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Abstract: The existence and uniqueness of a local solution is proved for the incomplete Cauchy type
problem to multi-term quasilinear fractional differential equations in Banach spaces with Riemann–
Liouville derivatives and bounded operators at them. Nonlinearity in the equation is assumed to be
Lipschitz continuous and dependent on lower order fractional derivatives, which orders have the
same fractional part as the order of the highest fractional derivative. The obtained abstract result
is applied to study a class of initial-boundary value problems to time-fractional order equations
with polynomials of an elliptic self-adjoint differential operator with respect to spatial variables as
linear operators at the time-fractional derivatives. The nonlinear operator in the considered partial
differential equations is assumed to be smooth with respect to phase variables.

Keywords: multi-term fractional differential equation; quasilinear equation; Riemann–Liouville frac-
tional derivative; defect of Cauchy type problem; fixed point theorem; initial-boundary value problem

1. Introduction

In recent decades, problems with fractional derivatives have been studied by many
authors [1–5]. Now fractional integro-differential calculus is an important tool in modeling
various phenomena that arise in physics, chemistry, mathematical biology, engineering, etc.
(see e.g., [6,7]).

The purpose of this paper is to study the local unique solvability of initial value
problems for multi-term equations in Banach spaces with fractional Riemann–Liouville
derivatives Dβ

t z, β > 0, fractional Riemann–Liouville integrals Jβ
t z, β ≥ 0, and with

nonlinearity, which depends on fractional derivatives of lower orders

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t)

+ F(t, Dα−m
t z(t), Dα−m+1

t z(t), . . . , Dα−1
t z(t)). (1)

Operators Aj, j = 1, 2, . . . , m− 1, Bl , l = 1, 2, . . . , n, Cs, s = 1, 2, . . . , r are supposed to
be bounded on a Banach space Z , a nonlinear map F ∈ C(Z;Z), where Z is an open set in
R×Zm.

Note that unique solvability issues for the Cauchy problem to multi-term linear
equation of form (1) with Gerasimov—Caputo derivatives and bounded operators at
them were studied in [8], various classes of nonlinear equations with Gerasimov—Caputo
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derivatives [9–11], or with a unique Riemann–Liouville derivative in a linear part of an
equation [12,13] have been studied before.

Linear equations of form (1) with Riemann–Liouville derivatives were studied in the
work [14] in the case of bounded operators in the equation, and in [15] in the case of closed
operators. In [14] it was shown, that the Cauchy type problem for an equation with several
Riemann–Liouville derivatives has the so-called defect m∗, when several initial data must
be zero in the lower order initial conditions for the solvability of the problem. So, a natural
initial value problem for a multi-term equation of such type is, generally speaking, the
incomplete Cauchy problem

Dα−m+k
t z(t0) = zk, k = m∗, m∗ + 1, . . . , m− 1. (2)

Section 2 of this work contains the unique solvability theorem for linear (F ≡ f (t))
problem (1), (2) from the work [14].

In Section 3, firstly problem (1), (2) is reduced to the integro-differential equation

z(t) =
m−1

∑
p=m∗

Zp(t− t0)zp +

t∫
t0

Zm−1(t− s)F(s, Dα−m
s z(s), . . . , Dα−1

s z(s))ds, (3)

where {Zp(t) ∈ L(Z) : t > 0}, p = m∗, m∗ + 1, . . . , m− 1 are the p-resolving families of
operators for linear Equation (1). Next, under the condition of Lipschitzian continuity of
the nonlinear operator F, using the theorem of contraction mapping for Equation (3), we
prove the unique solvability of problem (1), (2) on a small enough interval.

Finally, in the last section a theorem of a local in time unique solution existence is
obtained for initial-boundary value problems to a class of quasilinear equations with time-
fractional derivatives, where linear operators are polynomials of an elliptic self-adjoint
operator, which is differential with respect to spatial variables.

2. Preliminary Results

Let us consider the fractional integral and fractional derivative of Riemann–Liouville
with the initial point at t0 ∈ R:

Jα
t h(t) :=

t∫
t0

(t− s)α−1

Γ(α)
h(s)ds, Dα

t h(t) = Dm
t Jm−α

t h(t), t > t0,

where m− 1 < α ≤ m ∈ N, i.e., m := dαe.
By L[h] denote the Laplace transform of a function h : R+ → Z . For the fractional

integral and the fractional derivative of Riemann–Liouville we have the equalities [2]

L[Jα
t h](λ) = λ−αL[h](λ), L[Dα

t h](λ) = λαL[h](λ)−
m−1

∑
k=0

λm−1−kDα−m+k
t h(0),

Hereafter Dα−m+k
t h(0) := lim

t→0+
Dα−m+k

t h(t).

Let Z be a Banach space, L(Z) be the Banach space of bounded linear operators on Z ,
T > t0. Consider the inhomogeneous equation

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t) + f (t), t ∈ (t0, T). (4)

Here 0 < α1 < α2 < · · · < αn < α, ml := dαle, m := dαe, αl − ml 6= α − m,
l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, operators Aj, j = 1, 2, . . . , m− 1, Bl , l = 1, 2, . . . , n,
Cs, s = 1, 2, . . . , r, are linear and bounded in Z . Let
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α := max{αl : l ∈ {1, 2, . . . , n}, αl −ml < α−m}, m = dαe,

α := max{αl : l ∈ {1, 2, . . . , n}, αl −ml > α−m}, m = dαe.

Denote by m∗ := max{m− 1, m} the defect of the Cauchy type problem for Equa-
tion (4) [14].

A solution of the incomplete Cauchy type problem

Dα−m+k
t z(t0) = zk, k = m∗, m∗ + 1, . . . , m− 1, (5)

for (4) is a function z : (t0, T] → Z such that Jm−α
t z ∈ Cm((t0, T];Z) ∩ Cm−1([t0, T];Z),

Jml−αl
t z ∈ Cml ((t0, T];Z), l = 1, 2, . . . , n, Jβs

t z ∈ C((t0, T];Z), s = 1, 2, . . . , r, while equal-
ity (4) for t ∈ (t0, T] and (5) hold.

Put Γ = Γ+ ∪ Γ− ∪ Γ0, Γ0 = {λ ∈ C : |λ| = r0, arg λ ∈ (−π, π)}, Γ± = {λ ∈ C :
arg λ = ±π, |λ| ∈ [r0, ∞)},

Rλ :=

(
I −

m−1

∑
j=1

λj−m Aj −
n

∑
l=1

λαl−αBl −
r

∑
s=1

λ−βs−αCs

)−1

,

Zp(t) =
1

2πi

∫
Γ

λ−αRλ ·
(

λm−1−p I −
m−1

∑
j=p+1

λj−1−p Aj

)
eλtdλ, p = 0, 1, . . . , m− 1, t > 0.

Substitute in ([14], Theorem 2) t− t0 instead of t and obtain the next result.

Theorem 1 ([14]). Let m − 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 <
αl ≤ ml ∈ N, αl − ml 6= α − m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈ L(Z),
j = 1, 2, . . . , m − 1, Bl ∈ L(Z), l = 1, 2, . . . , n, Cs ∈ L(Z), s = 1, 2, . . . , r, zk ∈ Z , k =
m∗, m∗ + 1, . . . , m− 1, f ∈ C((t0, T);Z) ∩ L1(t0, T;Z). Then there exists an unique solution to
(4), (5). It has the form

z(t) =
m−1

∑
p=m∗

Zp(t− t0)zp +

t∫
t0

Zm−1(t− s) f (s)ds.

3. Quasilinear Equation

Let Z be an open set in R×Zm, F : Z → Z , consider the quasilinear equation

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t)

+ F(t, Dα−m
t z(t), Dα−m+1

t z(t), . . . , Dα−1
t z(t)). (6)

A solution of the incomplete Cauchy type problem

Dα−m+k
t z(t0) = zk, k = m∗, m∗ + 1, . . . , m− 1, (7)

for Equation (6) on (t0, t1] will be called such function z ∈ C((t0, t1];Z), that Jm−α
t z ∈

Cm((t0, t1];Z) ∩ Cm−1([t0, t1];Z), Jml−αl
t z ∈ Cml ((t0, t1];Z), l = 1, 2, . . . , n, and Jβs

t z ∈
C((t0, t1];Z), s = 1, 2, . . . , r, the inclusion (t, Dα−m

t z(t), Dα−m+1
t z(t), . . . , Dα−1

t z(t)) ∈ Z
and equality (6) are valid for all t ∈ (t0, t1], conditions (7) are fulfilled.

Let us introduce the notations x := (x0, x1, . . . , xm−1) ∈ Zm, Sδ(x) = {y ∈ Zm−1 :
‖yk − xk‖Z ≤ δ, k = 0, 1, . . . , m− 1}.
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A mapping F : Z → Z is called locally Lipschitzian in x, if for every (t, x) ∈ Z
there exist such δ > 0, l > 0, that [t − δ, t + δ] × Sδ(x) ⊂ Z, and for all (s, y), (s, v) ∈
[t− δ, t + δ]× Sδ(x) the inequality

‖F(s, y)− F(s, v)‖Z ≤ l
m−1

∑
k=0
‖yk − vk‖Z

is satisfied.

Lemma 1. Let 0 < α1 < α2 < · · · < αn < α, m = dαe, ml = dαle, αl − ml 6= α − m,
l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈ L(Z), j = 1, 2, . . . , m − 1, Bl ∈ L(Z),
l = 1, 2, . . . , n, Cs ∈ L(Z), s = 1, 2, . . . , r, zk ∈ Z , k = m∗, m∗ + 1, . . . , m − 1, Z be an
open set in R×Zm, (t0, 0, 0, . . . , 0, zm∗ , zm∗+1, . . . , zm−1) ∈ Z, F ∈ C(Z;Z). Then a function
z : (t0, t1]→ Z is a solution of problem (6), (7) on (t0, t1], if and only if Jm−α

t z ∈ Cm−1([t0, t1];Z)
and for all t ∈ (t0, t1]

z(t) =
m−1

∑
p=m∗

Zp(t− t0)zp +

t∫
t0

Zm−1(t− s)F(s, Dα−m
s z(s), . . . , Dα−1

s z(s))ds. (8)

Proof. If z is a solution of problem (6), (7), then the mapping

t→ F(t, Dα−m
t z(t), Dα−m+1

t z(t), . . . , Dα−1
t z(t))

acts continuously from [t0, t1] into Z due to the definition of the solution at small enough
t1 − t0. By Theorem 2 (see [14]) a solution satisfies Equation (8).

Let z satisfy Equation (8), then one can verify that z is a solution to problem (6), (7)
due to Theorem 1 [14] and by repeating word to word the proof of Lemma 3 in [14].

Theorem 2. Let m− 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈ L(Z), j = 1, 2, . . . , m− 1,
Bl ∈ L(Z), l = 1, 2, . . . , n, Cs ∈ L(Z), s = 1, 2, . . . , r, zk ∈ Z , k = m∗, m∗ + 1, . . . , m− 1, Z
be an open set in R×Zm, (t0, 0, 0, . . . , 0, zm∗ , zm∗+1, . . . , zm−1) ∈ Z, a mapping F ∈ C(Z;Z)
is locally Lipschitzian in x. Then there exists such t1 > t0, that problem (6), (7) has an unique
solution on (t0, t1].

Proof. Take y := Jm−α
t z ∈ Cm−1([t0, t1],Z), then y(k) = Dα−m+k

t z, k = 1, 2, . . . , m− 1. Then
the mapping t→ F(t, y(t), y(1)(t), . . . , y(m−1)(t)) acts continuously from [t0, t1] into Z . By
Lemma 1 it suffices to show that the equation

y(t) =
m−1

∑
p=m∗

Jm−α
t Zp(t− t0)zp + Jm−α

t

t∫
t0

Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s))ds (9)

has an unique solution y ∈ Cm−1([t0, t1],Z) for some t1 > t0.
It was proved in Theorem 1 [14] that Dα−m+n

t Zm−1(0) = 0, n = 0, 1, . . . , m− 2. Since
for all p = 0, 1, . . . , m− 1∥∥∥∥∥λ−αRλ

µ− λ

(
λm−1−p I −

m−1

∑
j=p+1

λj−1−p Aj

)∥∥∥∥∥
L(Z)

≤ C1

|λ|α−m+2 ,

α−m + 2 > 1, so, L
[
Dα−m+n

t Zm−1
]
(µ) = µn−mRµ, at t ∈ [t0, t1], n = 0, 1, . . . , m− 2,



Axioms 2022, 11, 96 5 of 8

‖Dα−m+n
t Zm−1(t)‖L(Z) ≤

1
2π

∫
Γ

‖λn−mRλ‖L(Z)|eλt|ds ≤ C2

∞∫
δ

rn−mdr + C3 ≤ C4. (10)

At n = m− 1 we have

Dα−1
t Zm−1(t) =

1
2πi

∫
Γ

Rλ

λ
eλtdλ

= I +
1

2πi

∫
Γ

λ−1

(
m−1

∑
j=1

λj−m Aj +
n

∑
l=1

λαl−αBl +
r

∑
s=1

λ−βs−αCs

)
Rλeλtdλ,

for λ ∈ Γ ∥∥∥∥∥λ−1

(
m−1

∑
j=1

λj−m Aj +
n

∑
l=1

λαl−αBl +
r

∑
s=1

λ−βs−αCs

)
Rλ

∥∥∥∥∥
L(Z)

≤ C5

|λ|1+δ
,

where δ = min{1, α− αl : l = 1, 2, . . . , n}. Consequently, at t ∈ [t0, t1]

‖Dα−1
t Zm−1(t)‖L(Z) ≤ C6. (11)

Let τ > 0 and δ > 0 be such that [t0, t0 + τ] × Sδ(z) ⊂ Z, where z = (0, 0, . . . , 0,
zm∗ , zm∗+1, . . . , zm−1) is constructed using initial data (7). Denote by S the set of functions
y ∈ Cm−1([t0, t0 + τ];Z) such that ‖y(q)(t)‖ ≤ δ, q = 0, 1, . . . , m∗ − 1, ‖y(k)(t)− zk‖ ≤ δ,
k = m∗, m∗ + 1, . . . , m− 1 for t0 ≤ t ≤ t0 + τ. We define a metric on S

d(y, v) :=
m−1

∑
k=0

sup
t∈[t0,t0+τ]

‖y(k)(t)− v(k)(t)‖Z ,

then S is a complete metric space.
Note that

Jm−α
t

t∫
t0

Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s)) ds

=

t∫
t0

Jm−α
t Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s)) ds.

This equality can be proved by changing the order of integration in its left part.
Define for y ∈ S

G(y)(t) :=
m−1

∑
p=m∗

Jm−α
t Zp(t− t0)zp +

t∫
t0

Jm−α
t Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s)) ds

for t ∈ [t0, t0 + τ]. Let us prove that G maps the metric space S into itself and it is a
contraction operator, if τ > 0 is sufficiently small. Indeed, for n = 0, 1, . . . , m−1

[G(y)](n)(t) =
m−1

∑
p=m∗

Dα−m+n
t Zp(t− t0)zp

+

t∫
t0

Dα−m+n
t Zm−1(t− s)F(s, y(s), y(1)(s), . . . , y(m−1)(s))ds,
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since Dα−m+n
t Zm−1(0) = 0, n = 0, 1, . . . , m − 2. By Theorem 2 [14] we have G(y) ∈

Cm−1([t0, t0 + τ];Z), [G(y)](q)(t0) = 0, q = 0, 1, . . . , m∗ − 1, [G(y)](k)(t0) = zk, k =
m∗, m∗+ 1, . . . , m− 1. Therefore, for t ∈ [t0, t0 + τ] ‖[G(y)](q)(t)‖Z ≤ δ, q = 0, 1, . . . , m∗− 1,
‖[G(y)](k)(t) − zk‖Z ≤ δ, k = m∗, m∗ + 1, . . . , m − 1, for a small enough τ > 0. So,
G : S → S .

Denote F(t, Dy(t)) := F(t, y(t), y(1)(t), . . . , y(m−1)(t)) for brevity. We have at n =
0, 1, . . . , m− 1, t ∈ [t0, t0 + τ] due to (10), (11)

‖[G(y)](n)(t)− [G(v)](n)(t)‖Z =

∥∥∥∥∥∥
t∫

t0

Dα−m+n
t Zm−1(t− s)

(
F(s, Dy(s))− F(s, Dv(s))

)
ds

∥∥∥∥∥∥
≤ τ sup

t∈[t0,t0+τ]

∥∥Dα−m+n
t Zm−1(t)

∥∥
L(Z)l

m−1

∑
k=0

sup
t∈[t0,t0+τ]

‖y(k)(t)− v(k)(t)‖Zds

≤ C7τd(y, v) ≤ d(y, v)
2m

for small enough τ. Therefore, d(G(y), G(v)) ≤ 1
2 d(y, v), the operator G has a unique fixed

point y0 ∈ S , it is an unique local solution of integro-differential Equation (9). Thus, there
exists a unique solution to problem (6), (7) on the segment [t0, t0 + τ], it is uniquely defined
by the equality z = Dm−α

t y0.

4. A Class of Initial-Boundary Value Problems

Assume given the polynomials

P1(λ) =
ν

∑
p=0

apλp, Pj
2(λ) =

ν

∑
p=0

bj
pλp, Pl

3(λ) =
ν

∑
p=0

cl
pλp, Ps

4(λ) =
ν

∑
p=0

ds
pλp,

ap, bj
p, cl

p, ds
p ∈ C, p = 0, 1, . . . , ν ∈ N, j = 1, 2, . . . , m − 1, l = 1, 2, . . . , n, s = 1, 2, . . . , r,

aν 6= 0, Ω ⊂ Rd is a bounded domain with a smooth boundary ∂Ω,

(Au)(ξ) = ∑
|q|≤2ρ

aq(ξ)
∂|q|u(ξ)

∂ξ
q1
1 ∂ξ

q2
2 . . . ∂ξ

qd
d

, aq ∈ C∞(Ω),

(Blu)(ξ) = ∑
|q|≤ρl

blq(ξ)
∂|q|u(ξ)

∂ξ
q1
1 ∂ξ

q2
2 . . . ∂ξ

qd
d

, blq ∈ C∞(∂Ω), l = 1, 2, . . . , ρ,

q = (q1, q2, . . . , qd) ∈ Nd
0, |q| = q1 + · · ·+ qd, and the operator pencil A,B1,B2, . . . ,Bρ is

regularly elliptic [16]. Define the operator A1 ∈ C l(L2(Ω)) with the domain

DA1 = H2ρ

{Bl}
(Ω) := {v ∈ H2ρ(Ω) : Blv(ξ) = 0, l = 1, 2, . . . , ρ, ξ ∈ ∂Ω}

by the rule A1u := Au. Suppose that A1 is a selfadjoint operator; then its spectrum σ(A1)
is real and discrete [16]. Moreover, assume that the spectrum σ(A1) is bounded from
the right and does not contain zero, {ϕk : k ∈ N} is an orthonormal in L2(Ω) system
of eigenfunctions of A1 in L2(Ω) which is enumerated in nonincreasing order of the
corresponding eigenvalues {λk : k ∈ N} with their multiplicities counted.

Take m − 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, H : Rm+1 → R. Denote by m∗ the
defect of the Cauchy type problem, which is defined by the set of numbers α1, α2, . . . , αn, α
(see the second section), and consider the initial-boundary value problem

Dα−m+k
t u(ξ, 0) = uk(ξ), k = m∗, m∗ + 1, . . . , m− 1, ξ ∈ Ω, (12)
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BlAku(ξ, t) = 0, k = 0, 1, . . . , ν− 1, l = 1, 2, . . . , ρ, (ξ, t) ∈ ∂Ω× (t0, t1], (13)

P1(A)Dα
t u(ξ, t) =

m−1
∑

j=1
Pj

2(A)Dα−m+j
t u(ξ, t)

+
n
∑

l=1
Pl

3(A)Dαl
t u(ξ, t) +

r
∑

s=1
Ps

4(A)Jβs
t u(ξ, t)

+H(ξ, Dα−m
t (ξ, t), Dα−m+1

t (ξ, t), . . . , Dα−1
t (ξ, t)), (ξ, t) ∈ Ω× (t0, t1].

(14)

Put ρ0 ≥ 0, X := {v ∈ H2ρν+ρ0(Ω) : BlAkv(ξ) = 0, k = 0, 1, . . . , ν − 1, l =
1, 2, . . . , ρ, ξ ∈ ∂Ω}, Y := Hρ0(Ω) is a Sobolev space Wρ0

2 (Ω) for ρ0 > 0, or the Lebesgue

space Lρ0(Ω), if ρ0 = 0; L := P1(A) ∈ L(X ;Y), Mj := Pj
2(A) ∈ L(X ;Y), j = 1, 2, . . . , m−

1, Nl := Pl
3(A) ∈ L(X ;Y), l = 1, 2, . . . , n, Ss := Ps

4(A) ∈ L(X ;Y), s = 1, 2, . . . , r.
If P1(λk) 6= 0 for all k ∈ N, then there exists the inverse operator L−1 ∈ L(Y ;X )

and (12)–(14) is representable in form (6), (7), where Z = X , Aj = L−1Mj ∈ L(Z),
j = 1, 2, . . . , m− 1, Bl = L−1Nl ∈ L(Z), l = 1, 2, . . . , n, Cs = L−1Ss ∈ L(Z), s = 1, 2, . . . , r,
zk = uk(·), k = m∗, m∗ + 1, . . . , m− 1, F(x0, x1, . . . , xm−1) = L−1H(·, x0, x1, . . . , xm−1).

Theorem 3. Let m− 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, the spectrum σ(A1) do not contain
the origin and zeros of the polynomial P1, 4ρν + 2ρ0 > d, uk ∈ X , k = m∗, m∗ + 1, . . . , m− 1,
H ∈ C∞(Ω×Rn;R). Then at some t1 > t0 there exists an unique solution of problem (12)–(14).

Proof. In this problem the domain of nonlinear operator is Z = R×Xm and due to the
inequality 4ρν + 2ρ0 > d by Proposition 1 ([17], Appendix B) we have

H(·, x0(·), x1(·), . . . , xn−1(·)) ∈ C∞(Xm; H2ρν+ρ0(Ω)),

hence, F(x0(·), x1(·), . . . , xm−1(·)) := L−1H(·, x0(·), x1(·), . . . , xm−1(·)) ∈ C∞(Xm;X ). Then
by Theorem 2 we obtain the statement of this theorem.

Example 1. Take α = 5/2, m = 3, n = 1, r = 1, α1 = 2/3, β1 = 1/2, ν = 2, P1(λ) = λ2,
P1

2 (λ) = b0 + b1λ + b2λ2, P2
2 (λ) ≡ 0, P1

3 (λ) = c0 + c1λ + c2λ2, P1
4 (λ) = d0 + d1λ + d2λ2,

d = 1, Ω = (0, π), ρ = 1, Au = ∂2u
∂ξ2 , B1 = I. Then α := max ∅ := 0, m := d0e = 0,

α := max{2/3} = 2/3, m := d2/3e = 1, m∗ = 1, problem (12)–(14) has the form

D5/2
t

∂4u
∂ξ4 (ξ, t) =

(
b0 + b1

∂2

∂ξ2 + b2
∂4

∂ξ4

)
D1/2

t u(ξ, t)

+

(
c0 + c1

∂2

∂ξ2 + c2
∂4

∂ξ4

)
D2/3

t u(ξ, t) +
(

d0 + d1
∂2

∂ξ2 + d2
∂4

∂ξ4

)
J1/2
t u(ξ, t)

+F(ξ, J1/2
t u(ξ, t), D1/2

t u(ξ, t), D3/2
t u(ξ, t)), (ξ, t) ∈ (0, π)× (t0, t1],

u(0, t) = u(π, t) =
∂2u
∂ξ2 (0, t) =

∂2u
∂ξ2 (π, t) = 0, t ∈ (t0, t1],

D1/2u(ξ, 0) = u1(ξ), D3/2u(ξ, 0) = u2(ξ) ξ ∈ (0, π).

5. Conclusions

The local solvability is shown for the incomplete Cauchy type problem to a solved with
respect to a highest derivative multi-term fractional differential equation with bounded
operators at Riemann–Liouville derivatives in a Banach space with locally Lipschitzian non-
linear part. The results of the work [14] on inhomogeneous linear multi-term equation are
used here for the research of the quasilinear equation, depending on lower order fractional
derivatives with orders, which fractional part is equal to the fractional part of the highest
fractional derivative. The abstract result was applied to the investigation of initial-boundary
value problems to partial differential equations containing polynomials with respect to
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self-adjoint elliptic differential in spatial variables operator at time-fractional derivatives.
Here the highest time-fractional partial derivative acts on the highest spatial derivative.

Our next step is to abandon this condition by allowing unlimited operators in an
abstract equation. The linear case of this type has been investigated in [15], the nonlinear
one has not yet been studied. Another significant step planned by the authors in the coming
papers will be the rejection of conditions for the fractional part of the orders of derivatives
on which the nonlinear operator depends (see above).
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