t)S f (t) + pA(t)SA(t) = Y(t) + i(t)p(t)A f (t) + id(t)pA(t)AA(t) (2)

Ḣ(t) = X(t)− δ(t)H(t) (3)

Ȧ f (t) = S f (t)− π(t)A f (t) (4)

ȦA(t) = SA(t)− π(t)AA(t) (5)

where
p(t) = price level/Consumer Price Index(CPI);
C(t) = quantity of non-housing consumption;
pH(t) = nominal purchase price of dwellings;
X(t) = quantity of new purchases of dwellings;
S f (t) = quantity of savings net of real new loans volume of risk-free assets;
pA(t) = nominal purchase price of risky financial assets;
SA(t) = quantity of savings net of real new loans volume of risky assets;
Y(t) = nominal disposable income;
i(t) = market risk-free/interest rate;
A f (t) = quantity of net non-housing risk-free assets;
id(t) = dividend yield of the financial risky asset;
AA(t) = quantity of net non-housing risky assets;
δ(t) = depreciation rate on housing;
π(t) = general inflation rate; and
ẋ ≡ dx(t)/dt, denotes the time derivative for any variable x(t).
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Budget constraint (2) implies the equivalence between nominal terms. By dividing the
price level (p) for both sides, Equation (6) indicates the equivalence between real terms. It
shows that the flow of net expenditures on non-housing consumption, housing, risk-free
savings, and savings on risky financial assets is equal to the net earnings from labour, risk-
free investments, and risky financial investments. Now, housing acts as both consumption
and investment since housing stock (service) directly determines household’ instantaneous
utility and, at the same time, inflates in a similar pattern to financial assets. Additionally,
some have asked why there is no housing rent/yield in the budget constraint. It is because,
housing rent, in principle paid by all people, is equal to the housing rental income obtained
by all households, so they are cancelled on both sides of Equations (2) and (6).

C(t) + gH(t)X(t) + S f (t) + gA(t)SA(t) = RY(t) + i(t)A f (t) + id(t)gA(t)AA(t) (6)

where
gH(t) = real purchase price of dwellings;
gA(t) = real purchase price of the financial risky assets; and
RY(t) = real disposable income.

Mathematically, to maximize lifetime utility (1) subjected to (3)–(6), a Lagrange equa-
tion is structured. From the first-order conditions (see Appendix A.1), we achieved three
Equations (7)–(9).

∂L(t)
∂H(t)

: E[µH(t)] = gH(t)
{

E[µC(t)]δ(t)− E[rH(t)µC(t)]− ertE
[ d

dt
[e−rtµC(t)]

]}
(7)

∂L(t)
∂A f (t)

: [i(t)− π(t)]E[µC(t)] = −ertE
[ d

dt
[e−rtµC(t)]

]
(8)

∂L(t)
∂AA(t)

: E
[
[rA(t) + id(t)− π(t)]µC(t)

]
= −ertE

[ d
dt
[e−rtµC(t)]

]
(9)

where
µH(t) = ∂µ[H(t), C(t)]/∂H(t), the (uncertain) marginal utility of housing;
µC(t) = ∂µ[H(t), C(t)]/∂C(t), the (uncertain) marginal utility of consumption;
rH(t) = ˙gH(t)/gH(t), the (uncertain) capital return of housing; and
rA(t) = ˙gA(t)/gA(t), the (uncertain) capital return of risky financial asset.

Since rH and rA are functions of future states (e.g., t + dt), returns on risky assets are
uncertain. Similarly, the marginal utilities of both housing and non-housing consumption
are uncertain since they are functions of rH and rA, respectively. Due to the same term

−ertE
[

d
dt [e
−rtµC(t)]

]
in all three of these equations, shown in Appendix A.2, the relation-

ship between risk-free and risky financial assets is derived in (10) through the combination
of (8) and (9); similarly, the relationship between housing and risk-free assets is derived in
(11) through the combination of (7) and (8).

E
[
rAD(t)µC(t)

]
E[µC(t)]

= i(t)− π(t) (10)

E[µH(t)]
E[µC(t)]

=
[
i(t)− π(t) + δ(t)− E(rH(t)) + τ(t)

]
gH(t) (11)

where
E[µH(t)] = ∂E[µ[H(t), C(t)]]/∂H(t), the expected marginal utility of housing;
E[µC(t)] = ∂E[µ[H(t), C(t)]]/∂C(t), the expected marginal utility of consumption;
rAD(t) = rA(t) + id(t)− π(t), the (uncertain) total return of risky financial assets; and
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τ(t) = −Cov[rH(t), µC(t)]/E[µC(t)], the housing market risk premium.

Equation (10) is identical to the key derivation of C-CAPM [13], and Equation (11) is
identical to the key derivation indicated in the two-asset model [1], where a housing market
risk premium term, τ, appeared in the house price derivation compared to the standard
derivation [9].

The left-hand side of (11) is the expected marginal rate of substitution between H
and C, meaning that households must cut down on unit housing service if they want to
obtain R units of non-housing goods as compensation; therefore, R is the imputed real
housing rental price. The term in [. . . ] on the right-hand side of (11) is the widely used
standard definition of the real housing user cost of capital (UCC). All of these factors are
summarized by Equation (12). This equation can be also rewritten as g(t) = R(t)/UCC(t),
the well-known arbitrage condition.

R(t) = E[MRSH,C(t)] =
E[µH(t)]
E[µC(t)]

= UCC(t)gH(t) (12)

where
R(t) = the imputed real housing rental price;
E[MRSH,C(t)] = the expected marginal rate of substitution between H and C; and
UCC(t) = i(t)− π(t) + δ(t)− E[rH(t)] + τ(t), the user cost of capital.

Equations (10)–(12), particularly (11), are the general solutions of our key interest.
However, since they are too general, we must try very hard to use them to estimate housing
market risk premiums in empirical works.

2.2. Special Solutions under the Specific Utility Functions

The last section theoretically derived and described the general solution of house
prices and housing market risk premiums. In principle, the solution can be adopted for
all countries, which is also why a general solution is too abstract. To be able to derive
intuitive results of τ for a specific region, specific utility functions and distribution of the
returns are needed. For the purpose of showing the calculation process, the distribution
of the risky returns is here simplistically assumed to be joint normal as an example, given
by (13). Similarly, the Constant Absolute Risk Aversion (CARA) and Constant Relative Risk
Aversion (CRRA) utilities [26] given by (14) and (15), respectively, are employed.[

rH(t)
rAD(t)

]
∼ N

([
re

H(t)
re

AD(t)

]
,
[

σ2
H(t) σAH(t)

σAH(t) σ2
AD(t)

])
(13)

µ[H(t), C(t)] = −exp[−ϕH(t)]− exp[−ϕC(t)] (14)

µ[H(t), C(t)] =
H(t)(1−θ)

1− θ
+

C(t)(1−θ)

1− θ
(15)

where
ϕ = the parameter of CARA;
θ = the parameter of CRRA;
σAH = ρ× σAD × σH , the covariance between rAD and rH ; and
ρ = the correlation between rAD and rH .

Since there are two utility functions, Appendices A.3 and A.4 separately show the
process of deriving housing market risk under the CARA and CRRA utilities, and the
special solutions are given by (16)–(18) and (19)–(21), respectively.

τCARA = τ1,CARA + τ2,CARA (16)

τ1,CARA(t) = [rAD(t)− (i(t)− π(t))]× [ρ(t)σH(t)/σAD(t)] (17)

τ2,CARA(t) = ϕgH(t)H(t)(1− ρ2(t))σ2
H(t) (18)
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τCRRA = τ1,CRRA + τ2,CRRA (19)

τ1,CRRA(t) = [rAD(t)− (i(t)− π(t))]× [ρ(t)σH(t)/σAD(t)] (20)

τ2,CRRA(t) = −θCe(t)−θ−1

E[µC(t)]
gH(t)H(t)(1− ρ2(t))σ2

H(t)
≈ [θ/Ce(t)]gH(t)H(t)(1− ρ2(t))σ2

H(t)
(21)

First, both τCARA and τCRRA consist of two parts: τ1 and τ2. Second, the τ1 of the
two cases is identical. When risky financial assets are regarded as the whole market,
and housing is regarded as a particular asset in this market, rAD − (i− π) becomes the
expected exceed return of the financial market, and ρ× σH/σAD (or σAH/σ2

AD) becomes
the systematic risk of housing in finance, also known as Sharpe β [27]. Therefore, τ1 is the
housing market risk premium affected by the financial market elements. Third, τ2 is the
housing market risk directly caused by the uncertainty of the housing market yield, which
has been discussed in the two-asset model [1].

In light of these considerations, τ1 is the main focus in this article. It is determined by
three financial market factors: the expected exceed return on the risky financial asset (rAD −
(i− π)), the standard deviation (σAD), and the correlation (ρ). In principle, the former two
are positive, and the latter is in the interval [−1, 1]. The correlation is key in determining the
effects of other financial market elements. When ρ > 0, relatively higher expected returns
or lower volatility of the financial market indicates lower real house prices; when ρ < 0, real
house prices are positively determined by the expected return and negatively determined
by the volatility. Simply speaking, when the two markets are strongly “substituted,”
financial market flourishing causes lower house prices; when the two markets are strongly
“compensated,” financial market flourishing indicates higher house prices; and when the
correlation is relatively tiny, the effects of financial market factors on housing market risk
premiums, as well as house prices, can be neglected.

Our τ2 derivations (18) and (21) are similar to Equations (18) and (19) shown in the two-
asset model [1]. The effects of risk aversion level (ϕ and θ/C), real housing wealth (gH H),
and the volatility of housing capital return (σ2

H) have been discussed and analysed [1].
The only difference is that term (1− ρ2) newly appears in our τ2 in both CARA and CRRA
cases. Whether positive or negative, a strong correlation leads to (1− ρ2) −→ 0, implying
that the housing market risk premium caused by the uncertainty of the housing market (τ2)
will be eliminated when the two markets reflect strong correlations in their market returns
because, when the two markets have no interaction, the volatility of the housing capital
return (σ2

H) can fully capture the uncertainty of the housing market. In contrast, when the
two markets are related, the correlated part (σ2

Hρ2) will decrease from the volatility since
this risk is dispersed by households’ asset portfolios.

Therefore, the special solutions indicate that financial market factors determine the
housing market risk premium and thus affect real house prices. The correlation is the
key in both of τ1 and τ2. A tiny correlation between the two markets means tiny financial
market impacts but significant τ2. However, despite significant correlations being able to
hide τ2, the effects of financial market factors on house prices are significant. Hence, we
can see that both de- and over-financialization are bad for housing markets. To answer
the question of the appropriate level of financialization of the housing market, the risk
dispersion mechanism through market correlation must be further studied.

2.3. Portfolios between Housing and Risky Financial Assets

Derivation τ1 reflects a highly similar structure to the systematic risk derivation or the
Sharpe β. Remember that both CAPM and its predecessor, the mean-variance model [28],
are concentrated on portfolios among risky assets and then derive the price/return to risk
premium relation. Here, we undergo a reversed process since we have the price/return to
risk premium relation of housing (τ1) and want to know the portfolio solution.

As shown in Appendix A.5, conditional on the CARA utility function, the optimal
ratio of risky financial wealth to housing wealth is derived and given by (22); similarly,
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conditional on the CRRA utility function, the derivation of the optimal ratio is also (22).
Appendix A.6 provides the main body of the mean-variance model [28]. When housing and
risky financial assets are the two specific assets A and B, its derivation of the optimal ratio
is identical to (22), suggesting that our three-asset model has in-built households optimal
portfolio decisions.

k∗(t) =
gA(t)AA(t)
gH(t)H(t)

=

[
re

AD(t)− [i(t)− π(t)]
]
σ2

H(t) +
[
re

HT(t)− [i(t)− π(t)]
]
σAH(t)[

re
HT(t)− [i(t)− π(t)]

]
σ2

AD(t) +
[
re

AD(t)− [i(t)− π(t)]
]
σAH(t)

(22)

where re
HT(t) = re

H(t) + R(t)/g(t)− δ(t), the expected total housing return.
One thing that must be mentioned is that, despite the variance of risky financial assets

considering both the variances of capital and dividend yields, the variance of housing is
only the variance of the capital yield without housing rental yield because the dividends of
financial instruments are usually uncertain, but, practically, almost all housing rents are
agreed and paid before tenants move in. In light of this difference, the housing imputed
rent is assumed to be certain and thus has no risk.

All of the above results suggest that, when households make their optimal deci-
sions to maximize their expected lifetime utility, their decisions are not only optimal in
consumption–investment balance [9] but also include instantaneous optimal portfolio
decisions in investing in housing and risky financial assets.

3. Empirical Section

The main purpose of this section is to check whether housing market risk premiums,
especially τ1, are significant or not. As given in Wang et al. [1], Chinese data are employed
for three reasons. First, the China Statistic Office (CSO) provides both monthly and annual
house prices. Thus, the volatility of the latter (annual variance) could be calculated from
the former. Second, provincial data are available, and therefore, empirical relationships can
be analysed by panel data regressions, which are more robust than single equation time
series regressions. Third, the housing price index provided by CSO is the price per square
meter. Compared to the price per house index, it is less likely that the prices have strong
regional heterogeneity.

3.1. Data and Testing

The complete data set is annual panel data including China’s 30 provinces except for
Tibet, Taiwan, Hong Kong, and Macao for the period of 2001–2018. Details of the variables
are listed in Table 1. The interest rate (i) is proxied by the base interest rate on RMB
(CNY, the Chinese currency) loans provided by China Financial Statistical Yearbook; the
market price of risky financial assets of China is approximated by the Shanghai Securities
Composite Index (SSEC). Except for these two factors, all of the other variables are obtained
from China Statistical Yearbook. As shown in Table 1, the annual expected returns, standard
deviations, and correlations are calculated through the monthly growths/returns of house
prices and SSEC. Since there are no high-quality housing stock data, as discussed in
the two-asset model [1], the flow of real housing wealth (HE/CPI) is selected to be the
approximation of gH(t)H(t). Furthermore, for the purpose of avoiding confusion, we only
focus on the CRRA case in the empirical section.
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Table 1. Data Description.

Name Variable Label/Measurement Mean S.D.

Monthly:
MHE monthly HE 100 million yuan
MHS monthly HS 10 thousand m2

MHP monthly HP = HE/HS× 10, 000
MPA SSEC –
mrh MHP monthly growth mrhm = ln(MHPm)− ln(MHPm−1)
mra MPA monthly growth mram = ln(MPAm)− ln(MPAm−1)

Annual:
HE housing expenditure 100 million yuan 1592.1 2194.1
HS housing space sold 10 thousand m2 2862.4 2765.5
HP house price (yuan/m2) = HE/HS× 10, 000 4566.0 3730.9
Y disposable income yuan/person 18,218.8 10,332.2
CPI consumer price index 2000 = 100 123.1 17.72
CON final consumption 100 million yuan 6136.5 6342.3
G real house price G = HP/CPI 35.953 27.701
lng logarithm form lng = ln(G)
RY real income RY = Y/CPI 142.028 68.680
lnry logarithm form lnry = ln(RY)
i (loan) interest rate – 0.053 0.0056
rh nominal return rh−1 = rH + π 0.095 0.093
tau1 τ1 Equation (20) −0.0036 0.084
tau2 τ2,CRRA Equation (21) 0.035 0.100
rhe expected housing yield rhet = (1/12)∑Dec

m=Jan mrht,m × 12
rae expected financial yield raet = (1/12)∑Dec

m=Jan mrat,m × 12

SDH S.D. of rH σH,t =
√
(1/12)∑Dec

m=Jan(mrht,m − rhet)2

SDA S.D. of rAD σAD,t =
√
(1/12)∑Dec

m=Jan(mrat,m − raet)2

corr correlation ρt = σ[H,AD],t/(σH,tσAD,t)

Notes: (i) The time subscripts t and m are year and month, respectively; (ii) SSEC = Shanghai Securities Compos-
ite Index; (iii) “×12” in rhe and rae indicates annualization; (iv) σ[H,AD] is the covariance between mrh and mra.

In empirical analysis, the stationarity of variables determines the panel model selection.
The stationarity of variables in the panel structure is usually tested by LLC, IPS, ADF-Fisher,
and Hadri LM stationary tests. The stationarity of lnry, lng, and i were already tested by
Wang et al. [1], and the results suggested that (log) real house prices and (log) real income
contain unit-roots in all panels, but the interest rate (i) is stationary in all panels. Similarly,
the stationarity of τ1 and τ2,CRRA is tested by all four of these stationary tests, as shown in
Table 2. The results support that both τ1 and τ2,CRRA are stationary for all panels.

Table 2. Panel Data Unit-Root/Stationary Test (p-value).

Test tau1 tau2

Levin-Lin-Chu (LLC) test <0.001 <0.001
Im-Pesaran-Shin (IPS) test <0.001 <0.001

ADF-Fisher unit-root test (lag = 2) <0.001 <0.001
Hadri LM stationary test 0.680 0.726

3.2. Regression Analysis

The empirically used equations are slightly different compared to the theoretical
derivations because: (i) the imposed housing rent (R) is unavailable; and (ii) the logarithm
of user cost of capital (UCC) cannot be simply decomposed in the linear form of its compo-
nents. The logarithm form of standard (12) is Equation (23). Many studies (e.g., [8]) have
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described how to derive a simple empirical equation such as Equation (24) based on the
theoretical formula (23). At the same time, our three-asset derivation implies that risk terms
should be added to the standard UCC. Therefore, our empirical equation should be (25).
The vector X is used to show the explanatory variables of imposed housing rent. Personal
disposable income is selected to capture the change in ln(R). Next, in line with previous
studies [8], the sum of expected real housing capital return and inflation is approximated
by the last nominal house price growth rate (rH(t) + π(t) = rh(t− 1)). In addition, we
estimate the households’ relative risk aversion level (θ × HE/CON), which is 1.015 [29].
Then, we rely on the values of 2010, and θ is set to be 5.0 (≈ 1.015× CON/HE).

ln(G) = ln(R)− ln(UCC) = ln(R(X))− ln(i− π + δ− rH) (23)

lngt = a0 + a1ln(X)t + a2it + a3rht−1 + εt (24)

lngt = a0 + a1ln(X)t + a2it + a3rht−1
+a4tau1t + a5tau2t + εt

(25)

Since the key variables lng and lnry are non-stationary, co-integration should be noted.
The error correction type of Equation (25) has three panel relations: they are: (26)–(28).
Heterogeneity is not considered in (26); (27) only considers heterogeneity in the short-term
relation; and (28) implies that heterogeneity exists in all of the short-term, long-term, and
error-correction processes. In addition, ui is the individual effect, which is necessary for
panel data analysis.

∆lngt = β∆lnryt + η[lngt−1 − a1lnryt−1 − a2it−1
−a3rht−2 − a4tau1t−1 − a5tau2t−1] + ui + εt

(26)

∆lngt = βi∆lnryt + ηi[lngt−1 − a1lnryt−1 − a2it−1
−a3rht−2 − a4tau1t−1 − a5tau2t−1] + ui + εt

(27)

∆lngt = βi∆lnryt + ηi[lngt−1 − ai1lnryt−1 − ai2it−1
−ai3rht−2 − ai4tau1t−1 − ai5tau2t−1] + ui + εt

(28)

Equations (26)–(28) are regressed by the three regressions in the non-stationary het-
erogeneous panel model: pooled mean-group (PMG), mean-group (MG), and dynamic
fixed-effect (DFE). Due to the allowance of heterogeneity in the regression of PMG and MG,
the estimated coefficients are the averages of all panels. Estimated coefficients, as well as
their t-values, are given in Table 3.

Table 3. Non-stationary Heterogeneous Panel Model, Decomposed UCC, 2002–2018.

Coefficient Equation (26), DFE Equation (27), MG Equation (28), PMG

β (or E[βi]) 0.772 *** (4.4) 0.785 *** (3.3) 1.007 *** (5.3)
η (or E[ηi]) −0.383 *** (10.8) −0.644 *** (10.0) −0.499 *** (9.7)

a1 (or E[ai1]) 0.830 *** (25.7) 0.906 *** (7.4) 0.853 *** (55.5)
a2 (or E[ai2]) −7.401 *** (3.9) −4.173 (0.6) −5.806 *** (6.8)
a3 (or E[ai3]) 0.381 *** (3.3) 0.607 *** (4.0) 0.168 ** (2.4)
a4 (or E[ai4]) −0.367 ** (2.1) −0.987 * (1.7) −0.319 *** (3.3)
a5 (or E[ai5]) −0.303 ** (2.1) −0.982 (0.5) 0.077 (0.9)

constant −0.079 (0.9) −0.283 * (1.7) −0.224 *** (5.0)
Notes: |t| in parentheses; *, **, and *** are significant at the 10%, 5% and 1% levels.

Given the results of Hausman tests among MG&PMG (Prob>chi2 = 0.51), MG&DFE
(Prob>chi2 = 1.00) and PMG&DFE (Prob>chi2 = 1.00), Equation (26) is better than (28) and
then better than (27), implying that the spatial heterogeneity is not significant, and therefore,
all provinces can be regarded as the same in co-integration, including all of the short-term,
long-term, and error-correction process.
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The UCC is formed based on the estimated values of the DFE shown in Table 3.
The ratios among estimated coefficients of the interest rate, expected housing capital return,
tau1, and tau2 (a2, a3, a4, and a5) are approximate to 1 : −0.05 : 0.05 : 0.05. The annual
housing depreciation rate, a necessary component of housing UCC, is commonly assumed
to be 0.01 [8]. Thus, standard UCC is organized as (29) for comparison. Our UCC is
organized as (30). Since the DFE regression is better than the MG and PMG regressions,
the empirical equation with log UCC is (31). The results are given in Table 4.

UCCt = it + 0.01− 0.05× rht−1 (29)

UCC3asset,t = it + 0.01− 0.05× rht−1 + 0.05× tau1t + 0.05× tau2t (30)

∆lngt = β∆lnryt + η[lngt−1 − a1lnryt−1 − a2ln(UCC)t−1] + ui + εt (31)

Table 4. Non-stationary Heterogeneous Panel Model, ln(UCC), 2002–2018.

Coefficient Equation (31), UCC by (29) Equation (31), UCC by (30)

β 0.798 *** (4.5) 0.815 *** (4.7)
η −0.396 *** (11.0) −0.380 *** (10.7)
a1 0.812 *** (24.1) 0.807 *** (23.2)
a2 −0.345 *** (3.6) −0.410 *** (4.5)

constant −0.583 *** (4.3) −0.619 *** (5.2)
R2 (within) 0.296 0.315

Notes: |t| in parentheses; *** is significant at the 1% levels.

The estimated values in Table 4 imply that, when housing market risk premium
terms (both tau1 and tau2) are considered, the significance of ln(UCC) becomes greater
(|t| increases from 3.6 to 4.5), and R2 is also increased. This evidence suggests that the
three-asset house price derivation is more suitable in house price analysis and forecasting.

In the two-asset model [1], the empirical effect of tau2 was discussed, where tau2
plays an important role in restricting the price-return positive circle. In contrast, the mean
values in Table 1 give us the impression that tau1 is significantly smaller than any of the
interest rate (i), housing capital return (rh), and tau2. Conditional on their similar marginal
effects, the practical effect of tau1 seems to be tiny. However, since the correlation between
the returns of the two markets practically has a strong cyclical trend rather than being
stochastically distributed in the interval [−1, 1], the effect of tau1 on real house prices could
be apparent.

3.3. Historical Correlation between Housing and Financial Market Returns

The correlation between housing and financial market returns (ρ) is the key to the
housing market risk premium for both τ1 and τ2. If the correlation is close to zero, the impact
of financial market factors on housing market risk premiums will be tiny, and our τ2 will
decrease to the two-asset derivation; in contrast, if the correlation is close to 1 or −1, τ1 will
be significantly non-zero, and τ2 will converge to zero.

There is a fascinating phenomenon by which, although the correlation between hous-
ing and financial market returns is usually close to zero in the long-term measurement,
the correlation actually is significantly non-zero in the short-run. Furthermore, the correla-
tion is always negative before financial/economic crises and positive during and after crises.
Meen [8] measured the correlation of the UK and showed that, for example, the correlation
between house capital return and FTSE return is 0.08 during the period of 1970–2012 but
−0.66 during the period of 2001–2005 and 0.69 during the period of 2006–2012. Related
works [8] have mentioned this phenomenon too. We also measured the correlation between
US housing capital return and S&P return and obtained supporting evidence. For China,
the long-term correlation was 0.04 during the period of 2000M04–2020M06, and the short-
term correlations were calculated based on the sliding window method, with the window
width equal to the last 12 months, as shown in Figure 1.
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Figure 1. Correlation between housing capital return and SSEC return.

Figure 1 indicates that the correlation in the short run can be quite large or quite small
(≈±0.7). One of the possible interpretations is that, in boom periods, some assets will be
more attractive than others, causing changes in households’ optimal portfolio decisions
(k∗) and then causing reversed changes in demand for different assets, but in bust periods,
the consumption–investment decision dominates households’ behaviours, and therefore,
the demands of all risky assets will fall (and recover afterward). If it makes sense that the
correlation is negative in the boom period, τ1 will be negative, and τ2 will be positive (but
small) so that the housing market risk premium could be negative, causing relatively lower
UCC and relatively higher house prices; when a crisis occurs, the correlation changes from
negative to positive. τ1 should be positive, and τ2 should also be positive (but small) so that
the housing market risk premium should be positive; therefore, UCC goes up, and house
prices go down. In light of this outcome, if the real estate market is the origin of the financial
crisis, the changed correlation will aggravate the severity of the financial crisis. In the next
section, on the basis of reasonable assumptions about the correlation and other factors, we
simulate the influence of the change in correlation on real house prices.

4. Simulation Analysis

In this section, we attempt to analyse the dynamic impact of the correlation between
housing capital return and financial market return on real house prices under our three-asset
model. Generally, housing market risk premiums are generated as the CRRA derivation
(19)–(21), housing user cost of capital (UCC) is generated as the empirical Equation (30),
and real house prices are generated as the long-term housing price Equation (32), which is
the long-run relationship implied by the ECM Equation (31) with the empirical estimations
given in Table 4. Note that, since real income will be generated as a non-stationary series,
co-integration is in-built when the long-term relationship (32) is applied.

lngt = a0 + 0.812× lnryt − 0.345× ln(UCC)t (32)

The exogenous shocks are contained by the real income series. The mean and standard
deviation of the historical real income growth rate are 0.0776 and 0.0807, respectively. We
simply assume that the growth rate of real income is distributed normally and thus generate
the exogenous noises, while to simulate the cyclical correlation, the correlation is generated
as a sine function (corrt = 0.7× sin(t× 2π/6.5)), where π is approximate to 3.14, 0.7 is the
amplitude, and 6.5 (years) is the cycle period roughly estimated by Figure 1. All of the
other details are summarized in Appendix B (Table A1).



Axioms 2022, 11, 145 12 of 23

Three curves are simulated for the purposes of comparison. The first is the baseline,
where exogenous noises are not considered in real income growth. Therefore, house prices
increase steadily. Noises are considered in both the second and third. The only difference
is that housing market risk premiums are set to be zero in the second, referring to the
standard house price model, but the risk premium is considered in the third. It is important
to mention that calibration simulation (such as the first curve) of our three-asset model is
meaningless because the generation of the risk premium requires volatilities. However,
the consideration of noises will lead to a case in which we are not sure whether the change
in real house prices is caused by the consideration of the risk premium or the noises. In light
of this uncertainty, the stochastic process was replicated 100 times, and we calculated the
averages to remove the influence of noise.

Figure 2 shows the key results of the simulation. The first frame shows the stochastic
and non-stochastic real income growth rates over 25 years (periods). The second frame
shows the generated sine shape correlation. To reflect the properties of risk premium
terms, the third frame shows 55 years of results. Doubtlessly, since tau1 is determined by
the correlation, it also reflects a sine shape movement. As in the analysis and simulation
shown by Wang et al. [1], tau2 is increasing in recent years in China. Tau, the sum of the
two, also reflects a strong cyclicity, but compared with tau1, the peaks are wider, and the
troughs are narrower, indicating that housing market risk premiums in most of the periods
have the relatively strong ability to restrain house price growth; when the financial market
and housing market are negatively correlated, the restrictive ability will Decrease and
thus cause housing price bubbles. As clearly shown by the fourth frame, when the risk
premium terms are involved, there will be obvious periodicity in house prices. Therefore,
although housing market risk premiums have a negative impact on real house prices,
the natural change is not conducive to stabilizing house price. For instance, real house
prices decreased 9.6% in the two years from period 18 to 20 and fell 9.3% in one year from
period 25 to 26. These simulated values support our view that the effect of financial market
factors on housing market risk premiums, as well as real house prices, cannot be ignored
in practice and should be of sufficient concern in both theoretical studies and government
policy making.

5 10 15 20 25 30
time, t

0.04

0.06

0.08

0.1

0.12

0.14

re
al

 in
co

m
e 

gr
ow

th
 ra

te
, d

[ln
(r

y)
]

non-stochastic
stochastic

5 10 15 20 25 30
time, t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

co
rr

el
at

io
n

5 10 15 20 25 30 35 40 45 50 55 60
time, t

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ho
us

in
g 

m
ar

ke
t r

is
k 

pr
em

iu
m

, tau
tau1
tau2

5 10 15 20 25 30
time, t

3.5

4

4.5

5

5.5

re
al

 h
ou

se
 p

ric
e,

 ln
g

non-stochastic
stochastic without 
stochastic with 

Figure 2. Average dynamics under 100 replications (random seed: 1–100).
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5. Conclusions

This paper aims to analyse the effect of financial market factors on real house prices.
By introducing the risky financial asset, we first develop the theoretical framework from
a two-asset base to a three-asset model. Theoretical derivations show that three financial
market elements—expected return, volatility and the correlation—determine housing
market risk premiums and thus affect the housing user cost of capital, as well as real house
prices. If correlations between the returns on housing and financial markets are positive,
real house prices are negatively affected by expected returns and positively affected by
the volatility of the risky financial asset; if the correlation is negative, the effects are
reversed. Empirical works have supported the existence of the theoretical derivations
of the housing market risk premiums (τ1 and τ2), but the estimated marginal effects are
relatively small. Statistics have also shown that, despite the correlation between the two
markets being close to zero in the long-term measurement, it is significantly negative in
boom periods and significantly positive in bust periods. Given reasonable assumptions, our
dynamic simulations point out that financial markets cause cyclical changes in real house
prices. More specifically, the results show that China’s real house prices could decrease by
approximately 10% within one to two years in the future if the effects of financial market
factors are still as large as they are now.

Therefore, for the purpose of stabilizing housing prices and avoiding housing market
collapse, we recommend the following: (i) government should control the money flow
from one to another between the housing and financial markets; and (ii) compared with the
housing market, financial markets should have an absolute advantage (relatively higher
expected return and lower risk).

Although the three-asset model is very complex, it is still incomplete. Housing
mortgage debt must necessarily be introduced into the model next. Then, the difference
between risk-free interest rates and mortgage interest rates will be allowed. The effect of
monetary policy on housing prices can be more precisely analysed.
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Appendix A. Mathematical Derivations

Appendix A.1. The Expected Utility Three-Asset Housing Life-Cycle Model, Part I

According to the lifetime utility function (1) and constraints (3)–(6), the households’
decisions can be found by maximizing the Hamiltonian function:

L(t) = E

{ ∫ ∞

0
e−rt

{
µ[H(t), C(t)] + λ(t)

[
RY(t)− C(t)
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−gH(t)
[
Ḣ(t) + δ(t)H(t)

]
−[Ȧ f (t)− [i(t)− π(t)]A f (t)]

−gA(t)
[
ȦA(t)− [id(t)− π(t)]AA(t)

]]}
dt

}
, (A1)

The first-order conditions are

∂L(t)
∂C(t)

= E
{

e−rtµC(t)− e−rtλ(t)
}
= 0, (A2)

∂L(t)
∂H(t)

= E
{

e−rtµH(t)− e−rtλ(t)gH(t)δ(t) +
d
dt
[e−rtλ(t)gH(t)]

}
= 0, (A3)

∂L(t)
∂A f (t)

= E
{

e−rtλ(t)[i(t)− π(t)] +
d
dt
[e−rtλ(t)]

}
= 0, (A4)

∂L(t)
∂AA(t)

= E
{

e−rtλ(t)gA(t)[id(t)− π(t)] +
d
dt
[e−rtλ(t)gA(t)]

}
= 0. (A5)

Note that all variables of the are certain in time period (t) and uncertain in the future
(t + dt, t + 2dt, t + 3dt, . . .) Therefore, certain elements can be removed to the outside of
expectations.
From (A2),

µC(t) = λ(t). (A6)

From (A3),

E[e−rtµH(t)] = E[e−rtλ(t)g(t)δ(t)]− E
[ d

dt
[e−rtλ(t)gH(t)]

]
∴ e−rtE[µH(t)] = e−rtE[λ(t)]gH(t)δ(t)− E

[
˙gH(t)e−rtλ(t)− gH(t)

d
dt
[e−rtλ(t)]

]
∴ e−rtE[µH(t)] = e−rtE[λ(t)]gH(t)δ(t)− e−rtE

[
˙gH(t)λ(t)

]
− gH(t)E

[ d
dt
[e−rtλ(t)]

]
∴ E[µH(t)] = gH(t)

{
E[λ(t)]δ(t)− E

[
rH(t)λ(t)

]
− ertE

[ d
dt
[e−rtλ(t)]

]}
(A7)

where rH(t) = ˙gH(t)/gH(t), real capital return of housing.
From (A4),

[i(t)− π(t)]E[λ(t)] = −ertE[
d
dt
[e−rtλ(t)]]. (A8)

From (A5),

e−rtgA(t)E
[
λ(t)[id(t)− π(t)]

]
= −E

[ d
dt
[e−rtλ(t)gA(t)]

]
∴ e−rtgA(t)E

[
λ(t)[id(t)− π(t)]

]
= −E

[
˙gA(t)e−rtλ(t)− gA(t)

d
dt
[e−rtλ(t)]

]
∴ E

[
[id(t)− π(t)]λ(t)

]
= −E

[
rA(t)λ(t)

]
− ertE

[ d
dt
[e−rtλ(t)]

]
∴ E

[
[rA(t) + id(t)− π(t)]λ(t)

]
= −ertE

[ d
dt
[e−rtλ(t)]

]
(A9)

where rA(t) = ˙gA(t)/gA(t) is real capital return of risky financial assets.
Substitute (A6) into (A7)–(A9),

∂L(t)
∂H(t)

: E[µH(t)] = gH(t)
{

E[µC(t)]δ(t)− E
[
rH(t)µC(t)

]
− ertE

[ d
dt
[e−rtµC(t)]

]}
(A10)
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∂L(t)
∂A f (t)

: [i(t)− π(t)]E[µC(t)] = −ertE[
d
dt
[e−rtµC(t)]] (A11)

∂L(t)
∂AA(t)

: E
[
[rA(t) + id(t)− π(t)]µC(t)

]
= −ertE

[ d
dt
[e−rtµC(t)]

]
(A12)

Equations (A10)–(A12) are Equations (7)–(9) in the main text.

Appendix A.2. The Expected Utility Three-Asset Housing Life-Cycle Model, Part II

In this part, conditions are Equations (A10)–(A12).
Substitute (A11) into (A12),

E
[
[rA(t) + id(t)− π(t)]µC(t)

]
= [i(t)− π(t)]E[µC(t)]

E
[
rAD(t)µC(t)

]
E[µC(t)]

= i(t)− π(t) (A13)

where rAD(t) = rA(t) + id(t)− π(t) and this is Equation (10) in main text.
Or since E[AB] = E[A]E[B] + Cov[A, B],

E[rAD(t)]− (i(t)− π(t)) = −
Cov

[
rAD(t), µC(t)

]
E[µC(t)]

.

Substitute (A11) into (A10):

E[µH(t)] =
{

E[µC(t)]δ(t)− E[rH(t)µC(t)] + [i(t)− π(t)]E[µC(t)]
}

gH(t)

∴
E[µH(t)]
E[µC(t)]

=

{
i(t)− π(t) + δ(t)− E[rH(t)µC(t)]

E[µC(t)]

}
gH(t). (A14)

Or since E[AB] = E[A]E[B] + Cov[A, B],

E[µH(t)]
E[µC(t)]

=

{
i(t)− π(t) + δ(t)− E[rH(t)]−

Cov[rH(t), µC(t)]
E[µC(t)]

}
gH(t). (A15)

Equations (A14) and (A15) are Equations (11)–(12) in the main text.

Appendix A.3. The Three-Asset Expected Utility Housing Life-Cycle Model under CARA Utility

In this part, conditions are Equations (13) and (14).
Since rH and rAD are joint normally distributed, the probability density function of

the standard joint normal distribution between z1 and z2 is used, given as:

φ(z1, z2) =
1

2π
√

1− ρ2
exp
{
− 1

2(1− ρ2)
[z2

1 − 2ρz1z2 + z2
2]
}

(A16)

where ρ is the correlation between z1 and z2.
Equations (3)–(6) can be organized as one equation:

C(t) = RY(t) + i(t)A f (t) + id(t)AA(t)− gH(t)[Ḣ(t) + δ(t)H(t)]

−[Ȧ(t) + π(t)A(t)]− gA(t)[ȦA(t) + π(t)AA(t)]

or
C(t) ≈ RY(t) + [rH(t)− δ(t)]gH(t)H(t)

+[i(t)− π(t)]A f (t) + rAD(t)gA(t)AA(t) (A17)
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This equation implies that, if the quantities of households’ housing and non-housing assets
are unchanged at the moment, all of their labour income, housing net yield and non-housing
financial yield will be consumed. Further, since the housing capital return (rH(t)) and the
total return of risky financial assets (rAD(t)) are uncertain, households’ consumption (A17)
can be divided into certain and uncertain parts as:

C(t) = RY(t) + [re
H(t)− δ(t)]gH(t)H(t) + gH(t)H(t)σH(t)z1

+[i(t)− π(t)]A f (t) + re
AD(t)gA(t)AA(t) + gA(t)AA(t)σAD(t)z2

Therefore,
E[C(t)] ≡ Ce(t) = RY(t) + [re

H(t)− δ(t)]gH(t)H(t)

+[i(t)− π(t)]A f (t) + re
AD(t)gA(t)AA(t)

or
C(t) = Ce(t) + gH(t)H(t)σH(t)z1 + gA(t)AA(t)σAD(t)z2 (A18)

Remember that, to derive a specific solution for Equation (12) requires solving E[µC(t)],
E[rH(t)µC(t)] and E[rAD(t)µC(t)].

Step 1: The derivation of E[µC(t)].
Under the specific CARA utility function (14),

E[µC(t)] = E[ϕexp[−ϕC(t)]].

Substitute (A18),

E[µC(t)] = E[ϕexp[−ϕCe(t)− ϕgH(t)H(t)σH(t)z1 − ϕgA(t)AA(t)σAD(t)z2]]

∴ E[µC(t)] = ϕexp[−ϕCe(t)]× E[exp[−ϕgH(t)H(t)σH(t)z1 − ϕgA(t)AA(t)σAD(t)z2]]

Based on the standard joint normal distribution,

E[µC(t)] = ϕexp[−ϕCe(t)]×
∫∫ +∞

−∞

{
exp[−ϕgH(t)H(t)σH(t)z1

−ϕgA(t)AA(t)σAD(t)z2]
}

φ(z1, z2)dz1dz2

Substituting the probability density function (A16),

E[µC(t)] = ϕexp[−ϕCe(t)]×
∫∫ +∞

−∞

{
exp[−ϕgH(t)H(t)σH(t)z1 − ϕgA(t)AA(t)

σAD(t)z2]
} 1

2π
√

1− ρ2(t)
exp
{
− 1

2(1− ρ2(t))
[z2

1 − 2ρ(t)z1z2 + z2
2]
}

dz1dz2

∴ E[µC(t)] = ϕexp[−ϕCe(t)]×
∫∫ +∞

−∞

1
2π
√

1− ρ2(t)
exp
{
− 1

2(1− ρ2(t))
[z2

1 − 2ρ(t)z1z2

+z2
2 + 2(1− ρ2(t))ϕgH(t)H(t)σH(t)z1 + 2(1− ρ2(t))ϕgA(t)AA(t)σAD(t)z2]

}
dz1dz2

Because of the mathematical law that

x2 − 2ρxy + y2 + 2(a− ρb)x + 2(b− ρa)y + (a2 − 2ρab + b2)

= (x + a)2 − 2ρ(x + a)(y + b) + (y + b)2.

Let, x = z1; a− ρ(t)b = (1− ρ2(t))ϕgH(t)H(t)σH(t); y = z2;
b− ρ(t)a = (1− ρ2(t))ϕgA(t)AA(t)σAD(t).
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Therefore,

 a = ϕ
[

gH(t)H(t)σH(t) + ρ(t)gA(t)AA(t)σAD(t)
]

b = ϕ
[
ρ(t)gH(t)H(t)σH(t) + gA(t)AA(t)σAD(t)

] .

Thus, a2 − 2ρab + b2 = ϕ2(1− ρ2(t))M(t)
where M(t) =

[
gH(t)H(t)σH(t)

]2
+ 2ρ(t)

[
gH(t)H(t)σH(t)

][
gA(t)AA(t)σAD(t)

]
+[

gA(t)AA(t)σAD(t)
]2.

Therefore, E[µC(t)] = ϕexp[−ϕCe(t)]×
∫∫ +∞
−∞

1
2π
√

1−ρ2(t)
exp
{
− 1

2(1−ρ2(t))[
(x + a)2 − 2ρ(x + a)(y + b) + (y + b)2 − (a2 − 2ρab + b2)

]}
dz1dz2

∴ E[µC(t)] = ϕexp[−ϕCe(t)]× exp
{

a2−2ρab+b2

2(1−ρ2(t))

} ∫∫ +∞
−∞

1
2π
√

1−ρ2(t)

exp
{
− 1

2(1−ρ2(t))

[
(x + a)2 − 2ρ(x + a)(y + b) + (y + b)2

]}
dz1dz2

∴ E[µC(t)] = ϕexp[−ϕCe(t)]× exp
{

ϕ2(1−ρ2(t))M(t)
2(1−ρ2(t))

}
×
∫∫ +∞
−∞ φ[(z1 + a), (z2 + b)]dz1dz2

∴ E[µC(t)] = ϕexp[−ϕCe(t)]× exp
{1

2
ϕ2M(t)

}
. (A19)

Step 2: The derivation of E[rH(t)µC(t)].
E[rH(t)µC(t)]

= E
[
[re

H(t) + σH(t)z1]µC(t)
]

= re
H(t)E[µC(t)] + E

{
σH(t)z1µC(t)

}
= re

H(t)E[µC(t)] + E
{

σH(t)z1 ϕexp
[
− ϕC(t)

]}
= re

H(t)E[µC(t)] + E
{

σH(t)z1 ϕexp
[
− ϕ

[
Ce(t) + gH(t)H(t)σH(t)z1

+gA(t)AA(t)σAD(t)z2
]]}

= re
H(t)E[µC(t)] +

∫∫ +∞
−∞

{
σH(t)z1 ϕexp

[
− ϕ

[
Ce(t) + gH(t)H(t)σH(t)z1

+gA(t)AA(t)σAD(t)z2
]]}

φ(z1, z2)dz1dz2

= re
H(t)E[µC(t)] +

∫∫ +∞
−∞

{
σH(t)z1 ϕexp

[
− ϕCe(t)− ϕgH(t)H(t)σH(t)z1

−ϕgA(t)AA(t)σAD(t)z2

]}
1

2π
√

1−ρ2(t)
exp
{
− 1

2(1−ρ2(t)) [z
2
1 − 2ρz1z2 + z2

2]
}

dz1dz2

= re
H(t)E[µC(t)] +

∫∫ +∞
−∞

{
σH(t)z1 ϕ× exp[−ϕCe(t)] 1

2π
√

1−ρ2(t)
exp
[
− ϕgH(t)H(t)σH(t)z1

− ϕgA(t)AA(t)σAD(t)z2

]}
exp
{
− 1

2(1−ρ2(t)) [z
2
1 − 2ρ(t)z1z2 + z2

2]
}

dz1dz2

= re
H(t)E[µC(t)] + σH(t)ϕ× exp[−ϕCe(t)]

∫∫ +∞
−∞

{
1

2π
√

1−ρ2(t)
z1 × exp

{
− 1

2(1−ρ2(t))[
z2

1 − 2ρ(t)z1z2 + z2
2 + 2(1− ρ2(t))ϕgH(t)H(t)σH(t)z1 + 2(1− ρ2(t))ϕgA(t)AA(t)σAD

(t)z2

]}
dz1dz2.

Because of the mathematical law that
∫∫

φ(x, y)dxdy =
∫ [ ∫

φ(x, y)dy
]
dx, where∫

φ(x, y)dy = φx(x) = 1√
2π

exp
{
− 1

2 x2
}

is the marginal probability of x.
(Kenney and Keeping, 1951, p. 202).
Then,
E[rH(t)µC(t)] = re

H(t)E[µC(t)] + ϕexp[−ϕCe(t)]σH(t)× exp
{

1
2 ϕ2M(t)

}
∫ +∞
−∞ z1 fz1(z1)dz1, where fz1(z1) =

1√
2π

exp
{ 1

2
[
z1 + ϕgH(t)H(t)σH(t) + ρ(t)ϕgA(t)AA(t)

σAD(t)
]2}.

Therefore,
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E[rH(t)µC(t)] = re
H(t)E[µC(t)] + ϕexp[−ϕCe(t)]σH(t)× exp

{
1
2 ϕ2M(t)

}
×
[
− ϕgH(t)H(t)σH(t)− ρ(t)ϕgA(t)AA(t)σAD(t)

]
∴ E[rH(t)µC(t)] = re

H(t)E[µC(t)]
+
[
− ϕgH(t)H(t)σ2

H(t)− ϕgA(t)AA(t)[ρ(t)σH(t)σAD(t)]
]
E[µC(t)].

(A20)

Step 3: The derivation of E[rAD(t)µC(t)].
Similarly,

E[rAD(t)µC(t)] = re
AD(t)E[µC(t)] + ϕexp[−ϕCe(t)]σAD(t)× exp

{
1
2 ϕ2M(t)

}
×
[
− ρ(t)ϕgH(t)H(t)σH(t)− ϕgA(t)AA(t)σAD(t)

]
∴ E[rAD(t)µC(t)] = re

AD(t)E[µC(t)]
+
[
− ϕgA(t)AA(t)σ2

AD(t)− ϕgH(t)H(t)[ρ(t)σH(t)σAD(t)]
]
E[µC(t)].

(A21)

Step 4: Calculate the UCC as well as tau (τCARA) under CARA.
Substitute (A21) into (10):

i(t)− π(t) = re
AD(t) +

[
− ϕgA(t)AA(t)σ2

AD(t)− ϕgH(t)H(t)[ρ(t)σH(t)σAD(t)]
]

∴ ϕgA(t)AA(t) =
re

AD(t)− (i(t)− π(t))
σ2

AD(t)
− ϕgH(t)H(t)

[
ρ(t)

σH(t)
σAD(t)

]
. (A22)

Substitute (A20) into (11):

E[µH(t)]
E[µC(t)]

=
{

i(t)− π(t) + δ(t)− re
H(t) + τCARA(t)

}
gH(t)

where τCARA(t) = ϕgH(t)H(t)σ2
H(t) + ϕgA(t)AA(t)[ρ(t)σH(t)σAD(t)].

Substitute (A22) into τCARA(t); then we have:

τCARA(t) = τ1,CARA(t) + τ2,CARA(t) (A23)

τ1,CARA(t) = [rAD(t)− (i(t)− π(t))]× [ρ(t)σH(t)/σAD(t)] (A24)

τ2,CARA(t) = ϕgH(t)H(t)(1− ρ2(t))σ2
H(t) (A25)

Equations (A23)–(A25) are Equations (16)–(18) in the main text.

Appendix A.4. The Three-Asset Expected Utility Housing Life-Cycle Model under CRRA Utility

In this part, conditions are Equations (13), (15), (A17) and (A18).
Similarly, to derive the specific solution of Equation (12) requires solving E[µC(t)],

E[rH(t)µC(t)] and E[rAD(t)µC(t)].

Step 1: The derivation of E[µC(t)].
E[µC(t)] =

∫∫ +∞
−∞ µC(t)φ(z1, z2)dz1dz2

∴ E[µC(t)] =
∫∫ +∞
−∞ C(t)−θφ(z1, z2)dz1dz2

where φ(z1, z2) is defined in Appendix A.3.
Let us take a second-order Taylor expansion for C(t)−θ , where C(t) = Ce(t):

C(t)−θ ≈ Ce(t)−θ − θCe(t)−θ−1[C(t)− Ce(t)]
+ 1

2 θ(θ + 1)Ce(t)−θ−2[C(t)− Ce(t)]2

Then,
E[µC(t)] ≈

∫∫ +∞
−∞

{
Ce(t)−θ − θCe(t)−θ−1[C(t)− Ce(t)]

+ 1
2 θ(θ + 1)Ce(t)−θ−2[C(t)− Ce(t)]2

}
φ(z1, z2)dz1dz2

∴ E[µC(t)] ≈
∫∫ +∞
−∞

{
Ce(t)−θ − θCe(t)−θ−1[gH(t)H(t)σH(t)z1 + gA(t)AA(t)σAD(t)z2]

+ 1
2 θ(θ + 1)Ce(t)−θ−2[gH(t)H(t)σH(t)z1 + gA(t)AA(t)σAD(t)z2]

2
}

φ(z1, z2)dz1dz2 Since the
mathematical laws



Axioms 2022, 11, 145 19 of 23

∫∫ +∞
−∞ cφ(x, y)dxdy = c (constant);∫∫ +∞
−∞ xφ(x, y)dxdy = 0 (mean of the joint standard normal distribution);∫∫ +∞
−∞ x2φ(x, y)dxdy = 1 (variance of the joint standard normal distribution); and∫∫ +∞
−∞ xyφ(x, y)dxdy = ρ (covariance of the joint standard normal distribution);

Then,

E[µC(t)] ≈ Ce(t)−θ + 1
2 θ(θ + 1)Ce(t)−θ−2{[gH(t)H(t)σH(t)]2

+[gA(t)AA(t)σAD(t)]2 + 2ρ(t)[gH(t)H(t)σH(t)][gA(t)AA(t)σAD(t)]
}

.
(A26)

Step 2: The derivation of E[rH(t)µC(t)].
E[rH(t)µC(t)] =

∫∫ +∞
−∞ rH(t)µC(t)φ(z1, z2)dz1dz2

∴ E[rH(t)µC(t)] =
∫∫ +∞
−∞ rH(t)C(t)−θφ(z1, z2)dz1dz2

Let us take a second-order Taylor expansion for rH(t)C(t)−θ , where C(t) = Ce(t) and
rH(t) = re

H(t):

rH(t)C(t)−θ ≈ re
H(t)C

e(t)−θ

+re
H(t)(−θ)Ce(t)−θ−1[C(t)− Ce(t)]

+Ce(t)−θ [rH(t)− re
H(t)]

+ 1
2 θ(θ + 1)re

H(t)C
e(t)−θ−2[C(t)− Ce(t)]2

+0× [rH(t)− re
H(t)]

2

+(−θ)Ce(t)−θ−1[C(t)− Ce(t)][rH(t)− re
H(t)]

rH(t)C(t)−θ ≈ re
H(t)C

e(t)−θ

+re
H(t)(−θ)Ce(t)−θ−1[gH(t)H(t)σH(t)z1 + gA(t)AA(t)σAD(t)z2]

+Ce(t)−θ [σH(t)z1]

+ 1
2 θ(θ + 1)re

H(t)C
e(t)−θ−2[gH(t)H(t)σH(t)z1 + gA(t)AA(t)σAD(t)z2]

2

+(−θ)Ce(t)−θ−1[gH(t)H(t)σH(t)z1 + gA(t)AA(t)σAD(t)z2][σH(t)z1]

Therefore,

E[rH(t)µC(t)] ≈ re
H(t)C

e(t)−θ

+ 1
2 θ(θ + 1)re

H(t)C
e(t)−θ−2{[gH(t)H(t)σH(t)]2 + [gA(t)AA(t)σAD(t)]2

+2ρ(t)[gH(t)H(t)σH(t)][gA(t)AA(t)σAD(t)]
}

+(−θ)Ce(t)−θ−1[gH(t)H(t)σ2
H(t) + ρ(t)gA(t)AA(t)σH(t)σAD(t)]

(A27)

Step 3: The derivation of E[rAD(t)µC(t)].
Similarly,

E[rAD(t)µC(t)] ≈ re
AD(t)C

e(t)−θ

+ 1
2 θ(θ + 1)re

AD(t)C
e(t)−θ−2{[gH(t)H(t)σH(t)]2 + [gA(t)AA(t)σAD(t)]2

+2ρ(t)[gH(t)H(t)σH(t)][gA(t)AA(t)σAD(t)]
}

+(−θ)Ce(t)−θ−1[gA(t)AA(t)σ2
AD(t) + ρ(t)gH(t)H(t)σH(t)σAD(t)]

(A28)

Step 4: Calculate the UCC, as well as tau (τCRRA) under CRRA.
Substitute (A26) into (A28):

E[rAD(t)µC(t)] ≈ re
AD(t)E[µC(t)]− θCe(t)−θ−1[gA(t)AA(t)σ2

AD(t)
+gH(t)H(t)ρ(t)σH(t)σAD(t)]

(A29)

Substitute (A29) into (10):

[re
AD(t)− (i(t)− π(t))]E[µC(t)]

θCe(t)−θ−1 ≈ gA(t)AA(t)σ2
AD(t) + gH(t)H(t)ρ(t)σH(t)σAD(t) (A30)
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Substitute (A26) into (A27):

E[rH(t)µC(t)] ≈ re
H(t)E[µC(t)]− θCe(t)−θ−1[gH(t)H(t)σ2

H(t)

+ρ(t)gA(t)AA(t)σH(t)σAD(t)] (A31)

Substitute (A30) into (A31):

E[rH(t)µC(t)]
E[µC(t)]

≈ re
H(t)− [rAD(t)− (i(t)− π(t))]× [ρ(t)σH(t)/σAD(t)]

− θCe(t)−θ−1

E[µC(t)]
gH(t)H(t)(1− ρ2(t))σ2

H(t) (A32)

If expectations are ignored, {θCe(t)−θ−1}/{E[C(t)−θ ]} = θ/C(t), it will be the Pratt-
Arrow coefficient for CRRA utility under certainty (−µ′′C(t)/µ′C(t) = θ/C(t)). Under this
approximation, the housing market risk (τCRRA) is much more easily understood. Note that
the coefficient of the uncertain utility ({θCe(t)−θ−1}/{E[C(t)−θ ]} is still solvable, but since
(i) national risk attitude is relatively stable, (ii) its difference from θ/C(t) is tiny, and (iii) it
has a pattern similar to that of τCARA derivation, the approximation is more meaningful.
Under the approximation, substitute (A32) into (11):

E[µH(t)]
E[µC(t)]

≈
{

i(t)− π(t) + δ(t)− re
H(t) + τCRRA(t)

}
gH(t)

where
τCRRA(t) = τ1,CRRA(t) + τ2,CRRA(t) (A33)

τ1,CRRA(t) = [rAD(t)− (i(t)− π(t))]× [ρ(t)σH(t)/σAD(t)] (A34)

τ2,CRRA(t) ≈
θ

Ce(t)
gH(t)H(t)(1− ρ2(t))σ2

H(t) (A35)

Equations (A33)–(A35) are Equations (19)–(21) in the main text.

Appendix A.5. Derivation of the Optimal Ratio of Risk Financial Assets to Housing Assets from
Our Three-Asset Model

E[µH(t)]
E[µC(t)]

= MRSH,C(t) = R(t) (A36)

Equation (A36) is the arbitrage condition. The marginal rate of substitution (MRS) between
housing and the consumption good is equal to the imputed rental price of housing services
(R), indicating that households’ utility is unchanged if their housing services are cut by one
unit, but they obtain some non-housing goods as compensation (more details are provided
in Wang et al., 2020).

Since Equation (11), the expected total housing return will be

re
HT(t) = re

H(t) + R(t)/g(t)− δ(t) = i(t)− π(t)− E[rH(t)µC(t)]
E[µC(t)]

+ re
H(t) (A37)

Part 1: The three-asset model under the CARA utility:
The two conditions are (A20) and (A21). Substitute (A20) into (A37):

re
HT(t)− [i(t)− π(t)]

σH(t)
= ϕgH(t)H(t)σH(t) + ϕgA(t)AA(t)[ρ(t)σAD(t)] (A38)
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Substitute (A21) into (10):

re
AD(t)− [i(t)− π(t)]

σAD(t)
= ϕgA(t)AA(t)σAD(t) + ϕgH(t)H(t)[ρ(t)σH(t)] (A39)

Now, let ϕgH(t)H(t) and ϕgA(t)AA(t) be the two unknowns of the binary Equations (A38)
and (A39). Then,

k∗(t) =
gA(t)AA(t)
gH(t)H(t)

=

[
re

AD(t)− [i(t)− π(t)]
]
σ2

H(t) +
[
re

HT(t)− [i(t)− π(t)]
]
σAH(t)[

re
HT(t)− [i(t)− π(t)]

]
σ2

AD(t) +
[
re

AD(t)− [i(t)− π(t)]
]
σAH(t)

(A40)

where σAH(t) = ρ(t)σH(t)σAD(t) is the covariance of the two returns.

Part 2: The three-asset model under the CRRA utility:
The two conditions are (A29) and (A31). Substitute (A29) into (A37):

re
HT(t)− [i(t)− π(t)]

σH(t)
=

θCe(t)−θ−1

E[µC(t)]
[gH(t)H(t)σH(t) + gA(t)AA(t)ρ(t)σAD(t)] (A41)

Substitute (A31) into (10):

re
AD(t)− [i(t)− π(t)]

σAD(t)
=

θCe(t)−θ−1

E[µC(t)]
[gH(t)H(t)ρ(t)σH(t) + gA(t)AA(t)σAD(t)] (A42)

Similarly, let θCe(t)−θ−1

E[µC(t)]
gH(t)H(t) and θCe(t)−θ−1

E[µC(t)]
gA(t)AA(t) be the two unknowns of the

binary Equations (A41) and (A42). Then,

k∗(t) =
gA(t)AA(t)
gH(t)H(t)

=

[
re

AD(t)− [i(t)− π(t)]
]
σ2

H(t) +
[
re

HT(t)− [i(t)− π(t)]
]
σAH(t)[

re
HT(t)− [i(t)− π(t)]

]
σ2

AD(t) +
[
re

AD(t)− [i(t)− π(t)]
]
σAH(t)

(A43)

where σAH(t) = ρ(t)σH(t)σAD(t) is the covariance of the two returns.
Equations (A40) and (A43) are the same and they are Equation (22) in the main text.

Appendix A.6. Derivation of the Optimal Ratio of Risky Financial Assets to Housing Assets from
the Mean-Variance Model

The mean-variance model is the predecessor of the standard CAPM, and the risk-
return relationship is clearly described by the mean-variance model when all assets are
categorized into three kinds: two are risky assets, and one is risk-free assets. Simply assume
that there are two risky assets A and B, and one risk-free asset, RF, in the market. The means
and variances (expected returns and risks) of these three assets are:

A: E[rA] = re
A and Var[rA] = σ2

A
B: E[rB] = re

B and Var[rB] = σ2
B

RF: E[rRF] = rRF and Var[rRF] = 0

Investors will invest in these three assets; thus, the shares of money invested in A, B and
RF are d1, d2 and d3. respectively The mean and variance of the portfolio are:

re
T = d1re

A + d2re
B + d3rRF (A44)

σ2
T = d2

1σ2
A + d2

2σ2
B + 2d1d2σAB (A45)

(where d1 + d2 + d3 = 1; σAB is the covariance of rA and rB).
Given a variety of combinations (di), investors’ portfolio decisions will be more efficient

when the expected total return (re
T) is the maximum from all plots that have the same total

risk (σ2
T). Thus, maximize (A44) subject to (A45), and d1 + d2 + d3 = 1.
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Lagrangian:

L = d1re
A + d2re

B + (1− d1 − d2)rRF + λ[d2
1σ2

A + d2
2σ2

B + 2d1d2σAB − σ2
T ]

First order conditions:

∂L
∂d1

= re
A − rRF + 2λd1σ2

A + 2λd2σAB = 0 (A46)

∂L
∂d2

= re
B − rRF + 2λd2σ2

A + 2λd1σAB = 0 (A47)

Combine (A46) and (A47):

d1 =
−[re

A − rRF]σ
2
B + [re

B − rRF]σAB

2λ(σ2
Aσ2

B − σ2
AB)

d2 =
−[re

B − rRF]σ
2
A + [re

A − rRF]σAB

2λ(σ2
Aσ2

B − σ2
AB)

To remove λ,
d1

d2
=

[re
A − rRF]σ

2
B − [re

B − rRF]σAB

[re
B − rRF]σ

2
A − [re

A − rRF]σAB
(A48)

(A48) is the key equation of the mean-variance model, which implies that investors’ portfo-
lio decisions will be efficient when the ratio of the shares of the money invested in risky
assets A and B is subject to (A48).

When the general indicators re
A, re

B, rRF, σ2
A, σ2

B and σAB are assumed to be re
AD, re

HT ,
i− π, σ2

AD, σ2
H and σAH , the optimal portfolio between housing and risky financial assets

for each period of time (t) will be:

d1

d2
=

gA AA
gH H

= k∗ =

[
re

AD − [i− π]
]
σ2

H +
[
re

HT − [i− π]
]
σAH[

re
HT − [i− π]

]
σ2

AD +
[
re

AD − [i− π]
]
σAH

(A49)

Equations (A49) is the same as Equation (22).

Appendix B. Values Used in the Simulations

Table A1. Values Used in the Simulations.

Parameter Interpretation Value Rationale

g_initial Initial real house price 40.74 national level in 2010
ry_initial Initial real income 152.03 national level in 2010
HEtoC HE/C 0.203 national level in 2010

rry_cons Growth rate of real income 0.0776 Sample average
std_rry_cons Standard deviation of rry 0.0807 Sample average
interest_cons Nominal interest rate 0.053 Sample average (Table 1)

inf_cons Inflation rate 0.0248 Sample average
dep_cons Housing depreciation rate 0.01 See text

theta_cons CRRA parameter 5 See text
ra_cons SSEC growth rate 0.0577 sample average

std_ra_cons Standard deviation of ra 0.0655 sample average

Further details and the complete replication of our results are available via our MATLAB simulation codes, which
can be provided on request.
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