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Abstract: In this paper, we study the connection between generalized quasi-left alter BCI-algebra and
commutative Clifford semigroup by introducing the concept of an adjoint semigroup. We introduce
QM-BCI algebra, in which every element is a quasi-minimal element, and prove that each QM-BCI
algebra is equivalent to generalized quasi-left alter BCI-algebra. Then, we introduce the notion of
generalized quasi-left alter-hyper BCI-algebra and prove that every generalized quasi-left alter-hyper
BCI-algebra is a generalized quasi-left alter BCI-algebra. Next, we propose a new notion of quasi-
hyper BCI algebra and discuss the relationship among them. Moreover, we study the subalgebras
of quasi-hyper BCI algebra and the relationships between Hv-group and quasi-hyper BCI-algebra,
hypergroup and quasi-hyper BCI-algebra. Finally, we propose the concept of a generalized quasi-
left alter quasi-hyper BCI algebra and QM-quasi hyper BCI-algebra and discuss the relationships
between them and related BCI-algebra.
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1. Introduction

In 1966, Japanese mathematicians Imai and Iséki proposed the concepts of BCK/BCI-
algebra based on logical algebra and the algebraic expression of combinators in combina-
torial logic, which are the two kinds of algebraic structures closest to combinatorial logic,
fuzzy logic, etc.) [1–5]. From the development of BCI-algebras, we know that BCI-algebras
can be studied from several aspects:

(1) Find some special classes of BCI-algebra, such as associative BCI-algebra in-
troduced by Qingping Hu and K. Iséki in 1980 [6]; generalized associative BCI-algebra
proposed by Tiande Lei in 1985 [7]; generalized quasi-left alter BCI-algebra by X.H. Zhang
in 1992 [8]; the mixed structure of BCI-algebra and semigroup [9].

(2) Starting from the operation of logical algebra, another new operation was derived,
which is suitable for associative law. For example, the semigroup structure induced by
a BCI-algebra [10]. W.P. Huang studied the adjoint semigroup of generalized associative
BCI-algebra and proved that the adjoint semigroup of generalized associative BCI-algebra
is an Abelian group [11]. In 1995, Zhang and Ye first revealed the internal relationship
between BZ-algebras and general groups, which can be non-commutative [12].

F. Marty introduced the notion of hyperstructure (also called multialgebra) in 1934 [13],
which was widely used in applied sciences (see [14–17]). Naturally, the idea of a hyper-
structure is also applied to the study of non-classical logic algebras. Jun et al. introduced
hyper BCK-algebra in 2000, and investigated hyper BCK-ideals and some related hyper
algebras, such as hyper K-algebra and hyper MV-algebra (see [18–23]). In 2006, Jun and
Borzooei et al. independently proposed the new concept of hyper BCC-algebra; Xin also
introduced the definition of hyper BCI-algebra in 2006 and, since then, many research
papers on hyper logical algebras have emerged (see [24–31]). In 2021, Y.D. Du and X.H.
Zhang introduced the definition of hyper BZ-algebra and discuss the relationships between
it and semihypergroups by an adjoint semigroup ([32]).

Axioms 2022, 11, 72. https://doi.org/10.3390/axioms11020072 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11020072
https://doi.org/10.3390/axioms11020072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11020072
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11020072?type=check_update&version=3


Axioms 2022, 11, 72 2 of 20

In sum, the study of both logical algebra and hyper logic algebra should start from
their relationship with classical abstract algebra. Therefore, for this paper, we paid attention
to the connection between quasi-hyper BCI-algebra and a semihypergroup.

The arrangement of the whole paper is as below. Firstly, we show a number of
definitions, properties, and theorems in non-classical logic algebras and related hyper
algebraic structures in Section 2. In Section 3, we study the adjoint semigroup of generalized
quasi-left alter (hyper) BCI-algebra and QM-(hyper) BCI algebra. We obtained some results.
In Section 4, we propose a definition of quasi-hyper BCI algebra, discuss some properties,
investigate the relationship between quasi-hyper BCI-algebra and hyper BCI-algebra,
weak hyper BCI-algebra. Moreover, we study relationships between quasi-hyper BCI-
algebra, hypergroup and the Hv-group. Finally, we introduce the concepts of generalized
quasi-left alter quasi-hyper BCI-algebra and QM-quasi-hyper BCI-algebra and discuss the
relationships between them and the related BCI-algebra.

2. Preliminaries

Definition 1 ([33]). Assume that S is a semigroup, a ∈ S. If ∃x ∈ S s.t. axa = a, then a is called
regular. S is regular, if each element of S is regular.

Definition 2 ([33]). Assume that S be a semigroup. If ∀a ∈ S, there is a operation a 7→ a−1 on S,
and it satisfies

(a−1)−1 = a, aa−1a = a, aa−1 = a−1a.

Then, it is a completely regular semigroup.

Definition 3 ([33]). Assume that (S, µ,−1 ) be a completely regular semigroup. ∀x, y in S

(x−1x)(y−1y) = (y−1y)(x−1x).

This is a Clifford semigroup.

Definition 4 ([1,2]). Let < X; ∗, 0 > be a type (2,0) algebraic structure, if it satisfies:∀x, y, z ∈ X,

(BCI1) ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0;
(BCI2) (x ∗ (x ∗ y)) ∗ y = 0;
(BCI3) x ∗ 0 = x;
(BCI4) x ∗ y = 0 and y ∗ x = 0⇒ x = y.
It is a BCI-algebra.

In BCI-algebra < X; ∗, 0 >, if it satisfies:

(BK) 0 ∗ x = 0, for all x ∈ X;
This is a BCK-algebra.

In BCK/BCI-algebra, define ≤: x ≤ y iff x ∗ y = 0.

Theorem 1 ([1]). A type (2,0) algebraic structure < X; ∗, 0 > is a BCI-algebra iff ∀x, y, z ∈ X,
it satisfies:

(BI1) ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0;
(BI2) (z ∗ x) ∗ y = (z ∗ y) ∗ x;
(BI3) x ∗ x = 0;
(BI4) x ∗ y = 0 and y ∗ x = 0⇒ x = y;
(BI5) (0 ∗ (0 ∗ x)) ∗ x = 0.

Definition 5 ([6]). BCI-algebra < X; ∗, 0 > is generalized associative, if 0 ∗ (0 ∗ x) = x, ∀x ∈ X.

Theorem 2 ([34]). In any BCI-algebra < X; ∗, 0 >, the below conditions are equivalent:if
∀x, y, z ∈ X,



Axioms 2022, 11, 72 3 of 20

(1) X is generalized associative;
(2) x ∗ (0 ∗ y) = y ∗ (0 ∗ x);
(3) 0 ∗ (x ∗ y) = y ∗ x;
(4) x ∗ (y ∗ z) = z ∗ (y ∗ x);
(5) x ∗ (x ∗ y) = y;
(6) (x ∗ y) ∗ (x ∗ z) = z ∗ y;
(7) (x ∗ z) ∗ (y ∗ z) = x ∗ y.

Proposition 1 ([7]). In BCI-algebra< X; ∗, 0 >, the below equations hold:

(1) 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x, ∀x ∈ X;
(2) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y), ∀x, y ∈ X.

Definition 6 ([7]). The necessary and sufficient condition for a type (2,0) algebraic structure
< X; ∗, 0 > to be a quasi-alter BCK-algebra is that it meets: ∀x, y ∈ X, if x = y, x ∗ y = 0,
otherwise, x ∗ y = x.

Definition 7 ([7]). In a BCI-algebra < X; ∗, 0 >, if ∀x, y ∈ X, and x 6= y,

x ∗ (x ∗ y) = 0 ∗ (0 ∗ y).

Then, it is said to be a generalized quasi-left alter BCI-algebra.

Theorem 3 ([7]). Assume that < X; ∗, 0 > be a generalized quasi-left alter BCI-algebra. ∀x ∈ X,
either 0 ∗ x = 0, or 0 ∗ (0 ∗ x) = x.

Definition 8. Assume that < X; ∗, 0 > is a BCI-algebra. Then,

BCK(X) := {m ∈ X|0 ∗m = 0}

is a BCK-part of X.

Definition 9. Assume that < X; ∗, 0 > is a BCI-algebra. Then,

AG(X) := {m ∈ X|0 ∗ (0 ∗m) = 0}

is a generalized associative part of X.

Proposition 2 ([7]). The BCK-part B(X) of the generalized quasi-left alter BCI-algebra X is quasi-
alter BCK-subalgebra. Let G(X) = X− B(X) be the BCK-remainder of generalized quasi-left alter
BCI-algebra X. We can see that G(X) ∪ {0} is generalized associative subalgebra.

Theorem 4 ([7]). Assume that < X; ∗, 0 > is a generalized quasi-left alter BCI-algebra, B(X),
G(X) are BCK-part and BCK-remainder of X, respectively. Then:

(1) x ∈ B(X), y ∈ G(X) ∪ {0}imply x ∗ y = 0 ∗ y;
(2) x ∈ G(X) ∪ {0}, y ∈ B(X) imply x ∗ y = x.

Definition 10 ([14]). A hypergroupoid (H, ◦) is a semihypergroup, if ∀x, y, z ∈ H, we have
(x ◦ y) ◦ z = x ◦ (y ◦ z). That is, ⋃

u∈x◦y
u ◦ z =

⋃
v∈y◦z

x ◦ v.

In semihypergroup (H, ◦), for all A, B, C ∈ P∗(H), (A ◦ B) ◦ C = A ◦ (B ◦ C), where
P∗(H) represents the non-empty subset of H.

Definition 11 ([14]). A semihypergroup (H, ◦) is a hypergroup if ∀a ∈ H, a ◦ H = H ◦ a = H.
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In a study of hyperstructure, a � b represents 0 ∈ a ◦ b. For each S, B ⊆ H, S � B
represents that, for all s ∈ S, there is b ∈ B, such that s� b.

Definition 12 ([18]). Assume that (H, ◦) is a hyper groupoid containing 0. If it meets these
axioms: ∀x, y, z ∈ H,

(HBK1) (x ◦ z) ◦ (y ◦ z)� x ◦ y;
(HBK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y
(HBK3) x ◦ H � x
(HBK4) x � y and y� x ⇒ x = y.
We call this a hyper BCK-algebra.

Definition 13 ([26]). Assume that (H, ◦) is a hyper groupoid containing 0. If it meets these
axioms: ∀x, y, z ∈ H,

(HBK1) (x ◦ z) ◦ (y ◦ z)� x ◦ y;
(HBK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y;
(HBI3) x � x;
(HBK4) x � y and y� x ⇒ x = y;
(HBI5) 0 ◦ (0 ◦ x)� x. Then, it is a hyper BCI-algebra.

Definition 14 ([24]). Assume that (H, ◦) is a hyper groupoid containing 0. If it meets these axioms:

(HBK1) (x ◦ z) ◦ (y ◦ z)� x ◦ y, ∀x, y, z ∈ H;
(HBK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y, ∀x, y, z ∈ H;
(HBI3) x � x, ∀x ∈ H;
(HBK4) x � y and y� x ⇒ x = y, ∀x, y ∈ H;
(HBI5) 0 ◦ (0 ◦ x)� x, x 6= 0, ∀x ∈ H.
Then, it is a weak hyper BCI-algebra.

3. Generalized Quasi-Left Alter BCI-Algebra

Firstly, we introduce the adjoint semigroup of BCI-algebra and provide some examples
about the adjoint semigroup of BCI-algebra. Then, we discuss the relationship between the
adjoint semigroup of a generalized quasi-left alter BCI-algebra and commutative Clifford
semigroup.

Assume that < X, ∗, 0 > is a BCI-algebra. ∀a, x ∈ X, denote a map ρa:

ρa : X → X : x 7→ x ∗ a.

∀a, b ∈ X, denote ρa ~ ρb: X → X as follows: ∀x ∈ X,

x 7→ (ρa ~ ρb)(x) = (x ∗ b) ∗ a.

where ~ represents the composition operation of mappings.

Theorem 5. Assume that < X, ∗, 0 > is a BCI-algebra. Denote M(X) as a set of finite products
ρa1 ~ ... ~ ρas (a1, ..., as ∈ X), where ~ represents the composition operation of mappings. Then,
(M(X),~) is a monoid and it is commutative.

Proof. ∀a, b, c ∈ X, and ∀x ∈ X, we have

(ρa ~ ρb)~ ρc(x) = ρa ~ ρb(x ∗ c) = ((x ∗ c) ∗ b) ∗ a,

ρa ~ (ρb ~ ρc)(x) = ρa ~ (ρb ~ ρc(x)) = ρa((x ∗ c) ∗ b) = ((x ∗ c) ∗ b) ∗ a,

Obviously, (ρa ~ ρb) ~ ρc(x) = ρa ~ (ρb ~ ρc)(x). So (M(X),~) satisfies associa-
tive law.
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∀x ∈ X, ρa ∈ M(X),

ρ0 ~ ρa(x) = ρ0(x ∗ a) = (x ∗ a) ∗ 0 = x ∗ a = ρa(x),

ρa ~ ρa(x) = ρa(x ∗ 0) = (x ∗ 0) ∗ a = x ∗ a = ρa(x).

Then, ρ0 is the identity element in M(X). Therefore, (M(X),~) is monoid.
∀m, n ∈ X, and ∀x ∈ X,

ρm ~ ρn(x) = (x ∗ n) ∗m = (x ∗m) ∗ n = ρn ~ ρm(x).

Therefore, (M(X),~) is commutative.

Example 1. Assume that X = {0, 1, 2, 3, 4, 5}. This operation on X is shown in Table 1.

Table 1. BCI-algebra.

∗ 0 1 2 3 4 5

0 0 0 0 3 5 4
1 1 0 1 3 5 4
2 2 0 0 3 5 4
3 3 3 3 0 4 5
4 4 4 4 5 0 3
5 5 5 5 4 3 0

Clearly, < X, ∗, 0 > is a BCI-algebra .
That is, ρ0 : X → X : x 7→ x ∗ 0. So ρ0 = {0, 1, 2, 3, 4, 5};
ρ1 : X → X : x 7→ x ∗ 1. So ρ1 = {0, 0, 0, 3, 4, 5};
ρ2 : X → X : x 7→ x ∗ 2. So ρ2 = {0, 1, 0, 3, 4, 5};
ρ3 : X → X : x 7→ x ∗ 3. So ρ3 = {3, 3, 3, 0, 5, 4};
ρ4 : X → X : x 7→ x ∗ 4. So ρ4 = {5, 5, 5, 4, 0, 3};
ρ5 : X → X : x 7→ x ∗ 5. So ρ5 = {4, 4, 4, 5, 3, 0}.
We could confirm the following:
ρ0 ~ ρ0 = ρ0, ρ0 ~ ρ1 = ρ1, ρ0 ~ ρ2 = ρ2, ρ0 ~ ρ3 = ρ3, ρ0 ~ ρ4 = ρ4, ρ0 ~ ρ5 = ρ5;
ρ1 ~ ρ0 = ρ1, ρ1 ~ ρ1 = ρ1, ρ1 ~ ρ2 = ρ1, ρ1 ~ ρ3 = ρ3, ρ1 ~ ρ4 = ρ4, ρ1 ~ ρ5 = ρ5;
ρ2 ~ ρ0 = ρ2, ρ2 ~ ρ1 = ρ1, ρ2 ~ ρ2 = ρ2, ρ2 ~ ρ3 = ρ3,ρ2 ~ ρ4 = ρ4,ρ2 ~ ρ5 = ρ5;
ρ3 ~ ρ0 = ρ3, ρ3 ~ ρ1 = ρ3, ρ3 ~ ρ2 = ρ3, ρ3 ~ ρ3 = ρ1, ρ3 ~ ρ4 = ρ5, ρ3 ~ ρ5 = ρ4;
ρ4 ~ ρ0 = ρ4, ρ4 ~ ρ1 = ρ4, ρ4 ~ ρ2 = ρ4, ρ4 ~ ρ3 = ρ5,ρ4 ~ ρ4 = ρ3,ρ4 ~ ρ5 = ρ1;
ρ5 ~ ρ0 = ρ5, ρ5 ~ ρ1 = ρ5, ρ5 ~ ρ2 = ρ5, ρ5 ~ ρ3 = ρ4, ρ5 ~ ρ4 = ρ1, ρ5 ~ ρ5 = ρ3.
Then M(X) = {ρ0, ρ1, ρ2, ρ3, ρ4, ρ5}, and (M(X),~) is a monoid, and the operation ~ on

it is shown in Table 2. Thus (M(X),~) is commutative monoid.

Table 2. The adjoint semigroup of BCI-algebra.

~ ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

ρ0 ρ0 ρ1 ρ2 ρ3 ρ4 ρ5
ρ1 ρ1 ρ1 ρ1 ρ3 ρ4 ρ5
ρ2 ρ2 ρ1 ρ2 ρ3 ρ4 ρ5
ρ3 ρ3 ρ3 ρ3 ρ1 ρ5 ρ4
ρ4 ρ4 ρ4 ρ4 ρ5 ρ3 ρ1
ρ5 ρ5 ρ5 ρ5 ρ4 ρ1 ρ3

Theorem 6. Assume that < X, ∗, 0 > is a generalized quasi-left alter BCI-algebra. Hence, M(X)
is a commutative Clifford semigroup.
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Proof. Step 1:
Let B(X) be a BCK-part of X and L(X) = X− B(X) be BCK-remainder of X. ∀x ∈ X,

ρ0 ~ ρ0(x) = (x ∗ 0) ∗ 0 = x ∗ 0 = x = ρ0(x).

Then, according to Definition 6, Proposition 2 and Theorem 4, ∀x, y ∈ X− {0},
Case 1: ∀x, y ∈ B(X), ∀a ∈ X, a 6= x and a 6= y. That is,

ρx ~ ρy(a) = (a ∗ y) ∗ x = a ∗ x = a = ρy(a) = ρx(a).

ρx ~ ρy(y) = (y ∗ y) ∗ x = 0 ∗ x = 0 = ρy(y).

ρx ~ ρy(x) = (x ∗ y) ∗ x = x ∗ x = 0 = ρx(x).

Therefore, ∀x, y ∈ B(X) and x 6= y, there is ρx ~ ρy ∈ M(X).
Then:
(1) (ρx ~ ρy)~ ρy(a) = ((a ∗ y) ∗ y) ∗ x = (a ∗ y) ∗ x = a ∗ x = (a ∗ y) ∗ x = ρx ~ ρy(a);
(ρx ~ ρy)~ ρy(y) = ((y ∗ y) ∗ y) ∗ x = (0 ∗ y) ∗ x = 0 ∗ x = (y ∗ y) ∗ x = ρx ~ ρy(y);
(ρx ~ ρy)~ ρy(x) = ((x ∗ y) ∗ y) ∗ x = (x ∗ y) ∗ x = x ∗ x = (x ∗ y) ∗ x = ρx ~ ρy(x).
Therefore, for any x, y ∈ B(X), there is (ρx ~ ρy)~ ρy = ρx ~ ρy.
(2) (ρx ~ ρy)~ ρx(a) = ((a ∗ x) ∗ y) ∗ x = (a ∗ y) ∗ x = a ∗ x = (a ∗ y) ∗ x = ρx ~ ρy(a);
(ρx ~ ρy)~ ρx(y) = ((y ∗ x) ∗ y) ∗ x = (y ∗ y) ∗ x = 0 ∗ x(y ∗ y) ∗ x = ρx ~ ρy(y);
(ρx ~ ρy)~ ρx(x) = ((x ∗ x) ∗ y) ∗ x = (0 ∗ y) ∗ x = 0 ∗ x = 0 = x ∗ x = (x ∗ y) ∗ x =

ρx ~ ρy(x).
Therefore, for any x, y ∈ B(X), there is (ρx ~ ρy)~ ρx = ρx ~ ρy.
(3) (ρx ~ ρy) ~ (ρx ~ ρy)(a) = (((a ∗ y) ∗ x) ∗ y) ∗ x = ((a ∗ x) ∗ y) ∗ x = a ∗ x =

(a ∗ y) ∗ x = ρx ~ ρy(a);
(ρx ~ ρy)~ (ρx ~ ρy)(y) = (((y ∗ y) ∗ x) ∗ y) ∗ x = ((0 ∗ x) ∗ y) ∗ x = 0 ∗ x = (y ∗ y) ∗

x = ρx ~ ρy(y);
(ρx ~ ρy)~ (ρx ~ ρy)(x) = (((x ∗ y) ∗ x) ∗ y) ∗ x = ((x ∗ x) ∗ y) ∗ x = 0 ∗ x = 0 =

0 ∗ y = (x ∗ x) ∗ y = (x ∗ y) ∗ x = ρx ~ ρy(x).
So, for any x, y ∈ B(X), there is (ρx ~ ρy)~ (ρx ~ ρy) = ρx ~ ρy.
(4) ∀z ∈ L(X), b ∈ L(X) and b 6= z, and for any m ∈ B(X), m 6= x and m 6= y, there is
(ρx ~ ρy)~ ρz(m) = ((m ∗ z) ∗ y) ∗ x = ((0 ∗ z) ∗ y) ∗ x = 0 ∗ z = m ∗ z = ρz(m);
(ρx ~ ρy)~ ρz(y) = ((y ∗ z) ∗ y) ∗ x = ((0 ∗ z) ∗ y) ∗ x = 0 ∗ z = y ∗ z = ρz(y);
(ρx ~ ρy)~ ρz(x) = ((x ∗ z) ∗ y) ∗ x = ((0 ∗ z) ∗ y) ∗ x = 0 ∗ z = x ∗ z = ρz(x);
(ρx ~ ρy)~ ρz(z) = ((z ∗ z) ∗ y) ∗ x = (0 ∗ y) ∗ x = 0 ∗ x = 0 = z ∗ z = ρz(z);
(ρx ~ ρy)~ ρz(b) = ((b ∗ z) ∗ y) ∗ x = ((b ∗ y) ∗ z) ∗ x = (b ∗ z) ∗ x = (b ∗ x) ∗ z =

b ∗ z = ρz(b).
That is, for any x, y ∈ B(X), there is (ρx ~ ρy)~ ρz = ρz.
Above all, let |B(X)| = n, ai ∈ B(X) and i ∈ [1, n]. Except for ρai ∈ M(X), there are

∏
i∈[1,n]

ρai ∈ M(X). Additionally, for k, l ∈ [1, n], there is (ρak ~ ...~ ρal )~ ρak = ρak ~ ...~ ρal ,

(ρak ~ ... ~ ρal )~ ρal = ρak ~ ... ~ ρal . For j ∈ [1, n], (
n
∏
i=1

ρai )~ ρaj =
n
∏
i=1

ρai .

Case 2: ∀x ∈ B(X), y ∈ L(X), a ∈ B(X) and a 6= x, b ∈ L(X) and b 6= y. That is:

ρx ~ ρy(a) = (a ∗ y) ∗ x = (0 ∗ y) ∗ x = 0 ∗ y = a ∗ y = ρy(a).

ρx ~ ρy(y) = (y ∗ y) ∗ x = 0 ∗ x = 0 = ρy(y).

ρx ~ ρy(x) = (x ∗ y) ∗ x = (0 ∗ y) ∗ x = 0 ∗ y = x ∗ y = ρy(x).

ρx ~ ρy(b) = (b ∗ y) ∗ x = b ∗ y = ρy(b).

Therefore, ρx ~ ρy = ρy.
Case 3: ∀x ∈ L(X), y ∈ B(X), For any a ∈ B(X) and a 6= y, b ∈ L(X) and b 6= x.

That is:
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ρx ~ ρy(a) = (a ∗ y) ∗ x = a ∗ x = 0 ∗ x = a ∗ x = ρx(a).

ρx ~ ρy(y) = (y ∗ y) ∗ x = 0 ∗ x = y ∗ x = ρx(y).

ρx ~ ρy(x) = (x ∗ y) ∗ x = x ∗ x = 0 = ρx(x).

ρx ~ ρy(b) = (b ∗ y) ∗ x = b ∗ x = ρx(b).

Therefore, ρx ~ ρy = ρx.
Case 4: ∀x, y ∈ L(X), For any a ∈ B(X), b ∈ L(X), b 6= x and b 6= y. Let z = y ∗ (0 ∗ x).

That is:
(1) z 6= 0, that is, y 6= 0 ∗ x,

ρz(a) = a ∗ z = 0 ∗ z = 0 ∗ (y ∗ (0 ∗ x)) = (0 ∗ x) ∗ y = (0 ∗ y) ∗ x = (a ∗ y) ∗ x = ρx ~ ρy(a).

ρz(y) = y ∗ z = (y ∗ 0) ∗ (y ∗ (0 ∗ x)) = (0 ∗ x) ∗ 0 = (0 ∗ 0) ∗ x = (y ∗ y) ∗ x = ρx ~ ρy(y).

ρz(x) = x ∗ z = (0 ∗ (0 ∗ x)) ∗ (y ∗ (0 ∗ x)) = 0 ∗ y = (x ∗ x) ∗ y = (x ∗ y) ∗ x = ρx ~ ρy(x).

ρz(b) = b ∗ z = (0 ∗ (0 ∗ b)) ∗ (y ∗ (0 ∗ x))

= (0 ∗ (y ∗ (0 ∗ x))) ∗ (0 ∗ b)

= ((0 ∗ x) ∗ y) ∗ (0 ∗ b)

= ((0 ∗ x) ∗ (0 ∗ b)) ∗ y

= (b ∗ x) ∗ y = (b ∗ y) ∗ x = ρx ~ ρy(b).

Therefore, ρx ~ ρy = ρy∗(0∗x). According to Case 2 and Case 3, ρx ~ ρy is a completely
regular element.

(2) z = 0, that is, y = 0 ∗ x and x = 0 ∗ y.

ρx ~ ρy(y) = (y ∗ y) ∗ x = 0 ∗ x = y = y ∗ 0 = ρ0(y).

ρx ~ ρy(x) = (x ∗ y) ∗ x = (x ∗ x) ∗ y = 0 ∗ y = x = x ∗ 0 = ρ0(x).

ρx ~ ρy(b) = (b ∗ y) ∗ x = (b ∗ y) ∗ (0 ∗ y) = b ∗ 0 = ρ0(b).

However,

ρx ~ ρy(a) = (a ∗ y) ∗ x = (0 ∗ y) ∗ x = x ∗ x = 0 6= ρ0(a).

Therefore, ρx ∗ ρy ∈ M(X).
(i) Let m ∈ B(X), and m 6= a, then:
(ρx ~ ρy) ~ ρm(a) = ((a ∗ m) ∗ y) ∗ x = (a ∗ y) ∗ x = (0 ∗ y) ∗ x = (a ∗ y) ∗ x =

ρx ~ ρy(a);
(ρx ~ ρy)~ ρm(m) = ((m ∗m) ∗ y) ∗ x = (0 ∗ y) ∗ x = 0, ρx ~ ρy(m) = (m ∗ y) ∗ x =

(0 ∗ y) ∗ x = 0;
(ρx ~ ρy)~ ρm(y) = ((y ∗m) ∗ y) ∗ x = (y ∗ y) ∗ x = ρx ~ ρy(y);
(ρx ~ ρy)~ ρm(x) = ((x ∗m) ∗ y) ∗ x = (x ∗ y) ∗ x = ρx ~ ρy(x);
(ρx ~ ρy)~ ρm(b) = ((b ∗m) ∗ y) ∗ x = (b ∗ y) ∗ x = ρx ~ ρy(b).
Therefore, for x, y ∈ L(X) and y = 0 ∗ x, m ∈ B(X), there is (ρx ~ ρy)~ ρm = ρx ~ ρy.
(ii) Let m ∈ L(X), and m 6= x, m 6= y; then,
(ρx ~ ρy)~ ρm(a) = ((a ∗ m) ∗ y) ∗ x = ((0 ∗ m) ∗ y) ∗ x = ((0 ∗ m) ∗ (0 ∗ x)) ∗ x =

(x ∗m) ∗ x = (x ∗ x) ∗m = 0 ∗m = a ∗m = ρm(a);
(ρx ~ ρy)~ ρm(y) = ((y ∗m) ∗ y) ∗ x = ((y ∗ y) ∗m) ∗ x = (0 ∗m) ∗ x = (0 ∗ x) ∗m =

y ∗m = ρm(y);
(ρx ~ ρy)~ ρm(x) = ((x ∗ m) ∗ y) ∗ x = ((x ∗ m) ∗ x) ∗ y = ((x ∗ x) ∗ m) ∗ y = (0 ∗

m) ∗ y = (0 ∗ y) ∗m = x ∗m = ρm(x);
(ρx ~ ρy)~ ρm(m) = ((m ∗m) ∗ y) ∗ x = (0 ∗ y) ∗ x = x ∗ x = 0 = m ∗m = ρm(m);
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(ρx ~ ρy)~ ρm(b) = ((b ∗ m) ∗ y) ∗ x = ((b ∗ y) ∗ m) ∗ x = ((b ∗ y) ∗ x) ∗ m = ((b ∗
y) ∗ (0 ∗ y)) ∗m = (b ∗ 0) ∗m = b ∗m = ρm(b).

Therefore, for x, y ∈ L(X) and y = 0 ∗ x, m ∈ L(X), there is (ρx ~ ρy)~ ρm = ρm.
(iii) (ρx ~ ρy)~ ρy(a) = ((a ∗ y) ∗ y) ∗ x = ((0 ∗ y) ∗ y) ∗ x = (x ∗ y) ∗ x = (x ∗ x) ∗ y =

0 ∗ y = a ∗ y = ρy(a);
(ρx ~ ρy)~ ρy(y) = ((y ∗ y) ∗ y) ∗ x = (0 ∗ y) ∗ x = x ∗ x = y ∗ y = ρy(y);
(ρx ~ ρy)~ ρy(x) = ((x ∗ y) ∗ y) ∗ x = ((x ∗ y) ∗ x) ∗ y = ((x ∗ x) ∗ y) ∗ y = (0 ∗ y) ∗ y =

x ∗ y = ρy(x);
(ρx ~ ρy) ~ ρy(b) = ((b ∗ y) ∗ y) ∗ x = ((b ∗ y) ∗ x) ∗ y = ((b ∗ y) ∗ (0 ∗ y)) ∗ y =

(b ∗ 0) ∗ y = b ∗ y = ρy(b);
Therefore, for any x, y ∈ L(X) and y = 0 ∗ x, there is (ρx ~ ρy)~ ρy = ρy.
(iv) (ρx ~ ρy)~ ρx(a) = ((a ∗ x) ∗ y) ∗ x = ((0 ∗ x) ∗ y) ∗ x = (y ∗ y) ∗ x = 0 ∗ x =

a ∗ x = ρx(a);
(ρx ~ ρy)~ ρx(y) = ((y ∗ x) ∗ y) ∗ x = ((y ∗ y) ∗ x) ∗ x = (0 ∗ x) ∗ x = y ∗ x = ρx(y);
(ρx ~ ρy)~ ρx(x) = ((x ∗ x) ∗ y) ∗ x = (0 ∗ y) ∗ x = x ∗ x = ρx(x);
(ρx ~ ρy)~ ρx(b) = ((b ∗ x) ∗ y) ∗ x = ((b ∗ x) ∗ (0 ∗ x)) ∗ x = (b ∗ 0) ∗ x = b ∗ x =

ρx(b).
Therefore, for any x, y ∈ L(X) and y = 0 ∗ x, there is (ρx ~ ρy)~ ρx = ρx.
(v) (ρx ~ ρy)~ (ρx ~ ρy)(a) = (((a ∗ y) ∗ x) ∗ y) ∗ x = (((0 ∗ y) ∗ (0 ∗ y)) ∗ y) ∗ x =

(a ∗ y) ∗ x = ρx ~ ρy(a);
(ρx ~ ρy)~ (ρx ~ ρy)(y) = (((y ∗ y) ∗ x) ∗ y) ∗ x = ((0 ∗ x) ∗ y) ∗ x = (y ∗ y) ∗ x =

ρx ~ ρy(y);
(ρx ~ ρy)~ (ρx ~ ρy)(x) = (((x ∗ y) ∗ x) ∗ y) ∗ x = (((x ∗ x) ∗ y) ∗ y) ∗ x = ((0 ∗ y) ∗

y) ∗ x = (x ∗ y) ∗ x = ρx ~ ρy(x);
(ρx ~ ρy)~ (ρx ~ ρy)(b) = (((b ∗ y) ∗ x) ∗ y) ∗ x = ((b ∗ y) ∗ (0 ∗ y) ∗ y) ∗ x = ((b ∗

0) ∗ y) ∗ x = (b ∗ y) ∗ x = ρx ~ ρy(b).
Therefore, for any x, y ∈ L(X) and y = 0 ∗ x, there is (ρx ~ ρy)~ (ρx ~ ρy) = ρx ~ ρy.

At the same time, ρx ~ ρy is idempotent.
In sum, all elements of M(X) are aligned.
Step 2:
Case 1: According to Case1 in Step1, let |B(X)| = n, x, ai ∈ B(X) and i ∈ [1, n],

∀a ∈ X. Then, ρx ~ ρx(a) = (a ∗ x) ∗ x = a ∗ x = ρx, ρx is idempotent and a completely
regular element. ( ∏

i∈[1,n]
ρai )~ ( ∏

i∈[1,n]
ρai ) = ∏

i∈[1,n]
ρai . That is, ∏

i∈[1,n]
ρai is idempotent and a

completely regular element.
Case 2: ∀x ∈ B(X), y ∈ L(X), b ∈ L(X) and b 6= y. That is, there exists z = 0 ∗ y and

y = 0 ∗ z. Then,
(1)

ρy ~ ρz ~ ρy(a) = ((a ∗ y) ∗ z) ∗ y = ((0 ∗ y) ∗ (0 ∗ y)) ∗ y = 0 ∗ y = a ∗ y = ρy(a).

ρz ~ ρy ~ ρz(a) = ((a ∗ z) ∗ y) ∗ z = ((0 ∗ z) ∗ (0 ∗ z)) ∗ z = 0 ∗ z = a ∗ z = ρz(a).

ρz ~ ρy(a) = (a ∗ y) ∗ z = (a ∗ z) ∗ y = ρy ~ ρz(a).

(2)

ρy ~ ρz ~ ρy(y) = ((y ∗ y) ∗ z) ∗ y = (0 ∗ z) ∗ y = y ∗ y = 0 = y ∗ y = ρy(y).

ρz ~ ρy ~ ρz(y) = ((y ∗ z) ∗ y) ∗ z = ((y ∗ y) ∗ z) ∗ z = (0 ∗ z) ∗ z = y ∗ z = ρz(y).

ρz ~ ρy(y) = (y ∗ y) ∗ z = (y ∗ z) ∗ y = ρy ~ ρz(y).

(3)

ρy ~ ρz ~ ρy(z) = ((z ∗ y) ∗ z) ∗ y = ((z ∗ z) ∗ y) ∗ y = (0 ∗ y) ∗ y = z ∗ y = ρy(z).

ρz ~ ρy ~ ρz(z) = ((z ∗ z) ∗ y) ∗ z = (0 ∗ y) ∗ z = z ∗ z = ρz(z).
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ρz ~ ρy(z) = (z ∗ y) ∗ z = (z ∗ z) ∗ y = ρy ~ ρz(z).

(4)

ρy ~ ρz ~ ρy(b) = ((b ∗ y) ∗ z) ∗ y = ((b ∗ y) ∗ (0 ∗ y)) ∗ y = (b ∗ 0) ∗ y = b ∗ y = ρy(b).

ρz ~ ρy ~ ρz(b) = ((b ∗ z) ∗ y) ∗ z = ((b ∗ z) ∗ (0 ∗ z)) ∗ z = (b ∗ 0) ∗ z = b ∗ z = ρz(b).

ρz ~ ρy(b) = (b ∗ y) ∗ z = (b ∗ z) ∗ y = ρy ~ ρz(b).

Above all, ρy is a completely regular element.
Case 3:
According to Case 4 in Step 1, ∀x, y ∈ L(X), and y 6= 0 ∗ x, ρx ~ ρy = ρy∗(0∗x).

According to Case 2, ρx ~ ρy is a completely regular element. Additionally, (ρx ~ ρ0∗x)~
(ρx ~ ρ0∗x) = ρx ~ ρ0∗x. At the same time, ρx ~ ρ0∗x is idempotent. Additionally, (ρy ~
ρ0∗y)~ (ρy ~ ρ0∗y) = ρy ~ ρ0∗y. At the same time, ρy ~ ρ0∗y is idempotent.

Therefore, M(X) is a completely regular semigroup. In addition, M(X) is a commuta-
tive Clifford semigroup because of commutativity.

Example 2. Assume that X = {0, 1, 2, 3, 4, 5}. The operation on X is shown in Table 3.

Table 3. Generalized quasi-left alter BCI-algebra.

∗ 0 1 2 3 4 5

0 0 0 0 3 5 4
1 1 0 1 3 5 4
2 2 2 0 3 5 4
3 3 3 3 0 4 5
4 4 4 4 5 0 3
5 5 5 5 4 3 0

Then, < X, ∗, 0 > is a generalized quasi-left alter BCI-algebra and M(X) = {ρ0, ρ1, ρ2, ρ3, ρ4,
ρ5, ρ2

3}, where ρ2
3 = ρ3 ∗ ρ3.

We can verify the following:
ρ0 ~ ρ0 = ρ0, ρ0 ~ ρ1 = ρ1, ρ0 ~ ρ2 = ρ2, ρ0 ~ ρ3 = ρ3, ρ0 ~ ρ4 = ρ4, ρ0 ~ ρ5 =

ρ5, ρ0 ~ ρ2
3 = ρ2

3;
ρ1 ~ ρ0 = ρ1, ρ1 ~ ρ1 = ρ1, ρ1 ~ ρ2 = ρ2

3, ρ1 ~ ρ3 = ρ3, ρ1 ~ ρ4 = ρ4, ρ1 ~ ρ5 =
ρ5, ρ1 ~ ρ2

3 = ρ2
3;

ρ2 ~ ρ0 = ρ2, ρ2 ~ ρ1 = ρ2
3, ρ2 ~ ρ2 = ρ2, ρ2 ~ ρ3 = ρ3, ρ2 ~ ρ4 = ρ4, ρ2 ~ ρ5 =

ρ5, ρ2 ~ ρ2
3 = ρ2

3;
ρ3 ~ ρ0 = ρ3, ρ3 ~ ρ1 = ρ3, ρ3 ~ ρ2 = ρ3, ρ3 ~ ρ3 = ρ2

3, ρ2 ~ ρ4 = ρ5, ρ2 ~ ρ5 =
ρ4, ρ3 ~ ρ2

3 = ρ3;
ρ4 ~ ρ0 = ρ4, ρ4 ~ ρ1 = ρ4, ρ4 ~ ρ2 = ρ4, ρ4 ~ ρ3 = ρ5, ρ4 ~ ρ4 = ρ3, ρ4 ~ ρ5 =

ρ2
3, ρ4 ~ ρ2

3 = ρ4;
ρ5 ~ ρ0 = ρ5, ρ5 ~ ρ1 = ρ5, ρ5 ~ ρ2 = ρ5, ρ5 ~ ρ3 = ρ4, ρ5 ~ ρ4 = ρ2

3, ρ5 ~ ρ5 =
ρ3, ρ5 ~ ρ2

3 = ρ5;
ρ2

3 ~ ρ0 = ρ2
3, ρ2

3 ~ ρ1 = ρ2
3, ρ2

3 ~ ρ2 = ρ2
3, ρ2

3 ~ ρ3 = ρ3, ρ2
3 ~ ρ4 = ρ4, ρ2

3 ~ ρ5 =
ρ5, ρ2

3 ~ ρ2
3 = ρ2

3.
Then M(X) is a completely regular semigroup, and the operation ~ on it is shown in Table 4.
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Table 4. The adjoint semigroup of generalized quasi left alter BCI-algebra.

~ ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ2
3

ρ0 ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ2
3

ρ1 ρ1 ρ1 ρ2
3 ρ3 ρ4 ρ5 ρ2

3
ρ2 ρ2 ρ2

3 ρ2 ρ3 ρ4 ρ5 ρ2
3

ρ3 ρ3 ρ3 ρ3 ρ2
3 ρ5 ρ4 ρ3

ρ4 ρ4 ρ4 ρ4 ρ5 ρ3 ρ2
3 ρ4

ρ5 ρ5 ρ5 ρ5 ρ4 ρ2
3 ρ3 ρ5

ρ2
3 ρ2

3 ρ2
3 ρ2

3 ρ3 ρ4 ρ5 ρ2
3

In the following, we introduce QM-BCI algebra and discuss the relationship between
QM-BCI algebra and a generalized quasi-left alter BCI-algebra.

Definition 15. Assume that (X,≤) is a partial order containing a constant 0, x ∈ X. x is said to
be a quasi-minimal element , if ∀a ∈ X, a ≤ x implies x = a or a = 0.

Definition 16. A BCI- algebra (X,≤, ∗, 0) is called a QM-BCI algebra, if all elements of X are
quasi-minimal elements.

Theorem 7. Assume that (X,≤, ∗, 0) is a BCI-algebra. X is a QM-BCI algebra if it meets:
∀x, y ∈ X− {0},

x ≤ y implies x = y

Proof. (⇒) ∀x, y ∈ X− {0}, assume that x ≤ y, according to Definition 15, y = x or x = 0.
However, x 6= 0. So x = y.

(⇐) Assume that x, y ∈ X, x ≤ y. If y = 0, then x ≤ y = 0, we can get x = y = 0. If
x 6= 0, y 6= 0, there is x = y by condition. Therefore, y is a quasi-minimal element of X.
Thus, X is a QM-BCI algebra.

Theorem 8. Assume that (X,≤, ∗, 0) is a BCI-algebra, B(X) is a BCK-part of X, AG(X) is a
generalized associative part of X. Then, the below conditions are equivalent:

(1) X is a QM-BCI algebra;
(2) B(X) is quasi-alter BCK-algebra and AG(X) = (X− B(X)) ∪ {0};
(3) X is a generalized quasi-left alter BCI-algebra.

Proof. (1)⇒(2) Assume that X is a QM-BCI algebra. Then, for any x, y ∈ B(X), if x = y,
x ∗ y = 0. If x 6= y, it could be divided into the following three cases:

Case 1: x = 0, y 6= 0, x ∗ (x ∗ y) = 0 ∗ (0 ∗ y) = 0 ∗ 0 = 0, that is, x ≤ x ∗ y;
(x ∗ y) ∗ x = (0 ∗ y) ∗ 0 = 0 ∗ 0 = 0, that is, x ∗ y ≤ x. According to Definition 4, x = x ∗ y.

Case 2: x 6= 0, y = 0, x ∗ (x ∗ y) = x ∗ (x ∗ 0) = x ∗ x = 0, that is, x ≤ x ∗ y;
(x ∗ y) ∗ x = (x ∗ 0) ∗ x = x ∗ x = 0, that is, x ∗ y ≤ x. According to Definition 4, x = x ∗ y.

Case 3: x, y 6= 0, (x ∗ y) ∗ x = (x ∗ x) ∗ y = 0 ∗ y = 0, that is, x ≤ x ∗ y. Because
x ∗ y 6= 0 and x 6= 0, according to Theorem 7, x ∗ y = x.

According to Definition 6, B(X) is a quasi-alter BCK-algebra. If x ∈ X − B(X), then
0 ∗ x 6= 0 and 0 ∗ (0 ∗ x) 6= 0. As (0 ∗ (0 ∗ x)) ∗ x = (0 ∗ x) ∗ (0 ∗ x) = 0, that is, 0 ∗ (0 ∗ x) ≤ x.
According to Theorem 7, 0 ∗ (0 ∗ x) = x. Thus, (X− B(X)) ∪ {0} ⊆ AG(X). On the other
hand, AG(X) ⊆ (X− B(X)) ∪ {0}; then, AG(X) = (X− B(X)) ∪ {0}.

(2)⇒(3) ∀x, y ∈ X, x 6= y,
Case 1: ∀x, y ∈ B(X), x ∗ (x ∗ y) = x ∗ x = 0, 0 ∗ (0 ∗ y) = 0 ∗ 0 = 0. Then, x ∗ (x ∗ y) =

0 ∗ (0 ∗ y).
Case 2: ∀x, y ∈ AG(X), assume that x ≤ y, that is, x ∗ y = 0. Then,

0 ∗ (y ∗ x) = (x ∗ x) ∗ (y ∗ x) ≤ x ∗ y = 0.
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Therefore, 0 ∗ (y ∗ x) = 0. Then, y ∗ x = 0 ∗ (0 ∗ (y ∗ x)) = 0 ∗ 0 = 0, and y ∗ x = 0.
That is, y ≤ x. So x = y. According to Definition 4, we can see that x ∗ (x ∗ y) ≤ y; that is,
x ∗ (x ∗ y) = y. Additionally, 0 ∗ (0 ∗ y) = y. So x ∗ (x ∗ y) = 0 ∗ (0 ∗ y).

Case 3: ∀x ∈ B(X), ∀y ∈ AG(X), according to Theorem 4, x ∗ y = 0 ∗ y; then, x ∗ (x ∗
y) = 0 ∗ (0 ∗ y).

Case 4: ∀x ∈ AG(X), ∀y ∈ B(X), according to Definition 6, x ∗ y = x; then, x ∗ (x ∗
y) = x ∗ x = 0, and 0 ∗ (0 ∗ y) = 0 ∗ 0 = 0. So x ∗ (x ∗ y) = 0 ∗ (0 ∗ y).

Above all, X is a generalized quasi-left alter BCI-algebra.
(3)⇒(1) If X is a generalized quasi-left alter BCI-algebra, assume that x ≤ y and x 6= y.

Then,
x = x ∗ 0 = x ∗ (x ∗ y) = 0 ∗ (0 ∗ y).

∀y ∈ X,
Case 1: If y ∈ B(X), then x = 0 ∗ (0 ∗ y) = 0 ∗ 0 = 0;
Case 2: If y ∈ AG(X), then x = 0 ∗ (0 ∗ y) = y. As x 6= y, then x = 0. Thus, for any

y ∈ X, y is a quasi-minimal element of X.

In the following, we propose the adjoint semigroup of hyper BCI-algebra and replace
the singleton set {x}with x. Additionally, the concepts of generalized quasi-left alter-hyper
BCI-algebra and QM-hyper BCI are shown.

Let (H, ◦) be a hyper BCI-algebra. ∀a, x ∈ H, denote a map:

ρa : H → P∗(H); x 7→ x ◦ a.

where P∗(H) represents the non-empty subset of H.
∀a, b ∈ H, denote ρa ~ ρb: H → P∗(H) as follows: ∀x ∈ H,

x 7→ (ρa ~ ρb)(x) =
⋃

∀y∈ρb(x)

ρa(y).

where ~ represents the composition operation.

Theorem 9. Assume that (H, ◦) is a hyper BCI-algebra. Denote M(H) as a set of finite products
ρa1 ~ ... ~ ρas (a1, ..., as ∈ H), where ~ represents the composition operation of mappings. Then,
M(H) is a commutative semigroup.

Proof. ∀x ∈ H, a, b, c ∈ H, for any s ∈ ((ρa ~ ρb)~ ρc)(x), ∃y ∈ ρc(x) s.t. s ∈ (ρa ~ ρb)(y).
Then ∃u ∈ ρb(y) s.t. u ∈ ρb(ρc(x)) = ρb ~ ρc(x) and s ∈ ρa(u). Then s ∈ (ρa ~ (ρb ~ ρc))(x)
and ((ρa ~ ρb)~ ρc)(x) ⊆ (ρa ~ (ρb ~ ρc))(x).

For any t ∈ (ρa ~ (ρb ~ ρc))(x), there exists m ∈ ρb ~ ρc(x) such that t ∈ ρa(m). Then
∃n ∈ ρc(x) s.t. m ∈ ρb(n) and t ∈ ρa(ρb(n)) = ρa ~ ρb(n). Then t ∈ ((ρa ~ ρb)~ ρc)(x)
and (ρa ~ (ρb ~ ρc))(x) ⊆ ((ρa ~ ρb)~ ρc)(x).

Therefore, (ρa ~ (ρb ~ ρc))(x) = ((ρa ~ ρb)~ ρc)(x). Then, M(H) satisfies the associa-
tive law.

For any m, n ∈ H, x ∈ H. ρm ~ ρn(x) = (x ◦ n) ◦m = (x ◦m) ◦ n = ρn ~ ρm(x). There-
fore, M(H) satisfies the commutative law. Thus, M(H) is a commutative semigroup.

Example 3. Assume that H = {0, 1, 2, 3, 4}. Define the operation on H in Table 5,

Table 5. Hyper BCI-algebra.

◦ 0 1 2 3 4

0 0 0 0 4 3
1 {1, 2} {0, 1, 2} {0, 1, 2} 4 3
2 2 {1, 2} {0, 1, 2} 4 3
3 3 3 3 0 4
4 4 4 4 3 0
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Clearly, (H, ◦) is a hyper BCI-algebra.
That is,
ρ0 : H → H : x 7→ x ◦ 0. So ρ0 = {0, {1, 2}, 2, 3, 4};
ρ1 : H → H : x 7→ x ◦ 1. So ρ1 = {0, {0, 1, 2}, {1, 2}, 3, 4};
ρ2 : H → H : x 7→ x ◦ 2. So ρ2 = {0, {0, 1, 2}, {0, 1, 2}, 3, 4};
ρ3 : H → H : x 7→ x ◦ 3. So ρ3 = {4, 4, 4, 0, 3};
ρ4 : H → H : x 7→ x ◦ 4. So ρ4 = {3, 3, 3, 4, 0}.
Denote ρ34 = ρ3 ~ ρ4 = {0, 0, 0, 3, 4}.
We can verify the following:
ρ0 ~ ρ0 = ρ0, ρ0 ~ ρ1 = ρ1, ρ0 ~ ρ2 = ρ2, ρ0 ~ ρ3 = ρ3, ρ0 ~ ρ4 = ρ4, ρ0 ~ ρ34 = ρ34;
ρ1 ~ ρ0 = ρ1, ρ1 ~ ρ1 = ρ2, ρ1 ~ ρ2 = ρ2, ρ1 ~ ρ3 = ρ3, ρ1 ~ ρ4 = ρ4, ρ1 ~ ρ34 = ρ34;
ρ2 ~ ρ0 = ρ2, ρ2 ~ ρ1 = ρ2, ρ2 ~ ρ2 = ρ2, ρ2 ~ ρ3 = ρ3, ρ2 ~ ρ4 = ρ4, ρ2 ~ ρ34 = ρ34;
ρ3 ~ ρ0 = ρ3, ρ3 ~ ρ1 = ρ3, ρ3 ~ ρ2 = ρ3, ρ3 ~ ρ3 = ρ4, ρ3 ~ ρ4 = ρ34, ρ3 ~ ρ34 = ρ3;
ρ4 ~ ρ0 = ρ4, ρ4 ~ ρ1 = ρ4, ρ4 ~ ρ2 = ρ4, ρ4 ~ ρ3 = ρ34, ρ4 ~ ρ4 = ρ3, ρ4 ~ ρ34 = ρ4;
ρ34 ~ ρ0 = ρ34, ρ34 ~ ρ1 = ρ34, ρ34 ~ ρ2 = ρ34, ρ34 ~ ρ3 = ρ3, ρ34 ~ ρ4 = ρ4, ρ34 ~ ρ34 =

ρ34.
Then M(H) = {ρ0, ρ1, ρ2, ρ3, ρ4, ρ34}, (M(H),~) is a commutative semigroup, and the

operation on it is shown in Table 6.

Table 6. The adjoint semigroup of hyper BCI-algebra.

~ ρ0 ρ1 ρ2 ρ3 ρ4 ρ34

ρ0 ρ0 ρ1 ρ2 ρ3 ρ4 ρ34
ρ1 ρ1 ρ2 ρ2 ρ3 ρ4 ρ34
ρ2 ρ2 ρ2 ρ2 ρ3 ρ4 ρ34
ρ3 ρ3 ρ3 ρ3 ρ4 ρ34 ρ3
ρ4 ρ4 ρ4 ρ4 ρ34 ρ3 ρ4
ρ34 ρ34 ρ34 ρ34 ρ3 ρ4 ρ34

Definition 17. In hyper BCI-algebra (H, ◦), if ∀x, y ∈ H, and x 6= y,

x ◦ (x ◦ y) = 0 ◦ (0 ◦ y).

Then, it is a generalized quasi-left alter-hyper BCI-algebra.

Theorem 10. Assume that (H, ◦) is a generalized quasi-left alter-hyper BCI-algebra. Hence,
(H, ◦) is BCI-algebra.

Proof. Assume that (H, ◦) is a generalized quasi-left alter-hyper BCI-algebra. ∀x ∈ H and
x 6= 0, 0 = 0 ◦ 0 ∈ (x ◦ x) ◦ 0 = (x ◦ 0) ◦ x. Then, ∃p ∈ x ◦ 0, such that 0 ∈ p ◦ x; that is,
p � x. According to Definition 14, x ◦ p ⊆ x ◦ (x ◦ 0) = 0 ◦ (0 ◦ 0) = 0. That is to say,
x � p. According to Definition 14, x = p. Therefore, x ∈ x ◦ 0. Then, x ◦ x ⊆ x ◦ (x ◦ 0) =
0 ◦ (0 ◦ 0) = 0.

∀x, y ∈ H, assume that |x ◦ y| > 1. Let m, n ∈ x ◦ y and m 6= n. Then, m ◦ n ⊆
(x ◦ y) ◦ (x ◦ y)� x ◦ x = 0, n ◦m ⊆ (x ◦ y) ◦ (x ◦ y)� x ◦ x = 0. According to Definition
13, m ◦ n = 0, n ◦m = 0, that is, m� n, n� m. Additionally, m = n. Therefore, |x ◦ y| = 1.

As x ∈ x ◦ 0, x = x ◦ 0. Additionally, H is BCI-algebra.

Definition 18. Let (H,�) be a partial order containing 0 in hyper structure. x is said to be a
quasi-minimal element in H. If for any element a in H, a� x ⇒ x = a or a = 0.

Definition 19. A hyper BCI- algebra (H,�, ◦, 0) is called a QM-hyper BCI algebra if all elements
of H are quasi-minimal elements.
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Theorem 11. A hyper BCI-algebra (H,�, ◦, 0) is a QM-hyper BCI algebra if it meets: ∀x, y ∈
H − {0},

x � y implies x = y.

Proof. (⇒) ∀x, y ∈ H−{0}, assume that x � y, according to Definition 18, y = x or x = 0.
However, x 6= 0. Therefore, x = y.

(⇐) Assume that x, y ∈ H, x � y. If y = 0, then x � y = 0, we can obtain x = y = 0.
If x 6= 0, y 6= 0, there is x = y by condition. Therefore, y is a quasi-minimal element of H.
Thus, H is a QM-hyper BCI algebra.

Theorem 12. If (H, ◦) is a generalized quasi-left alter-hyper BCI-algebra, then it is QM-hyper
BCI-algebra.

Proof. Assume that (H, ◦) is a generalized quasi-left alter-hyper BCI-algebra. According
to Theorem 10, H is a generalized quasi-left alter BCI-algebra. Let B(H) be BCK-part of H,
and G(H) be BCK-remainder of H. Then, for any x, y ∈ H, assume that x � y and x 6= y.
That is,

x = x ◦ 0 = x ◦ (x ◦ y) = 0 ◦ (0 ◦ y).

(1) When y ∈ B(H), x = 0 ◦ (0 ◦ y) = 0 ◦ 0 = 0.
(2) When y ∈ G(H), x = 0 ◦ (0 ◦ y) = y, but x 6= y. Therefore, y is a quasi-minimal

element of H. As y is arbitrary, H is QM-hyper BCI algebra.

However, not every QM-hyper BCI algebra is a generalized quasi-left alter-hyper
BCI-algebra, see Example 4.

Example 4. Let H = {0, 1, 2, 3, 4}. The operation ◦ on H is shown in Table 5. Clearly, H is
QM-hyper BCI-algebra.

However, H is not a generalized quasi-left alter-hyper BCI-algebra, since 1 ◦ (1 ◦ 0) =
{0, 1}, 0 ◦ (0 ◦ 0) = 0, 1 6= 0.

Above all, we prove that generalized quasi-left alter BCI-algebra, QM-BCI algebra and
generaized quasi-left alter hyper BCI-algebra are equivalent to one another. Additionally,
they are QM-hyper BCI-algebra.

4. Quasi-Hyper BCI-Algebra

At the beginning of this part, we introduce the definition of quasi-hyper BCI-algebras.

Definition 20. Let (H, ◦) be a hyper groupoid containing 0. If it meets the following conditions:

(QHCI1) (x ◦ z) ◦ (y ◦ z)� x ◦ y, ∀x, y, z ∈ H;
(QHCI2) (x ◦ y) ◦ z = (x ◦ z) ◦ y, ∀x, y, z ∈ H;
(QHCI3) x � x, ∀x ∈ H;
(QHCI4) x � y and y� x ⇒ x = y, ∀x, y ∈ H
(QHCI5) x � x ◦ 0, ∀x ∈ H
(QHCI6) x � 0⇒ x = 0, ∀x ∈ H.
At that time, it is a quasi-hyper BCI-algebra.

Remark 1. (1) Every weak hyper BCI-algebra is a quasi-hyper BCI-algebra;
(2) Every hyper BCI-algebra is a quasi-hyper BCI-algebra.

In thia sectin, we give some examples of quasi-hyper BCI-algebra, and they show that
not every quasi-hyper BCI-algebra is a (weak) hyper BCI-algebra.

Example 5. (1) Assume that H = {0, 1, 2, 3, 4}. The operation on H is defined in Table 7:
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Table 7. Quasi-hyper BCI algebra.

◦ 0 1 2 3 4

0 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
1 {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2 {2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
3 {3, 4} {2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
4 4 {3, 4} {2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4}

Clearly, (H, ◦, 0) is a quasi-hyper BCI-algebra. However, it is not a weak hyper BCI-algebra,
since 0 ◦ (0 ◦ 1) = {0, 1, 2, 3, 4} and 2� 1 is not true.

(2) Assume that H = {0, 1, 2, 3, 4}. The operation on H is defined in Table 8:

Table 8. Quasi-hyper BCI-algebra.

◦ 0 1 2 3 4

0 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
1 {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2 {2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
3 {3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
4 4 {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4}

Clearly, (H, ◦, 0) is a quasi-hyper BCI-algebra. However, it is not a hyper BCI-algebra, since
0 ◦ (0 ◦ 0) = {0, 1, 2, 3, 4} and 0 /∈ 1 ◦ 0.

Proposition 3. In quasi-hyper BCI-algebra (H, ◦), the following holds:∀x, y, z ∈ H and, for all
non-empty subsets, A and B of H,

(1) 0 ◦ (x ◦ y)� y ◦ x,
(2) A� A,
(3) A ⊆ B⇒ A� B,
(4) A� 0⇒ A = 0,
(5) x ◦ y = 0⇒ (x ◦ z) ◦ (y ◦ z) = 0 and x ◦ z� y ◦ z,
(6) A ◦ 0 = 0⇒ A = 0,
(7) x � y⇒ 0� y ◦ x,
(8) x ◦ x = 0⇒ |y ◦ z| = 1.
(9) x ◦ 0� {y} ⇒ x � y,
(10) y� z⇒ x ◦ z� x ◦ y.

Proof. (1) By (QHCI1) and (QHCI3), 0 ◦ (x ◦ y) ⊆ (y ◦ y) ◦ (x ◦ y) � y ◦ x. That is,
0 ◦ (x ◦ y)� y ◦ x.

(2) By (QHCI3), for any x ∈ A, x � x, that is 0 ∈ x ◦ x. Then, A� A.
(3) Let a ∈ A. Then, a ∈ B. By (QHCI3), x � x and 0 ∈ x ◦ x. Then, A� B.
(4) Let a ∈ A. Then, a� 0 and so a = 0. Then, A = {0}.
(5) By (QHCI1), (x ◦ z) ◦ (y ◦ z)� x ◦ y = {0}. By (4), (x ◦ z) ◦ (y ◦ z) = {0}. Therefore,

x ◦ z� y ◦ z.
(6) Assume that A ◦ 0 = 0; then, A� 0. Therefore, A = 0.
(7) Assume that x � y. Then, 0 ∈ x ◦ y, and so 0 ∈ 0 ◦ 0 ⊆ (y ◦ y) ◦ (x ◦ y) � y ◦ x.

Hence, 0� y ◦ x.
(8) ∀x ∈ H, let x ◦ x = {0}. Assume that |y ◦ z| > 1; let m, n ∈ y ◦ z, and m 6= n. Then,

m ◦ n ⊆ (y ◦ z) ◦ (y ◦ z)� y ◦ y = 0 and n ◦m ⊆ (y ◦ z) ◦ (y ◦ z)� y ◦ y = 0

thus, m ◦ n� 0, n ◦m� 0 and m� n, n� m. Hence, m = n, and so |y ◦ z| = 1.
(9) According to Definition 20, 0 ∈ (x ◦ 0) ◦ y = (x ◦ y) ◦ 0, there exists p ∈ x ◦ y s.t.

0 ∈ p ◦ 0, that is, p� 0. By (QHCI6), p = 0. So 0 ∈ x ◦ y and x � y.
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(10) As y� z, then (x ◦ z) ◦ 0 ⊆ (x ◦ z) ◦ (y ◦ z)� x ◦ y. Therefore, x ◦ z� x ◦ y.

Proposition 4. In any quasi-hyper BCI-algebra (H, ◦) satisfying 0 ◦ 0 = 0, the following holds:

(1) (0 ◦ x) ◦ (0 ◦ x) = 0, ∀x ∈ H;
(2) 0 ◦ x is a singleton set, ∀x ∈ H;
(3) (0 ◦ x) ◦ 0 = 0 ◦ x, ∀x ∈ H.

Proof. (1) ∀x ∈ H, (0 ◦ x) ◦ (0 ◦ x) � 0 ◦ 0 = 0. According to Proposition 3(4), (0 ◦ x) ◦
(0 ◦ x) = 0.

(2) ∀m, n ∈ 0 ◦ x, and m 6= n. m ◦ n ⊆ (0 ◦ x) ◦ (0 ◦ x) = 0, n ◦m ⊆ (0 ◦ x) ◦ (0 ◦ x) = 0,
by (QHCI4), m� n, n� m, then m = n. Therefore, 0 ◦ x is a singleton set.

(3) By (2), let 0 ◦ x = m. By (QHCI5), m � m ◦ 0 and m ◦ m = 0. Assume that
|m ◦ 0| > 1, let a, b ∈ m ◦ 0. a ◦ b ⊆ (m ◦ 0) ◦ (m ◦ 0) � m ◦ m = 0, b ◦ a ⊆ (m ◦ 0) ◦
(m ◦ 0) � m ◦ m = 0, so a � b, b � a. Additionally, a = b. Therefore, |m ◦ 0| = 1. As
m ◦ 0 = (0 ◦ x) ◦ 0 ⊆ (0 ◦ x) ◦ (x ◦ x) � 0 ◦ x = m, and |m ◦ 0| = 1, m = m ◦ 0. That is,
(0 ◦ x) ◦ 0 = 0 ◦ x.

Proposition 5. In any quasi-hyper BCI-algebra (H, ◦, 0), if ∀x ∈ H(x 6= 0) satisfying x ◦ 0 = x.
At that time, it is a weak hyper BCI-algebra. ∀x ∈ H satisfying x ◦ 0 = x; then, it is a hyper
BCI-algebra.

Proof. Firstly, for any m ∈ H and m 6= 0, m ◦ 0 = m. Then, 0 ◦ (0 ◦ m) ⊆ (m ◦ m) ◦ (0 ◦
m) � (m ◦ 0) = m. Therefore, (H, ◦, 0) is a weak hyper BCI-algebra. For any m ∈ H,
0 ◦ (0 ◦m) ⊆ (m ◦m) ◦ (0 ◦m)� (m ◦ 0) = x. So (H, ◦, 0) is a hyper BCI-algebra.

Definition 21. A quasi-hyper BCI-algebra (H, ◦) is called standard if ∀x ∈ H, we have x ◦ 0 = x.

Proposition 6. Every standard quasi-hyper BCI-algebra is a hyper BCI-algebra.

Proof. This follows from Proposition 5.

The concept of Hv-group was introduced by T. Vougiouklis [35]: Let (H, ·) be a
hyperstructure. If it satisfies: (i) (x · y) · z∩ x · (y · z) 6= ∅,∀x, y, z ∈ H, (ii) a ·H = H · a = H,
∀a ∈ H, then it is a Hv-group.

Firstly, define x · y through x · y = x ◦ (0 ◦ y), ∀x, y ∈ H in a quasi-hyper BCI-algebra.

Theorem 13. Assume that (H, ◦) is a quasi-hyper BCI-algebra and meets these conditions:

(1) x ∈ m ◦ (m ◦ x), ∀x, m ∈ H;
(2) x · y ∩ y · x 6= ∅, ∀x, y ∈ H;
(3) x · (y · z) = y · (x · z), ∀x, y, z ∈ H. We find that (H, ·) is a Hv-group.

Proof. Obviously, (x · y) · z = (x · z) · y for all x, y, z ∈ H. As

(x · y) · z = (x ◦ (0 ◦ y)) ◦ (0 ◦ z) = (x ◦ (0 ◦ z)) ◦ (0 ◦ y) = (x · z) · y.

According to (1), x ∈ m ◦ (m ◦ x) ⊆ m ◦ (0 ◦ (0 ◦ (m ◦ x))) = m · 0 ◦ (m ◦ x) ⊆ m · H.
Hence, H ⊆ m · H and H = a · H. Moreover, x ∈ m ◦ (m ◦ x) ⊆ (0 ◦ (0 ◦m)) ◦ (m ◦ x) =
(0 ◦ (m ◦ x)) ◦ (0 ◦m) = (0 ◦ (m ◦ x)) ·m ⊆ H ·m. Thus, x · H = H = H · x.

According to (2), x · z ∩ z · x 6= ∅, and thus ∃p ∈ x · z ∩ z · x. According to (2),
there is q ∈ p · y ∩ y · p and thus q ∈ p · y ⊆ (x · z) · y = (x · y) · z. On the other hand,
q ∈ y · p ⊆ y · (x · z) = x · (y · z) by (3). So q ∈ (x · y) · z ∩ x · (y · z).

According to the definition of Hv-group, we can see that (H, ·) is a Hv-group.

Example 6. Assume that H = {0, 1, 2, 3, 4} be a quasi-hyper BCI-algebra satisfying those condi-
tions in Theorem 13. Additionally, the operation ◦ on H is shown in Table 9:
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Table 9. Quasi-hyper BCI algebra.

◦ 0 1 2 3 4

0 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
1 {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2 {2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
3 {3, 4} {2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
4 4 4 4 4 {0, 1, 2, 3, 4}

Then, we obtain a Hv-group (H, ·) and the operation "·" is shown in Table 10:

Table 10. Hv-group.

• 0 1 2 3 4

0 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
1 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
3 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
4 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}

Theorem 14. Assume that (H, ◦) is a quasi-hyper BCI-algebra and meets those conditions:
∀x, a, y ∈ H,

(1) x ∈ a ◦ (a ◦ x),
(2) x ◦ (0 ◦ y) = y ◦ (0 ◦ x).

We can see that (H, ·) is a hypergroup.

Proof. According to Theorem 13, x · H = H = H · x. Morever, x · y = y · x and (x · y) · z =
(x · z) · y. Then (x · y) · z = z · (x · y) = z · (y · x) = (y · x) · z = (y · z) · x = x · (y · z). So
(H, ·) is a hypergroup, and is commutative.

Example 7. Let H = {0, 1, 2, 3, 4} be a quasi-hyper BCI-algebra satisfying the conditions in
Theorem 14. The operation ◦ on H is shown in Table 11:

Table 11. Quasi-hyper BCI-algebra.

◦ 0 1 2 3 4

0 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
1 {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2 {2, 3, 4} {1, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
3 {3, 4} {2, 4} {1, 2, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
4 4 {3, 4} {2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4}

Then, we obtain a commutative hypergroup (H, ·) and the operation "·" is shown in Table 12:

Table 12. Hyper group.

• 0 1 2 3 4

0 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
1 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
3 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
4 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}

Theorem 15. Assume that (H, ◦) is a quasi-hyper BCI-algebra. Denote M(H) as a set of finite
products ρa1 ~ ...~ ρas (∀a1, ..., as ∈ H), where ~ represents the composition operation of mappings.
Then, M(H) is a commutative semigroup.
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Proof. According to Theorem 9.

Example 8. Let H = {0, 1, 2, 3, 4}. Define the operation ◦ on H in Table 13,

Table 13. Quasi-hyper BCI-algebra.

◦ 0 1 2 3 4

0 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
1 {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2 {2, 3, 4} {2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
3 {3, 4} {3, 4} {3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
4 4 4 4 {3, 4} {0, 1, 2, 3, 4}

Clearly, (H, ◦) is a quasi-hyper BCI-algebra.
That is,
ρ0 : H → H : x 7→ x ◦ 0. So ρ0 = {{0, 1, 2, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}, {3, 4}, 4};
ρ1 : H → H : x 7→ x ◦ 1. So ρ1 = {{0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {2, 3, 4}, {3, 4}, 4};
ρ2 : H → H : x 7→ x ◦ 2. So ρ2 = {{0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {3, 4}, 4};
ρ3 : H → H : x 7→ x ◦ 3. So ρ3 = {{0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, 4};
ρ4 : H → H : x 7→ x ◦ 4.
Therefore, ρ4 = {{0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}}.
We can verify the following:
ρ0 ~ ρ0 = ρ0, ρ0 ~ ρ1 = ρ1, ρ0 ~ ρ2 = ρ2, ρ0 ~ ρ3 = ρ3, ρ0 ~ ρ4 = ρ4;
ρ1 ~ ρ0 = ρ1, ρ1 ~ ρ1 = ρ1, ρ1 ~ ρ2 = ρ2, ρ1 ~ ρ3 = ρ3, ρ1 ~ ρ4 = ρ4;
ρ2 ~ ρ0 = ρ2, ρ2 ~ ρ1 = ρ2, ρ2 ~ ρ2 = ρ2, ρ2 ~ ρ3 = ρ3, ρ2 ~ ρ4 = ρ4;
ρ3 ~ ρ0 = ρ3, ρ3 ~ ρ1 = ρ3, ρ3 ~ ρ2 = ρ3, ρ3 ~ ρ3 = ρ3, ρ3 ~ ρ4 = ρ4;
ρ4 ~ ρ0 = ρ4, ρ4 ~ ρ1 = ρ4, ρ4 ~ ρ2 = ρ4, ρ4 ~ ρ3 = ρ4, ρ4 ~ ρ4 = ρ4.
Then, M(H) = {ρ0, ρ1, ρ2, ρ3, ρ4}, and (M(H),~) is a commutative semigroup. The operation is

shown in Table 14.

Table 14. The adjoint semigroup of quasi-hyper BCI algebra.

~ ρ0 ρ1 ρ2 ρ3 ρ4

ρ0 ρ0 ρ1 ρ2 ρ3 ρ4
ρ1 ρ1 ρ1 ρ2 ρ3 ρ4
ρ2 ρ2 ρ2 ρ2 ρ3 ρ4
ρ3 ρ3 ρ3 ρ3 ρ3 ρ4
ρ4 ρ4 ρ4 ρ4 ρ4 ρ4

Definition 22. In quasi-hyper BCI-algebra (H, ◦), if ∀x, y ∈ H, and x 6= y,

x ◦ (x ◦ y) = 0 ◦ (0 ◦ y).

Then, this is a generalized quasi-left alter quasi-hyper BCI algebra.

Proposition 7. Assume that (H, ◦) is a generalized quasi-left alter quasi-hyper BCI algebra
satisfying 0 ◦ 0 = 0. Hence, H is a BCI-algebra.

Proof. According to Theorem 10.

Example 9. Assume that H = {0, 1, 2, 3, 4}. The operation on H is defined in Table 15,
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Table 15. Generalized quasi-left alter quasi-hyper BCI-algebra.

◦ 0 1 2 3 4

0 {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
1 {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2 {2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
3 {3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
4 4 {2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {0, 1, 2, 3, 4}

Then, (H, ◦) is a generalized quasi-left alter quasi-hyper BCI-algebra.

Definition 23. A quasi-hyper BCI- algebra (H,�, ◦, 0) is called a QM-quasi hyper BCI-algebra,
if all elements of H are quasi-minimal.

Theorem 16. Assume that (H,�, ◦, 0) be a quasi-hyper BCI-algebra. This is a QM-quasi hyper
BCI-algebra if ∀x, y ∈ H − {0},

x � y⇒ x = y.

Proof. According to Theorem 11.

Example 10. Let H = {0, 1, 2, 3, 4}. The operation on H is defined in Table 16,

Table 16. Quasi-hyper BCI algebra.

◦ 0 1 2 3 4

0 0 0 0 4 3
1 1 {0, 1} 1 4 3
2 2 2 {0, 2} 4 3
3 3 3 3 0 4
4 4 4 4 3 0

Clearly, (H, ◦) is a QM-quasi hyper BCI-algebra. However, it is not a generalized quasi-left
alter quasi-hyper BCI-algebra, since 1 ◦ (1 ◦ 0) = {0, 1}, 0 ◦ (0 ◦ 0) = 0, 1 6= 0.

According to Definition, we know that both QM-BCI algebra and QM-hyper BCI-
algebra are QM-quasi hyper BCI-algebra, but not every QM-quasi hyper BCI-algebra is
QM-BCI algebra and QM-hyper BCI-algebra; see Example 11.

Example 11. Let H = {0, 1, 2}. The operation on H is defined in Table 17,

Table 17. Quasi-hyper BCI algebra.

◦ 0 1 2

0 {0, 1} {0, 1} 2
1 1 {0, 1} 2
2 2 2 {0, 1}

Clearly, (H, ◦) is a QM-quasi hyper BCI-algebra. However, it is not QM-hyper BCI algebra,
since 0 ◦ (0 ◦ 0) = {0, 1}, 1� 0 is not true.

5. Discussion

Firstly, we discuss the adjoint semigroup of a generalized quasi-left alter BCI-algebra,
which is a commutative Clifford semigroup. Then, we introduced QM-BCI algebra and
proved that the generalized quasi-left alter BCI-algebra is equivalent to QM-BCI algebra.
Furthermore, we proved that the generalized quasi-left alter-hyper BCI-algebra is a gener-
alized quasi-left alter BCI-algebra. In the last part, we proposed the notion of quasi-hyper
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BCI algebra and discuss its properties. We explored the subalgebras of quasi-hyper BCI
algebra and the relationships between quasi-hyper BCI algebra and the hypergroup, Hv-
group. In general, this paper discusses the relationship between (hyper) logical algebra and
classical abstract algebra, and the description of the structure of (hyper) logical algebra is
more clear. As a further research topic, we can consider exploring the internal connections
between (hyper) BCI-algebras, BI-algebras and CA-semihypergroups (see [36–38]).
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