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Abstract: We show how to apply the well-known fixed-point approach in the study of the existence,
uniqueness, and stability of solutions to some particular types of functional equations. Moreover,
we also obtain the Ulam stability result for them. The functional equations that we consider can be
used to explain various experiments in mathematical psychology and arise in a natural way in the
stochastic approach to the processes of perception, learning, reasoning, and cognition.
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1. Introduction and Preliminaries

Let X be a nonempty set and R denote the set of reals. Let L1, L2, L3, L4 : X → X,
a1, a2, a3, a4, b : X → R and A1, A2 ∈ R be fixed. We present a fixed-point method, which is
very effective in the study of the solutions f : X → R of the following general stochastic
functional equation

f (x) = a1(x) f (L1(x)) + a2(x) f (L2(x))

+ (A1 − a1(x)) f (L3(x)) + (A2 − a2(x)) f (L4(x)) + b(x),
(1)

for x ∈ X. The equation arises in the stochastic approach in mathematical psychology,
which deals with the mathematical modeling of the processes of perception, reasoning, and
cognition. We do not make any particular probabilistic assumptions on X, b, ai and Ai,
because the main considerations are valid without them (i.e., in a general situation).

Mathematical psychology is based on the observation that the learning process in
an animal or a human being may be seen as a sequence of decisions resulting from a
large number of potential feedbacks. These decisions often appear unexpected even in
simple repeated tests conducted under well-controlled circumstances, which suggests
that they can be considered to be random. Therefore, it seems to make sense to include
in our considerations the systemic changes (in the set of possible choices) that represent
fluctuations in the probability of responses between individual trials, which means the
investigation of a suitable stochastic process.

The idea that a simple learning experiment may behave stochastically is not novel
(see, e.g., Refs. [1–3]). It has some drawbacks, but also shows some new relationships. One
of the tools applied in the research connected with this idea are functional equations. For
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instance, in 1967, Epstein [4] proposed the following functional equation (to discuss the
learning process of animals in a two-choice situation):

f (x) =
(

ex

1 + ex

)
f (x + a) +

(
1− ex

1 + ex

)
f (x− b), (2)

where a and b are fixed real constants and f : R→ [0, 1] is an unknown function satisfying
the conditions limx→−∞ f (x) = 0 and limx→+∞ f (x) = 1. The analytical solution of the
above equation was calculated by using the bilateral Laplace transformation.

In 1976, Istrăţescu [5] studied the behavior of predatory animals that prey on two
distinct types of prey and used the following functional equation

f (x) = x f (ν1 + (1− ν1)x) + (1− x) f ((1− ν2)x), (3)

where 0 < ν1 ≤ ν2 < 1 are learning-rate parameters and f : [0, 1] → R is an
unknown function.

Recently, Turab and Sintunavarat [6] introduced the following functional equation

f (x) = x f (ν1x + (1− ν1)Θ1) + (1− x) f (ν2x + (1− ν2)Θ2), (4)

where f : [0, 1]→ R is an unknown function, 0 < ν1 ≤ ν2 < 1 are learning-rate parameters
and Θ1, Θ2 are real constants. The functional equation was used to study a specific kind of
psychological resistance of dogs enclosed in a small box.

Note that Equations (2)–(4) are particular cases of (1) with A2 = 0, a2(X) = {0} and
b(X) = {0}. For several other studies on human actions in probability-learning scenarios,
we refer to [1,7–10] (see also [11–13]).

Further, an apparently two-choice situation regarding the movement of the animals
towards food can actually be a four-response situation, if we also take into account the food
placement, as did Bush and Wilson [2], dividing the types of responses into four events:
right-reward, right-nonreward, left-reward, left-nonreward. They examined the movement
of a paradise fish. A very general situation with four different responses is depicted by
Equation (1), which additionally include the possibility of the so called ‘blank trials’.

The notion of ‘blank trials’ is motivated by the following very natural question:

What if an animal or human does not move for any prey or response and sticks
to its original position?

Some information on such a situation we can find in the paper of Neimark [14],
concerning the human response in the two-choice experiment, in which it should have
been foreseen which of two lights would be turned on in every trial, but the case when ‘no
light was turned on’ was possible as well. Such ‘blank trials,’ as the author called them,
established another class of events. Turab and Sintunavarat have also investigated such a
situation for a paradise fish [8].

Our objective is to prove results on the existence, uniqueness and stability of solutions
to functional Equation (1) by using the tools afforded to us by fixed-point theory (for details
about fixed-point theory we refer to [15–17]).

Finally, let us mention that the standard theory of existence and uniqueness of solu-
tions to the stochastic equations can be found in many books, such as [18]. These books
are usually geared towards Polish spaces but methods to extend the standard theory to
Tychonoff spaces are now well understood (see [19]). While our spaces are certainly Ty-
chonoff, it is of interest to come up with a simple direct proof of existence and uniqueness
without requiring a lot of specialized machinery.

2. Auxiliary Information and Results

In what follows, CD always denotes the family of all functions that map a set D 6= ∅
into a set C 6= ∅.
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An extended norm, in a real or complex vector space W, is a function ‖ · ‖ : W →
[0,+∞] (i.e., possibly also taking the value +∞) such that, for each scalar α and every
x, y ∈W with ‖x‖, ‖y‖ ∈ [0,+∞),

‖x + y‖ ≤ ‖x‖+ ‖y‖, ‖αx‖ = |α| ‖x‖,

and ‖x‖ = 0 if and only if x = 0 (the zero vector).
If V is a normed space and T 6= ∅ is a set, then such an extended norm in VT can be

defined by:
‖g‖ = sup

t∈T
‖g(t)‖, g ∈ VT .

An extended metric in a set B 6= ∅ is a function d : B2 → [0,+∞] fulfilling, for every
x, y, z ∈ B, the subsequent three conditions:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z).

If d is an extended metric in a nonempty set B, then we say that the pair (B, d) is an
extended metric space.

If ‖ · ‖ is an extended norm in a real vector space W, then it is easily seen that the
formula d(x, y) = ‖x− y‖ defines an extended metric in W. For the extended norms and
metrics the notions of Cauchy sequence and completeness are the same as for the classical
norms and metrics.

In the sequel, given a set X 6= ∅ and L : X → X, we sometimes write for simplicity
Lx := L(x) for x ∈ X. Moreover, as usual, L0x := x and Lnx := L(Ln−1x) for x ∈ X,
n ∈ N (positive integers).

Now, we are in a position to recall the Diaz–Margolis fixed-point alternative (see [20]),
which will be useful in the proof of our main results (N0 := N∪ {0}).

Theorem 1. Assume that ρ is an extended complete metric in a set S 6= ∅ and L : S →
S is a contraction with the constant L < 1 (i.e., ρ(Lx,Ly) ≤ Lρ(x, y) for x, y ∈ S with
ρ(x, y) ∈ (0,+∞)). Let x ∈ S be such that there is k ∈ N with ρ(Lk−1x,Lkx) < ∞. Then the
sequence (Lnx)n∈N converges to a fixed point x∗ ∈ S of L, x∗ is the unique fixed point of L in the
set S∗ = {y ∈ S : ρ(x∗, y) < ∞} and

ρ(Lnx, x∗) ≤ Ln−k+1ρ(Lk−1x,Lkx)
1− L

, n ∈ N0, n ≥ k− 1. (5)

Proof. From [20] (Theorem) we can easily deduce the convergence of Lnx to a fixed point
x∗ of L. Further, for each fixed point u ∈ S∗ of L, we have the subsequent simple inequality

ρ(u, x∗) = ρ(Lnu,Lnx∗) ≤ Lnρ(u, x∗), n ∈ N,

which yields the uniqueness of x∗. For the convenience of readers, we also present below a
proof of (5).

First note that, for every m ∈ N, m ≥ k,

ρ(Lk−1x,Lmx) ≤
m

∑
i=k

ρ(Li−1x,Lix)

≤ ρ(Lk−1x,Lkx)
m−k

∑
i=0

Li ≤ ρ(Lk−1x,Lkx)
1− L
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whence

ρ(Lk−1x, x∗) ≤ ρ(Lk−1x,Lmx) + ρ(Lmx, x∗)

≤ ρ(Lk−1x,Lkx)
1− L

+ ρ(Lmx, x∗).

Further, limm→∞ ρ(Lmx, x∗) = 0 and consequently,

ρ(Lk−1x, x∗) ≤ ρ(Lk−1x,Lkx)
1− L

.

Finally, it is easily seen that (5) can be deduced from the above inequality and from
the fact that, for every n ∈ N0 with n ≥ k− 1, we have

ρ(Lnx, x∗) = ρ(Ln−k+1(Lk−1x),Ln−k+1x∗) ≤ Ln−k+1ρ(Lk−1x, x∗).

Remark 1. Let k = 1 in Theorem 1. Then (5) (with n = 0) yields ρ(x, x∗) < +∞, which means
that x ∈ S∗.

Further, for every fixed point z ∈ S of L such that ρ(x, z) < +∞, we have
ρ(x∗, z) ≤ ρ(x∗, x) + ρ(x, z) < +∞ and therefore z ∈ S∗. This means that z = x∗, as x∗

is the unique in S∗ fixed point of L.
Consequently, if L has a fixed point z 6= x∗, then necessarily ρ(x, z) = +∞.

3. Some Preliminary Remarks

Later in this article (unless explicitly stated otherwise), (X, d) is a metric space, x0 ∈ X
and η ∈ R are fixed, E := { f ∈ RX : f (x0) = η} and we write

‖ f ‖e := sup
x 6=y

| f (x)− f (y)|
d(x, y)

, f ∈ RX .

It is easily seen that

‖ f + g‖e ≤ ‖ f ‖e + ‖g‖e, f , g ∈ RX , (6)

and consequently∣∣‖ f ‖e − ‖g‖e
∣∣ ≤ ‖ f − g‖e, f , g ∈ RX , ‖ f ‖e < ∞, ‖g‖e < ∞. (7)

If η = 0, then E is a real vector space and ‖ f ‖e is an extended norm in E . If η 6= 0, then
E is not a real vector space. However, in either case we can define in E an extended metric
de by de( f , g) = ‖ f − g‖e.

We show that de is complete. So, take a Cauchy sequence ( fn)n∈N in (E , de). Then, for
every ε > 0, there exists k ∈ N such that de( fn, fm) ≤ ε for m, n ∈ N with min{m, n} > k,
which means that

| fn(x)− fm(x)− fn(y) + fm(y)| ≤ εd(x, y), x, y ∈ X, m, n ∈ N, min{m, n} > k. (8)

This, with y = x0, yields

| fn(x)− fm(x)| ≤ εd(x, y), x ∈ X, m, n ∈ N, min{m, n} > k.

Consequently, for every x ∈ X, the sequence ( fn(x))n∈N is Cauchy in R (with the
natural metric) and there exists the limit

f (x) := lim
n→∞

fn(x).
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Thus we define a function f ∈ E . Next, letting m→ ∞ in (8) we get

| fn(x)− f (x)− fn(y) + f (y)| ≤ εd(x, y), x, y ∈ X, n > k,

whence de( fn, f ) ≤ ε for n > k. In this way we have shown that (in (E , de))

f = lim
n→∞

fn. (9)

Let F := { f ∈ E : ‖ f ‖e < ∞}. Then, every function f ∈ F is a Lipschitz function with
the Lipschitz constant equal to ‖ f ‖e (i.e., | f (x)− f (y)| ≤ ‖ f ‖e d(x, y) for every x, y ∈ X);
therefore, it is continuous.

Next, take fn ∈ F for n ∈ N and assume that (9) holds with some f ∈ E , which
means that

lim
n→∞

‖ fn − f ‖e = 0. (10)

Then, by (6) and (7),∣∣‖ fn‖e − ‖ fm‖e
∣∣ ≤ ‖ fn − fm‖e ≤ ‖ fn − f ‖e + ‖ fm − f ‖e, n, m ∈ N,

which on account of (10) implies that
(
‖ fn‖e

)
n∈N is a Cauchy sequence in R, and conse-

quently there exists finite
c0 := lim

n→∞
‖ fn‖e.

Due to (6), we also have the inequality

‖ f ‖e ≤ ‖ f − fn‖e + ‖ fn‖e, n ∈ N.

Hence, by (10) (with n→ ∞), we obtain ‖ f ‖e ≤ c0, whence f ∈ F . Thus, we have proved
that F is a closed subset of (E , de).

4. Main Results

In this section, L1, L2, L3, L4 : X → X, a1, a2, b : X → R and A1, A2 ∈ R are fixed. We
investigate solutions f ∈ E to (1), i.e., to the functional equation

f (x) = a1(x) f (L1(x)) + a2(x) f (L2(x))

+ (A1 − a1(x)) f (L3(x)) + (A2 − a2(x)) f (L4(x)) + b(x).
(11)

We write
â1 := sup

z∈X
|a1(z)| < ∞, â2 := sup

z∈X
|a2(z)|,

â3 := sup
z∈X
|A1 − a1(z)|, â4 := sup

z∈X
|A2 − a2(z)|.

We also need the following three hypotheses.

Hypothesis 1 (H1). For each i ∈ {1, 2, 3, 4}, Li is a Lipschitz mapping with a constant κi, i.e.,

d(Li(x), Li(y)) ≤ κi d(x, y), x, y ∈ X.

Hypothesis 2 (H2). a1, a2 ∈ F , â1 < ∞ and â2 < ∞.

Hypothesis 3 (H3). For every f ∈ E ,

η = a1(x0) f (L1(x0)) + a2(x0) f (L2(x0))

+ (A1 − a1(x0)) f (L3(x0)) + (A2 − a2(x0)) f (L4(x0)) + b(x0).
(12)
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Hypothesis (H3) may seem quite demanding, but it is easily seen that, in the case
b(x0) = η(1− A1 − A2), it is fulfilled, for instance, in the following situations:

- x0 is a fixed point of L1 and L2, a1(x0) = A1, a2(x0) = A2;
- x0 is a fixed point of L3 and L4, a1(x0) = a2(x0) = 0;
- x0 is a fixed point of L1 and L4, a1(x0) = A1, a2(x0) = 0.

Define T : E → RX by:

(T f )(x) = a1(x) f (L1(x)) + a2(x) f (L2(x)) + (A1 − a1(x)) f (L3(x))

+ (A2 − a2(x)) f (L4(x)) + b(x), f ∈ E , x ∈ X.
(13)

Note that if hypothesis (H3) is valid, then (T f )(x0) = η for every f ∈ E and consequently
T (E) ⊂ E .

Now, we are in a position to prove the following main result of this paper.

Theorem 2. Let hypotheses (H1)− (H3) be valid, λ0 := â1κ1 + â2κ2 + â3κ3 + â4κ4 and δ(X) :=
maxx,y∈X d(x, y). Suppose that one of the following three conditions is valid.

(a) There exist points u1, u2 ∈ X such that

L1(u1) = L3(u1), L2(u2) = L4(u2) (14)

and

λ := λ0 + δ(X)(‖a1‖e(κ1 + κ3) + ‖a2‖e(κ2 + κ4)) < 1. (15)

(b) There exist κ5, κ6 ∈ [0, ∞) such that

d(L1(x), L3(y)) ≤ κ5d(x, y), d(L2(x), L4(y)) ≤ κ6d(x, y) (16)

for all x, y ∈ X with x 6= y, and

λ := λ0 + δ(X)(‖a1‖e(κ1 + κ5) + ‖a2‖e(κ2 + κ6)) < 1. (17)

(c) There exist γ1, γ2 ∈ [0, ∞) with

d(L1(x), L3(x)) ≤ γ1, d(L2(x), L4(x)) ≤ γ2, x ∈ X, (18)

and

λ := λ0 + ‖a1‖eγ1 + ‖a2‖e γ2 < 1. (19)

If f0 ∈ E is such that there is k ∈ N with de(T k−1 f0, T k f0) < ∞, then the sequence
(T n f0)n∈N is convergent to a fixed point f ∗ ∈ E of T , which is the unique solution of Equation (11)
in the set

E f ∗ := { f ∈ E : de( f , f ∗) < ∞}.

Moreover, the speed of convergence is estimated by the following inequality:

de(T n f0, f ∗) ≤ λn−k+1de(T k−1 f0, T k f0)

1− λ
, n ∈ N0, n ≥ k− 1. (20)

Proof. We show that T is a contraction on E .
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First, observe that, for each x1, x2 ∈ X,

T f (x1)− T f (x2) = a1(x1) f (L1(x1)) + a2(x1) f (L2(x1))

+ (A1 − a1(x1)) f (L3(x1)) + (A2 − a2(x1)) f (L4(x1))

−
[
a1(x2) f (L1(x2)) + a2(x2) f (L2(x2))

+ (A1 − a1(x2)) f (L3(x2)) + (A2 − a2(x2)) f (L4(x2))
]

= a1(x1) f (L1(x1))− a1(x1) f (L1(x2))

+ a2(x1) f (L2(x1))− a2(x1) f (L2(x2))

+ (A1 − a1(x1)) f (L3(x1))− (A1 − a1(x1)) f (L3(x2))

+ (A2 − a2(x1)) f (L4(x1))− (A2 − a2(x1)) f (L4(x2))

+ a1(x1) f (L1(x2))− a1(x2) f (L1(x2))

+ a2(x1) f (L2(x2))− a2(x2) f (L2(x2))

+ (A1 − a1(x1)) f (L3(x2))− (A1 − a1(x2)) f (L3(x2))

+ (A2 − a2(x1)) f (L4(x2))− (A2 − a2(x2)) f (L4(x2)),

and consequently

T f (x1)− T f (x2) = a1(x1)( f (L1(x1))− f (L1(x2)))

+ a2(x1)( f (L2(x1))− f (L2(x2)))

+ (A1 − a1(x1))( f (L3(x1))− f (L3(x2)))

+ (A2 − a2(x1))( f (L4(x1))− f (L4(x2)))

+ (a1(x1)− a1(x2))( f (L1(x2))− f (L3(x2)))

+ (a2(x1)− a2(x2))( f (L2(x2))− f (L4(x2))).

(21)

Assume that condition (a) is fulfilled. Then by (14) and (21), for every x1, x2 ∈ X with
x1 6= x2,

|T f (x1)− T f (x2)|
d(x1, x2)

≤ |a1(x1)| ‖ f ‖e
d(L1(x1), L1(x2))

d(x1, x2)

+ |a2(x1)| ‖ f ‖e
d(L2(x1), L2(x2))

d(x1, x2)

+ |A1 − a1(x1)| ‖ f ‖e
d(L3(x1), L3(x2))

d(x1, x2)

+ |A2 − a2(x1)| ‖ f ‖e
d(L4(x1), L4(x2))

d(x1, x2)

+ ‖a1‖e| f (L1(x2))− f (L1(u1)) + f (L3(u1))− f (L3(x2))|
+ ‖a2‖e| f (L2(x2))− f (L2(u2)) + f (L4(u2))− f (L4(x2))|
≤ â1 ‖ f ‖e κ1 + â2 ‖ f ‖e κ2 + â3 ‖ f ‖e κ3 + â4 ‖ f ‖e κ4

+ ‖a1‖e(‖ f ‖e κ1δ(X) + ‖ f ‖e κ3δ(X))

+ ‖a2‖e(‖ f ‖e κ2δ(X) + ‖ f ‖e κ4δ(X)) = λ ‖ f ‖e,

where

λ := λ0 + ‖a1‖eδ(X)(κ1 + κ3) + ‖a2‖eδ(X)(κ2 + κ4).

Hence, replacing f by f1 − f2, we obtain that

de(T f1, T f2) = ‖T f1 − T f2‖e = ‖T ( f1 − f2)‖e

≤ λ‖ f1 − f2‖e = λde( f1, f2), f1, f2 ∈ E .
(22)
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If condition (b) is satisfied, then by (16) and (21), for every x1, x2 ∈ X with x1 6= x2,
we have

|T f (x1)− T f (x2)|
d(x1, x2)

≤ |a1(x1)| ‖ f ‖e
d(L1(x1), L1(x2))

d(x1, x2)

+ |a2(x1)| ‖ f ‖e
d(L2(x1), L2(x2))

d(x1, x2)

+ |A1 − a1(x1)| ‖ f ‖e
d(L3(x1), L3(x2))

d(x1, x2)

+ |A2 − a2(x1)| ‖ f ‖e
d(L4(x1), L4(x2))

d(x1, x2)

+ ‖a1‖e| f (L1(x2))− f (L1(x1)) + f (L1(x1))− f (L3(x2))|
+ ‖a2‖e| f (L2(x2))− f (L2(x1)) + f (L2(x1))− f (L4(x2))|
≤ λ0 ‖ f ‖e + ‖a1‖e(‖ f ‖e κ1δ(X) + ‖ f ‖e κ5δ(X))

+ ‖a2‖e(‖ f ‖e κ2δ(X) + ‖ f ‖e κ6δ(X)) = λ ‖ f ‖e,

where

λ := λ0 + ‖a1‖eδ(X)(κ1 + κ5) + ‖a2‖eδ(X)(κ2 + κ6).

Hence, as in the previous case we obtain (22).
Finally, assume that (c) holds. Then by (18) and (21), for every x1, x2 ∈ X with x1 6= x2,

we have

|T f (x1)− T f (x2)|
d(x1, x2)

≤ |a1(x1)| ‖ f ‖e
d(L1(x1), L1(x2))

d(x1, x2)

+ |a2(x1)| ‖ f ‖e
d(L2(x1), L2(x2))

d(x1, x2)

+ |A1 − a1(x1)| ‖ f ‖e
d(L3(x1), L3(x2))

d(x1, x2)

+ |A2 − a2(x1)| ‖ f ‖e
d(L4(x1), L4(x2))

d(x1, x2)

+ ‖a1‖e| f (L1(x2))− f (L3(x2))|+ ‖a2‖e| f (L2(x2))− f (L4(x2))|
≤ λ0 ‖ f ‖e + ‖a1‖e ‖ f ‖e γ1 + ‖a2‖e ‖ f ‖e γ2 = λ ‖ f ‖e,

where

λ := λ0 + ‖a1‖eγ1 + ‖a2‖e γ2.

Hence, as previously we obtain (22).
Thus, we have shown that T is a contraction in each of the cases (a)–(c). Consequently,

Theorem 1 (with L = T , L = λ, S = E and ρ = de) completes the proof.

Remark 2. If one of conditions (a)–(c) of Theorem 2 is fulfilled, then every solution f ∈ E of (11)
can be obtained in the way depicted in Theorem 2. For, if f ∗ ∈ E fulfils (11), then it is a fixed point
of T and consequently T n f ∗ = f ∗ for each n ∈ N, which means that the sequence (T n f ∗)n∈N
converges to f ∗.

Remark 3. Observe that if X = [0, 1], d(x, y) = |x − y| for x, y ∈ X, a1(X), a2(X) ⊂ [0, 1],
a1, a2 are nonexpansive mappings, A1 = A2 = 1, and λ is given by (15), then the inequality

2(κ1 + κ2 + κ3 + κ4) < 1 (23)

implies that λ < 1.
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Remark 4. Note that a constant function ωη ∈ F , ωη(x) ≡ η, is a solution to (11) if and only if

η(1− A1 − A2) = b(x), x ∈ X. (24)

Assume that (24) holds. Since { f ∈ E : de( f , ωη) < ∞} = F , so under the assumptions of
Theorem 2 (with f0 = ωη) ωη is the only solution of Equation (11) which belongs to F . If x0 is a
fixed point of Li for i = 1, 2, 3, 4, then this is true, e.g., for the equation

f (x) = ζv(x) f (L1(x)) + (1− ζ)v(x) f (L2(x))

+ ζ(1− v(x)) f (L3(x)) + (1− ζ)(1− v(x)) f (L4(x)) (25)

with η = 0 and fixed ζ ∈ R and v : X → R.
If ζ = 1, then with v(x) ≡ ex/(1 − ex) equation (25) can be (2), while for v(x) ≡ x

particular cases of (25) are (3) and (4) and the equations considered in [8,21]. This means that
with η = 0 (under suitable assumptions on Li), for Equations (2)–(4) (and equations considered
in [8,21]), ωη is the only solution that belongs to F .

If (24) does not hold, then clearly every solution of (25) must be a nonconstant function.
Therefore, in such a case, the statement of Theorem 2 depicts nonconstant solutions to (25) and
moreover, if k = 1 and f0, T f0 ∈ F , then a solution generated in this way belongs to F (because F
is a closed subset of (E , de), as it has been shown at the end of Section 3).

Remark 5. Assume that (16) holds. Then, for every x, z, w ∈ X, with x 6= z 6= w 6= x,

d(L1(x), L3(x)) ≤ d(L1(x), L3(z)) + d(L3(z), L1(w)) + d(L1(w), L3(x))

≤ κ5(d(x, z) + d(z, w) + d(w, x)),

d(L2(x), L4(x)) ≤ κ6(d(x, z) + d(z, w) + d(w, x)).

So, if z0 ∈ X is a limit of a sequence (zn)n∈N of points of the set X \ {z0} with zn 6= zn+1
for n ∈ N, then taking in the above inequalities x = z0, z = zn, w = zn+1 and letting n → ∞,
we get L1(x0) = L3(x0) and L2(x0) = L4(x0). This means that condition (14) is valid with
u1 = u2 = z0. Hence, in the case where (b) holds we obtain anything other than in the case of (a)
only when the topology generated in X by d is discrete.

5. Remarks on Ulam Stability

In this section we show that Theorem 2 actually also provides the results on Ulam
stability. Let us recall that the theory of Ulam stability (often also called the Hyers–Ulam
stability) has been motivated by a problem of S. Ulam, concerning approximate homomor-
phisms of groups, and an answer to it provided by D. Hyers [22] (see [23–28] for more
details and references).

To put it very roughly, the main issue of such stability can be expressed as follows:
When a function satisfying an equation approximately (in some sense) must be near an exact solution
to the equation?

The next definition (cf. [25], p. 119, Ch. 5, Definition 8) makes the notion a bit more
precise (R+ := [0, ∞)).

Definition 1. Let A be a nonempty set, (S, ρ) be a metric space, E ⊂ R+
A be nonempty, T be an

operator mapping E into R+
A and F1,F2 be operators mapping a nonempty set D ⊂ SA into SA.

We say that the equation
F1 ϕ(x) = F2 ϕ(x) (26)

is T – stable provided for any ε ∈ E and ϕ0 ∈ D with

ρ
(
(F1 ϕ0)(x), (F2 ϕ0)(x)

)
≤ ε(x), x ∈ A, (27)
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there exists a solution ϕ ∈ D of Equation (26) such that

ρ
(

ϕ(x), ϕ0(x)
)
≤ (T ε)(x), x ∈ A. (28)

In short, T – stability of (26) means that every approximate (in the sense of (27))
solution of (26) is always close (in the sense of (28)) to an exact solution of (26).

In mathematical modeling, the consistency of solutions to equations applied is critical.
Minor changes to the data set, such as those caused by natural measurement errors, should
not have a significant impact on the conclusion. Hence, it is also essential to analyze
the stability of the suggested functional equation solutions. The next corollary shows
that Theorem 2 also yields information on the Ulam stability of Equation (11), which
correspond to and complement various earlier stability results for functional equations in
single variable (cf., e.g., [29–32]).

Corollary 1. Let hypotheses (H1)–(H3) be valid and let one of conditions (a)–(c) of Theorem 2
be fulfilled.

If f0 ∈ E is such that de( f0, T f0) < ∞, then the sequence (T n f0)n∈N converges to a solution
f ∗ ∈ E of Equation (11) and

de( f ∗, f0) ≤
de( f0, T f0)

1− λ
. (29)

Moreover, f ∗ is the unique in E solution to (11) with a finite distance to f0.

Proof. In view of Theorem 2 (with k = 1 and n = 0), it is only necessary to show the
uniqueness of f ∗. So, suppose that g ∈ E also is a solution to (11) with de( f0, g) < ∞. Then

de( f ∗, g) ≤ de( f ∗, f0) + de( f0, g) ≤ de( f0, T f0)

1− λ
+ de( f0, g).

Since f ∗ and g also are fixed points of T and from the proof of Theorem 2 it follows that
(22) holds with λ < 1, for each n ∈ N we have

de( f ∗, g) = de(T n f ∗, T ng) ≤ λnde( f ∗, g) ≤ λn
(de( f0, T f0)

1− λ
+ de( f0, g)

)
,

which with n→ ∞ yields f ∗ = g.

6. Conclusions

Mathematical psychology is a branch of psychology that deals with the mathematical
modeling of processes studied in theories of cognition and learning. One of its directions
is the so-called stochastic approach. From this perspective, most research on learning
processes can be reduced to calculating the probability of events occurring in subsequent
trials, which leads to the consideration of appropriate stochastic processes.

In this article, we presented some results on Ulam stability and solution (e.g., their
existence and uniqueness) of a general functional equation that may be used to study
various learning theory experiments on animals and humans. The main tool that we use is
the fixed-point alternative of Diaz and Margolis [20].

Unlike the authors of [6,8,21], we do not use any boundary conditions in the proof of
our Theorem 2. Therefore our findings are applicable to a broader range of problems.
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