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Abstract: The purpose of this article is to introduce a new complete multiple q-hypergeometric
symbolic calculus, which leads to q-Euler integrals and a very similar canonical system of q-difference
equations for multiple q-hypergeometric functions. q-analogues of recurrence formulas in Horns
paper and Borngässers thesis lead to a more exact way to find these Frobenius solutions. To find the
right formulas, the parameters in q-shifted factorials can be changed to negative integers, which give
no extra q-factors. In proving these q-formulas, in the limit q → 1 we obtain versions of the paper
by Debiard and Gaveau for the solution of differential or q-difference equations. The paper is also a
correction of some of the statements in the paper by Debiard and Gaveau, e.g., the Euler integrals
and other solutions to differential equations for Appell functions, also without references to page
numbers in the standard work of Appell and Kampé de Fériet. Sometimes the q-binomial theorem is
used to simplify q-integral formulas. By the Horn method, we find another solution to the Appell Φ1

function partial differential equation, which was not mentioned in the thesis by Le Vavasseur 1893.
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1. Introduction

We refer to our standard work [1] and to the paper on multiple q-hypergeometric
functions [2]. The pathbreaking paper [3] by Debiard and Gaveau on a new umbral
calculus led to the automatic solutions of differential equations for multiple hypergeometric
functions according to Frobenius and Horn. In this paper, we generalize this method to the
q-case and slightly change the notation for a better overview. As examples, the exponent
in method of Frobenius is changed from α to λ and the Euler operator x d

dx is changed to
θ(q) as in [1]. Our umbral calculus simply means that a θq,1 ∨ θq,2 before a double power
series is replaced by the exponents of x ∨ y. The same goes for additive arguments in the
Γq function.

A proper notation is extremely important in papers on special functions, since long
computations often occur and the origin of the variables is crucial for the understanding of
the formulas. The notation and especially the computations in [3] are sometimes erroneous,
one example is the notation on the top of page 789, where small a, αi and α occur, together
with a misprint. For operators, we mention the spaces of formal power series in their
definitions. We also remember that in Horns paper ([4], p. 387) and in Borngässers
thesis [5], recurrence formulas for the determination of the other solutions in the method of
Frobenius were given, which was missed in [3].

The paper is organized as follows: In Section 1 we define all q-functions. In Section 2
we present Horns and Borngässers recurrence formulas for the coefficients in the method of
Frobenius, which have a very similar form as before. In Section 3 we introduce the general
symbolic calculus. In Section 4 we find bases for the spaces of solutions by the Frobenius
method for the first q-Appell function. In Sections 5–8 we consider the q-Appell functions
Φ1, Φ2, Φ3, Φ4.
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Let δ > 0 be an arbitrary small number. We will always use the following branch of
the logarithm: −π + δ < Im (log q) ≤ π + δ. This defines a simply connected space in the
complex plane.

The power function is defined by

qa ≡ ea log(q). (1)

A q-analogue of a complex number is also a complex number.

Definition 1. The q-analogue of a complex number a is defined as follows:

{a}q ≡
1− qa

1− q
, q ∈ C\{0, 1}, (2)

The q-shifted factorial is defined by

〈a; q〉n ≡
n−1

∏
m=0

(1− qa+m), (3)

The q-derivative is defined by

(
Dq ϕ

)
(x) ≡


ϕ(x)−ϕ(qx)

(1−q)x , when q ∈ C\{1}, x 6= 0;
dϕ
dx (x), when q = 1;
dϕ
dx (0), when x = 0.

(4)

Definition 2. The following operator will also be useful.

θq,j ≡ xjDq,xj . (5)

Definition 3. [1]. The q-analogues of the Appell functions are

Φ1(a; b, b′; c|q; x1, x2) ≡
∞

∑
m1,m2=0

〈a; q〉m1+m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1+m2

xm1
1 xm2

2 ,

max(|x1|, |x2|) < 1.

(6)

Φ2(a; b, b′; c, c′|q; x1, x2) ≡
∞

∑
m1,m2=0

〈a; q〉m1+m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1〈c′; q〉m2

xm1
1 xm2

2 ,

|x1| ⊕q |x2| < 1.

(7)

Φ3(a, a′; b, b′; c|q; x1, x2) ≡
∞

∑
m1,m2=0

〈a; q〉m1〈a′; q〉m2〈b; q〉m1〈b′; q〉m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1+m2

xm1
1 xm2

2 ,

max(|x1|, |x2|) < 1.

(8)

Φ4(a; b; c, c′|q; x1, x2) ≡
∞

∑
m1,m2=0

〈a; q〉m1+m2〈b; q〉m1+m2

〈1; q〉m1〈1; q〉m2〈c; q〉m1〈c′; q〉m2

xm1
1 xm2

2 ,

|
√

x1| ⊕q |
√

x2| < 1.

(9)

2. q-Analogues of Horns and Borngässers Recurrence Formulas

The purpose of this section is to introduce q-analogues of Horns and Borngässers
recurrence formulas ([4], p. 387), ([5], p. 26 ff) for double series. We just state the formulas,
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the proofs are simple; in the process we slightly improve the notation. We start with the
double q-hypergeometric series

z ≡ H(x, y) =
∞

∑
m,n=0

Amnxmyn, (10)

where the two quotients

f (m, n) ≡ Am+1,n

Amn
, g(m, n) ≡ Am,n+1

Amn
(11)

are rational functions in q-analogues of m, n. Now put

f (m, n) ≡ F(m, n)
F′(m, n)

, g(m, n) ≡ G(m, n)
G′(m, n)

, (12)

where F(mn), G(mn), F′(mn), G′(mn) are entire products of q-analogues in m, n of maxi-
mal second order in m, n. We assume that F′(mn) has the factor {1 + m}q , G′(mn) has the
factor {1 + n}q.

All these q-functions are q-analogues of the Appell, confluent Humbert, etc., and Horn
functions.

We just state a q-analogue of a generalization of the Euler operator ([4], p. 387).
Assume that α, β ∈ R[θq,1, θq,2]. α, β are linear functions of θq,1 and θq,2 with coefficients
∈ Z, and z is defined by (10).

(1− q)2{α}q{β}qz =
∞

∑
m,n=0

〈α; q〉1〈β; q〉1 Amnxmyn. (13)

A q-analogue of an improved version of ([4], p.387), where we have skipped the sums
∑α,β. Assume that α, β, γ, δ, α′, β′, γ′, δ′ ∈ R[θq,1, θq,2] are linear functions of θq,1 and θq,2
with coefficients ∈ Z. Furthermore, the function z in (10) satisfies the system of q-difference
equations (

x{α}q{β}q − {α′}q{β′}q
)
z = 0,(

y{γ}q{δ}q − {γ′}q{δ′}q
)
z = 0,

(14)

with convenient boundary values.
Case I. Assume instead that

z =
∞

∑
m,n=0

Cmnxm+ρyn+σ, (15)

where ρ and σ are unknown real constants. In the previous case, Cmn become Amn. We now
have the recurrence formulas{

F′(m + ρ, n + σ)Cm+1,n = F(m + ρ, n + σ)Cm,n

G′(m + ρ, n + σ)Cm,n+1 = G(m + ρ, n + σ)Cm,n,
(16)

which follow from the previous recurrence formulas for Amn.
By comparing the coefficients of

xm+ρyn+σ, m = −1; n ≥ 0 (17)

in the first recurrence, and the coefficients of

xm+ρyn+σ, m ≥ 0, n = −1 (18)
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in the second recurrence, we obtain the equations ([5], p. 27), ([4], p. 388) for the determina-
tion of the exponents ρ and σ {

F′(ρ− 1, σ) = 0,
G′(ρ, σ− 1) = 0

(19)

Case II. For the determination of the solutions in the vicinity of the point (∞, ∞), we
look at series of the form

z =
∞

∑
m,n=0

Cmnxρ−myσ−n, (20)

where ρ and σ are unknown real constants. We now have the recurrence formulas{
F(ρ−m− 1, σ− n)Cm+1,n = F′(ρ−m− 1, σ− n)Cm,n

G(ρ−m, σ− n− 1)Cm,n+1 = G′(ρ−m, σ− n− 1)Cm,n.
(21)

By comparing the coefficients of

xρ−myσ−n, (22)

we obtain the equations ([5], p. 28), ([4], p. 388) for the determination of the exponents ρ
and σ {

F(ρ, σ) = 0,
G(ρ, σ) = 0

(23)

Case III. For the determination of the solutions in the vicinity of the point (0, ∞), we
look at series of the form

z =
∞

∑
m,n=0

Cmnxρ+myσ−n, (24)

which leads to the recurrence formulas{
F′(ρ + m, σ− n)Cm+1,n = F(ρ + m, σ− n)Cm,n

G(ρ + m, σ− n− 1)Cm,n+1 = G′(ρ + m, σ− n− 1)Cm,n.
(25)

By comparing the coefficients of

xρ+myσ−n, (26)

we obtain the equations ([5], p. 29), ([4], p. 388) for the determination of the exponents
ρ and σ {

F′(ρ− 1, σ) = 0,
G(ρ, σ) = 0.

(27)

Case IV. Finally, for the determination of the solutions in the vicinity of the point
(∞, 0), we look at series of the form

z =
∞

∑
m,n=0

Cmnxρ−myσ+n, (28)

which leads to the recurrence formulas{
F(ρ−m− 1, σ + n)Cm+1,n = F′(ρ−m− 1, σ + n)Cm,n

G′(ρ−m, σ + n)Cm,n+1 = G(ρ−m, σ + n)Cm,n.
(29)
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By comparing the coefficients of

xρ−myσ+n, (30)

we obtain the equations ([5], p. 29), ([4], p. 388) for the determination of the exponents ρ
and σ {

F(ρ, σ) = 0,
G′(ρ, σ− 1) = 0

(31)

3. General Symbolic Calculus

The purpose of this section is to introduce the general symbolic calculus for double
series.

Definition 4. We put

Hq(a, b, c, x) ≡ {θq,1 + c}qDq,x − {θq,1 + a}q{θq,1 + b}q. (32)

Then we have

Hq(a, b, c, x) 2φ1

[
a, b
c

∣∣∣∣q; x
]
= 0. (33)

We are always interested in solutions to the equation

Hq(a, b, c, x)( f (x)) = 0. (34)

Around x = 0 another solution, apart from y1 in (33) is (6.186 [1])

y2 = x1−c
2φ1

[
a− c + 1, b− c + 1

2− c

∣∣∣∣q; x
]

. (35)

The purpose of the next definition is to keep the powers of the variables in the operator.

Definition 5. Let A, B, C be three operators R[[x]]→ R[[x]], which are linear in θq,1, θq,2. Then
we define

Hq(A, B, C, x) ≡ {θq,1 + C}qDq,x − {θq,1 + A}q{θq,1 + B}q. (36)

Lemma 1. Compare with ([3], p. 777). Let F (a, b, c, x) be a solution of

Hq(a, b, c, x)F = 0. (37)

Then
F (A, B, C, x) (38)

is a solution of

Hq(A, B, C, x)F (A, B, C, x) = 0. (39)

Definition 6. Compare with ([3], p. 777). Assume x > 0, C, λ ∈ R, ψ(y)× y−λ ∈ R[[y]].
Then, in the umbral sense,

xCθq,2 ψ(y)=̈ψ(xCy). (40)

Assume that

φ(~a,~b, y) ≡ yλ
∞

∑
k=0

〈~a; q〉k
〈1,~b; q〉k

yk. (41)
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Then, in the umbral sense,

φ(~a + ~a′θq,2,~b + ~b′θq,2, y) ≡ yλ
∞

∑
k=0

〈~a + ~a′(λ + k); q〉k
〈1,~b + ~b′(λ + k); q〉k

yk. (42)

Furthermore, for the Γq-function:

Γq(α + θq,2)yλ=̈Γq(α + λ)yλ. (43)

We can generalize this to many variables.

Definition 7. Compare with (3.9 [3]). Let Hq(x, y) be an operator R[[x]]→ R[[x]]:

Hq(x, y) ≡ {θq,1 + γθq,2 + c}qDq,x − {θq,1 + αθq,2 + a}q{θq,1 + βθq,2 + b}q. (44)

The parameters in Hq(x, y) will always be the same.

Remark 1. The function (44) generalizes the basic definition (32) and is a special case of the more
general definition (36). The notation in ([3], 3.9) is slightly misleading.

Theorem 1. Compare with ([3], (3.12) p. 779). Let Fj(a, b, c, x), j = 1, 2 of the form (41) be two
independent solutions of

Hq(a, b, c, x)Fj = 0. (45)

Furthermore, let ψj(y) ∈ R[[y]], j = 1, 2 be q-hypergeometric series, with suitable conver-
gence radii. Then the general solution of the equation

Hq(x, y) f = 0 (46)

in the umbral form (42) is given by

f (x, y) =
2

∑
j=1

Fj(αθq,2 + a, βθq,2 + b, γθq,2 + c, x)φj(y). (47)

Proof. This follows from (39).

Theorem 2. Compare with ([3], (4.5) p. 780). Let ψ(y) ∈ R[[y]] be a q-hypergeometric series,
with suitable convergence radius. Then the series

F(x, y : q) ≡ 2φ1(αθq,2 + a, βθq,2 + b, γθq,2 + c|q; x)ψ(y) (48)

is a double q-hypergeometric series, convergent in the vicinity of (0, 0).

Proof. Similar to ([3], p. 780).

Definition 8. Compare with (5.1 [3]). Introduce the two general operators R[[x, y]]→ R[[x, y]]:

H1;q(x, y) ≡ {γ1θq,2 + c1}qDq,x − {α1θq,2 + a1}q{β1θq,2 + b1}q,

H2;q(y, x) ≡ {γ2θq,1 + c2}qDq,y − {α2θq,1 + a2}q{β2θq,1 + b2}q.
(49)

We wish to study the system of q-difference equations{
H1;q(x, y) f (x, y) = 0
H2;q(y, x) f (x, y) = 0.

(50)
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The system (50) is called q-compatible if it has common solutions f (x, y).

Theorem 3. Compare with ([3], p. 785). The system (50) is q-compatible if the following two
products of q-analogues are equal,

P1(m, n; q) = P2(m, n; q), (51)

where

P1(m, n; q) ≡ {m + α1n + a1}q{m + β1n + b1}q{m + γ1(n + 1) + c1}q

{n + α2(m + 1) + a2}q{n + β2(m + 1) + b2}q{n + γ2m + c2}q,

P2(m, n; q) ≡ {m + α1(n + 1) + a1}q{m + β1(n + 1) + b1}q{m + γ1n + c1}q

{n + α2m + a2}q{m + β2n + b2}q{n + γ2(m + 1) + c2}q.

(52)

For the following proof, compare with ([3], p. 786).

Proof. We put

f (x, y) =
∞

∑
m,n=0

Amnxmyn. (53)

We first calculate the following operator formulas.

{θq,1 + γ1θq,2 + c1}qDq,x f =
∞

∑
m,n=0

am+1,n
{m + γ1n + c1}q

〈1; q〉m〈1; q〉n
xmyn (54)

{θq,1 + α1θq,2 + a1}q{θq,1 + β1θq,2 + b1}q f

=
∞

∑
m,n=0

amn
{m + α1n + a1}q{m + β1n + b1}q

〈1; q〉m〈1; q〉n
xmyn,

(55)

where
Amn ≡

amn

〈1; q〉m〈1; q〉n
. (56)

The first Equation (50) is satisfied when

am+1,n

amn
=
{m + α1n + a1}q{m + β1n + b1}q

{m + γ1n + c1}q
. (57)

The second Equation (50) is satisfied when

am,n+1

amn
=
{n + α2m + a2}q{n + β2m + b2}q

{n + γ2m + c2}q
. (58)

Using Horn’s notation, we have

f (m, n) ≡ Am+1,n

Amn
=
{m + α1n + a1}q{m + β1n + b1}q

{m + γ1n + c1}q{m + 1}q
, (59)

g(m, n) ≡ Am,n+1

Amn
=
{n + α2m + a2}q{n + β2m + b2}q

{n + γ2m + c2}q{n + 1}q
. (60)

Now (51) follows from the compatibility condition

f (m, n)g(m + 1, n) = f (m, n + 1)g(m, n). (61)

Similarly, we find that the q-hypergeometric functions defined by (6)–(9), after rescal-
ing, satisfy the systems (50).
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4. Bases for the Spaces of Solutions by the Frobenius Method

Assuming that our system (50) is q-compatible, by using Lemma 1, we construct a
basis for its solutions. Like in ([3], p. 788), the parameter ci 3 −Z. Many of these solutions
are obtained simply by the same formula after q-deformation like in [1]. We note that other
solutions are obtained by permutation of the variables.

Solutions in the Vicinity of (0, 0)

Now we assume that

ψ(y) ≡ yλ
∞

∑
k=0

an
yk

〈1; q〉k
. (62)

Consider the basis y1(x), y2(x) in (33) and (35). In all these assumptions, we put the
first coefficient a0 = 1. Note that this was not mentioned in [3]. In order to obtain solutions
of our system of q-difference equations, define (49)

f (x, y; q) ≡ 2φ1(α1θq,2 + a1, β1θq,2 + b1, γ1θq,2 + c1|q; x)ψ(y). (63)

This implies

f (x, y; q) =
∞

∑
m,n=0

an
〈α1(n + λ) + a1, β1(n + λ) + b1; q〉m
〈1, γ1(n + λ) + c1; q〉m〈1; q〉n

xmyn+λ (64)

(θq,2 + γ2θq,1 + c2)Dq,y f = yλ
∞

∑
m,n=0

anxmyn−1{n + λ}q

〈α1(n + λ) + a1, β1(n + λ) + b1; q〉m{n + λ− 1 + γ2m + c2}q

〈1, γ1(n + λ) + c1; q〉m〈1; q〉n

(65)

(θq,2 + α2θq,1 + a2)(θq,2 + β2θq,1 + b2) f

= yλ
∞

∑
m,n=0

anxmyn{n + λ + α2m + a2}q

〈α1(n + λ) + a1, β1(n + λ) + b1; q〉m{n + λ + β2m + b2}q

〈1, γ1(n + λ) + c1; q〉m〈1; q〉n

(66)

By equating the last two formulas for n = 0, we obtain the indicial equation

{λ}q{λ− 1 + γ2m + c2}q = 0, m ≥ 0, (67)

which implies

λ = 0, ∀γ2,

λ = 0∨ λ = 1− c2 if γ2 = 0.
(68)

5. First q-Appell Function

We now apply the general method from the previous section to the first q-Appell
function. Put γi = αi = 1, ci = c, ai = a in (49). Like before the system is denoted by
(Hi f (x, y; q))2

i=1.

{[
{θq,1 + θq,2 + c}qDq,x − {θq,1 + θq,2 + a}q{θq,1 + b1}q

]
f (x, y; q) = 0[

{θq,1 + θq,2 + c}qDq,y − {θq,1 + θq,2 + a}q{θq,2 + b2}q
]

f (x, y; q) = 0.
(69)

With (62), a0 = 1 and y1 in (33), we get the first q-Appell function. Next consider the
function y2 in (35).
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We find that the following equation can be rewritten by (40) and (43) as

fD(x, y; q)

≡ x1−c−θq,2 2φ1(a + 1− c, b1 + 1− c− θq,2; 2− c− θq,2|q; x)ψ(y)

=x1−c
∞

∑
m,n=0

an
〈a + 1− c, b1 + 1− c− n− λ; q〉m
〈1, 2− c− n− λ + c1; q〉m〈1; q〉n

xm−n−λyn+λ.

(70)

Lemma 2.

〈b1 + 1− c− n; q〉m〈c− 1; q〉n〈2− c; q〉m−n

〈2− c− n; q〉m〈c− b1; q〉n〈b1 + 1− c; q〉m−n
= qn(b1−1). (71)

This lemma is used in the proof (77). Similar to ([3], p. 793) we find that[
{θq,1 + θq,2 + c}qDq,y

]
(xm−n−λ+1−cyn+λ)

= {m}q{n + λ}qxm−n−λ+1−cyn+λ−1.
(72)

Again, λ = 0, and we have

H2 fD(x, y; q) = x1−c

[
∞

∑
m,n=1

an
〈a + 1− c, b1 + 1− c− n; q〉m
〈2− c− n; q〉m〈1; q〉m−1〈1; q〉n−1

xm−nyn−1

−
∞

∑
m,n=0

an〈n + b2, 1 + m + a− c; q〉1
〈a + 1− c, b1 + 1− c− n; q〉m
〈1, 2− c− n; q〉m〈1; q〉n

xm−nyn

]

= x1−c
∞

∑
m,n=0

[
an+1

〈a + 1− c, b1 + 1− c− n; q〉m+1

〈1− c− n; q〉m+1〈1; q〉m〈1; q〉n

−an〈n + b2, 1 + m + a− c; q〉1
〈a + 1− c, b1 + 1− c− n; q〉m
〈1, 2− c− n; q〉m〈1; q〉n

]
xm−nyn.

(73)

By the condition H2 f = 0 we obtain

an+1

an
=
〈n + b2, 1− c− n; q〉1
〈b1 − c− n; q〉1

. (74)

This implies

an =
〈b2, c− 1; q〉n
〈c− b1; q〉n

, (75)

ψ(y) = 2φ1(b2, c− 1; c− b1|q; y). (76)

Then, we can induce by (71)

fD(x, y; q)

= x1−c
∞

∑
m,n=0

〈a + 1− c, b1 + 1− c− n; q〉m〈b2, c− 1; q〉n
〈1, 2− c− n; q〉m〈1, c− b1; q〉n

xm−nynqn(1−b1)

=x1−c
∞

∑
m,n=0

〈a + 1− c; q〉m〈b1 + 1− c; q〉m−n〈b2; q〉n
〈2− c; q〉m−n〈1; q〉m〈1; q〉n

xm−nyn.

(77)

We can rewrite this in the form of q-Horn function, convenient for convergence aspects.

fD(x, y; q) = x1−c
∞

∑
m,n=0

(−1)m−nQE
(
−
(

m− n
2

)
+ (m− n)(c− 2)

)
〈a + 1− c; q〉m〈b1 + 1− c; q〉m−n〈c− 1; q〉n−m〈b2; q〉n

〈1; q〉m〈1; q〉n
xm−nyn.

(78)
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The operator form is

fD(x, y; q) = x1−c
2φ1(a + 1− c, b1 + 1− c− θq,2; 2− c− θq,2|q; x)

2φ1

(
b2, c− 1; c− b1|q;

y
x

)
.

(79)

The series (78) converges in a slightly larger region than

|x| < 1, |y/x| < 1. (80)

5.1. First Horn Recurrence Solution

The Horn recurrence (16) for ρ = 1− c, σ = 0 gives
Cm+1,n

Cmn
= 〈a+1−c+m+n,b1+1−c+m;q〉1

〈1+m+n,2−c+m;q〉1
Cm,n+1

Cmn
= 〈a+1−c+m+n,b2+n;q〉1

〈1+m+n,1+n;q〉1
.

(81)

The solution to this recurrence is

f2(x, y; q) = x1−c
∞

∑
m,n=0

〈a + 1− c; q〉m+n〈b1 + 1− c〉m〈b2〉n
〈2− c〉m〈1; q〉m+n〈1; q〉n

xmyn. (82)

This solution, not of usual q-hypergeometric type, was not given in the thesis by Le
Vavasseur.

By symmetry, we get a third solution f3(x, y; q), the three functions { fi(x, y; q)} form a
basis for the system Φ1 around (0, 0).

5.2. Q-Integral Representations

We now turn to q-integral representations of solutions to the system for Φ1. The
operator form

Φ1(a; b1, b2; c|q; x, y)

= 2φ1(a + θq,2, b1; c + θq,2|q; x) 2φ1(a, b2; c|q; y)
(83)

together with the q-integral for 2φ1 (7.50 [1]) gives the q-Picard integral (10.104 [1]) for the
first q-Appell function.

The operator form (79) together with (7.50 [1]) gives a q-analogue of (7.11 [3]).

Theorem 4.

fD(x, y; q) ∼= x1−c Γq

[
2− c

a + 1− c, 1− a

] ∫ 1

0
ta−c (qt; q)−a

(xt; q)b1+1−c

3φ2

[
a, b2

c− b1

∣∣∣∣q; yqb1−c+a
∣∣∣∣∣∣∣∣ ((xt)−1qc−b1 ; q)k

(t−1qa; q)k

]
dq(t).

(84)

Proof. We can apply (43) for following deduction.

fD(x, y; q) ∼= x1−c Γq

[
2− c− θq,2

a + 1− c, 1− a− θq,2

] ∫ 1

0
ta−c

(qt; q)−a−θq,2

(xt; q)b1+1−c−θq,2

2φ1

[
c− 1, b2
c− b1

∣∣∣∣q;
y
x

]
dq(t)=RHS.

(85)

Similarly, we get an improved version of (7.12, [3]).
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Theorem 5.

fD(x, y) = x1−c Γ
[

2− c
b1 + 1− c, 1− b1

] ∫ 1

0
tb1−c(1− t)−b1(1− xt)c−a−1

(
1− y

x

)−b2
dt.

(86)

Proof. Permute the parameters in the proof.

A q-analogue of (86)

fD(x, y; q) ∼= x1−c Γq

[
2− c

b1 + 1− c, 1− b1

] ∫ 1

0
tb1−c (qt; q)−b1

(xt; q)a+1−c

1
( y

x qb1−1; q)b2

dq(t).
(87)

5.3. Solutions Around (0, ∞)

From Ansatz III we obtain the equations{
{ρ}q{c + σ + ρ− 1}q = 0,
{b2 + σ}q{a + ρ + σ)q = 0.

(88)

This has the three solutions

ρ = 0, σ = −b2

ρ = 0, σ = −a

ρ = b2 + 1− c, σ = −b2.

(89)

Put

ψ(y) ≡
∞

∑
n=0

an
y−n−λ

〈1; q〉n
. (90)

According to (40) and (43), the condition H1g1(x, y; q) = 0 gives,

g1(x, y; q)

≡ 2φ1(a + θq,2, b1; c + θq,2|q; x)ψ(y)

=
∞

∑
m,n=0

an
〈a− n− λ, b1; q〉m

〈1, c− n− λ; q〉m〈1; q〉n
xmy−n−λ.

(91)

Lemma 3.

〈a− b2 − n; q〉m〈b2 − c + 1; q〉n(−1)m−n

〈c− b2 − n; q〉m〈b2 + 1− a; q〉n〈a− b2; q〉m−n〈b2 + 1− c; q〉n−m

= QE
(
−
(

m
2

)
−
(

n
2

)
−m(c− b2 − n)− n(2b2 + 1− c)

)
.

(92)

This lemma is used in the following proof. Similar to ([3], p. 796) we find that[
{θq,1 + θq,2 + c}qDq,y

]
(xmy−n−λ)

= {m− n− λ− 1 + c}q{−n− λ}qxmy−n−λ−1.
(93)
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We have

H2 f (x, y; q) = −
∞

∑
m,n=0

an
〈a− n− λ, b1; q〉m

〈1, c− n− λ; q〉m〈1; q〉n[
{m− n− λ− 1 + c}q{−n− λ}qxmy−n−λ−1

+{b2 − n− λ}q{a + m− n− λ}qxmy−n−λ
]
.

(94)

For n = 0, the condition H2 f = 0 implies λ = b2, and we have

H2 f (x, y; q) = y−b2
∞

∑
m,n=0

[
−an
〈a− b2 − n, b1; q〉m{b2 + n}qq−n−b2

〈c− b2 − n; q〉m−1〈1; q〉m〈1; q〉n

xm−nyn−1 + an+1
〈a− b2 − n− 1; q〉m+1〈b1; q〉m
〈1, c− b2 − n− 1; q〉m〈1; q〉n

]
xmy−n−1q−n.

(95)

By the condition H2 f = 0 we obtain

an+1

an
=
〈n + b2, c− b2 − n− 1; q〉1
〈a− b2 − n− 1; q〉1

q−b2 . (96)

This implies

an =
〈b2, b2 + 1− c; q〉n
〈b2 + 1− a; q〉n

qn(c−a−b2), (97)

ψ(y) = 2φ1(b2, b2 + 1− c; b2 + 1− a|q; yqc−a−b2). (98)

According to (92), we should have

g1(x, y; q)

= y−b2
∞

∑
m,n=0

〈a− b2 − n, b1; q〉m〈b2 + 1− c, b2; q〉n
〈1, c− b2 − n; q〉m〈1, b2 + 1− a; q〉n

xmy−nqn(c−a−b2)

=y−b2
∞

∑
m,n=0

〈b1; q〉m〈a− b2; q〉m−n〈b2; q〉n〈b2 + 1− c; q〉n−m

〈1; q〉m〈1; q〉n

(−x)m(−y)−nQE
(
−
(

m
2

)
−
(

n
2

)
−m(c− b2 − n) + n(c− 2b2 − 1)

)
.

(99)

We can again rewrite this in the form of the q-Horn function. The operator form is

g1(x, y; q) = 2φ1(a + θq,2, b1; c + θq,2|q; x)

2φ1(b2, b2 + 1− c; b2 + 1− a|q; yqc−a−b2).
(100)

Again put

ψ(y) ≡ y−λ
∞

∑
n=0

an
y−n

〈1; q〉n
, (101)

and use the other q-hypergeometric function solution around 0.
According to (40) and (43), we have

g2(x, y; q)

≡ x1−c−θq,2 2φ1(a + 1− c, b1 + 1− c− θq,2; 2− c− θq,2|q; x)ψ(y)

=x1−c+λy−λ
∞

∑
m,n=0

an
〈a + 1− c, b1 + 1− c + n + λ; q〉m
〈1, 2− c + n + λ; q〉m〈1; q〉n

xm+ny−n.

(102)
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Similar to ([3], p. 797) we find that[
{θq,1 + θq,2 + c}qDq,y

]
(xm+n+λ+1−cy−n−λ)

= {m}q{−n− λ}qxm+n+λ+1−cy−n−λ−1.
(103)

Because of the factor {b2 − n− λ}q, λ = b2, and we have

H2g2(x, y; q)(1− q)2 = x1−c+b2 y−b2[
∞

∑
m=1,n=0

−an
〈a + 1− c, b1 + 1− c + n + b2; q〉m〈n + b2; q〉1

〈2− c + n + b2; q〉m〈1; q〉m−1〈1; q〉n
xm+ny−n−1q−n−b2

+
∞

∑
m=0,n=1

an〈1 + m + a− c; q〉1
〈a + 1− c, b1 + 1− c + n + b2; q〉m
〈1, 2− c + n + b2; q〉m〈1; q〉n−1

xm+ny−nq−n

]

= x2−c+b2 y−b2
∞

∑
m,n=0

[
−an
〈a + 1− c, b1 + 1− c + n + b2; q〉m+1

〈2− c + n + b2; q〉m+1〈1; q〉m〈1; q〉n
〈n + b2; q〉1q−b2

+an+1〈1 + m + a− c; q〉1
〈a + 1− c, b1 + 2− c + n + b2; q〉m

q〈1, 3− c + n + b2; q〉m〈1; q〉n

]
xm+ny−n−1q−n.

(104)

By the condition H2g2 = 0 we obtain

an =
〈b2, b1 + b2 + 1− c; q〉n
〈b2 + 2− c; q〉n

qn(1−b2), (105)

ψ(y) = y−b2 2φ1(b2, b1 + b2 + 1− c; b2 + 2− c|q; y−1q1−b2). (106)

g2(x, y; q) = xb2+1−cy−b2
∞

∑
m,n=0

〈a + 1− c, b1 + 1− c− n; q〉m〈b2, c− 1; q〉n
〈1, 2− c + n + b2; q〉m〈1, b2 + 2− c; q〉n

xm+ny−nqn(1−b1)

= xb2+1−cy−b2 Φ1

(
b1 + b2 + 1− c; a + 1− c, b2; b2 + 2− c

∣∣∣∣q; x,
x
y

qn(1−b2)

)
.

(107)

The operator form is

g2(x, y; q) = x1−c−θq,2 2φ1(a + 1− c, b1 + 1− c− θq,2; 2− c− θq,2|q; x)

y−b2 2φ1(b2, b1 + b2 + 1− c; b2 + 2− c|q; y−1q1−b2).
(108)

Type B2. Use the same ψ(x) and the function (6.187 [1]), according to (40) and (43)

g4(x, y; q)

≡ y−a−θq,1 2φ1(a + θq,1, a + 1− c; a + 1− b2 + θq,1|q;
1
y
)ψ(x)

=y−a
∞

∑
m,n=0

an
〈a + n + λ, a + 1− c; q〉m

〈1, a + 1− b2 + n + λ; q〉m〈1; q〉n
xn+λy−m−n−λ.

(109)

Similar to ([3], p. 798) we find that[
{θq,1 + θq,2 + c}qDq,x

]
(xn+λy−m−n−a−λ)

= {c− a− 1−m}q{n + λ}qxn+λ−1y−m−n−a−λ.
(110)
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Again, λ = 0, and we have

H1g4(x, y; q) = y−a[
∞

∑
m=0,n=1

an
〈c− a− 1−m; q〉1〈a + n, a + 1− c; q〉m
〈1, a + 1 + n− b2; q〉m〈1; q〉n−1

xn−1y−n−m

−
∞

∑
m=1,n=0

an〈b1 + n; q〉1
〈a + n, a + 1− c; q〉m
〈1, 2− c− n; q〉m〈1; q〉n

q−mxny−m−n

]

= y−a
∞

∑
m,n=0

[
an+1

〈c− a− 1−m; q〉1〈a + n + 1, a + 1− c; q〉m
〈1, a + 2 + n− b2; q〉m〈1; q〉n

−an〈n + b1; q〉1
〈a + 1− c, a + n; q〉m+1

〈a + 1 + n− b2; q〉m+1〈1; q〉m〈1; q〉n
q−m

]
xny−m−n.

(111)

By the condition H1g4 = 0 we obtain

an+1

an
= −qa+1−c 〈n + b1, n + a; q〉1

〈a + 1 + n− b2; q〉1
. (112)

This implies

an = (−1)n 〈a, b1; q〉n
〈a + 1− b2; q〉n

qn(a+1−c) (113)

ψ(x) = 2φ1(a, b1; a + 1− b2|q;−xqa+1−c). (114)

Finally, we obtain a q-analogue of the corrected version of Levavasseur.

g4(x, y; q) = y−a−θq,1 2φ1

(
a + θq,1, a + 1− c; a + 1− b2 + θq,1

∣∣∣∣q;
1
y

)
2φ1(a, b1; a + 1− b2|q;−xqa+1−c)

= y−aΦ1

(
a; b1, a + 1− c; a + 1− b2

∣∣∣∣q;− x
y

qa+1−c,
1
y

)
.

(115)

Theorem 6. The second solution is

h2(x, y; q) = y−a
∞

∑
m,n=0

〈a + 1− c; q〉n−m〈a; q〉n〈b1; q〉m
〈a + 1− b2; q〉n〈1; q〉m〈1; q〉n−m

xmy−n

QE((c− a)(m− n) + (1− b2)n).

(116)

This solution is a q-analogue of ([5], p. 31).

Proof. From the recurrences, using (6.14 [1]), we can find

h2(x, y; q) = y−a
∞

∑
m,n=0

〈c− a + m− n; q〉n−m〈1− a− n; q〉n〈b1; q〉m
〈−a− n + b2; q〉n〈1; q〉m〈m− n; q〉n−m

xmy−n=RHS.

(117)

Theorem 7. The third solution is

h3(x, y; q) = xb2+1−cy−b2

∞

∑
m,n=0

〈a + 1− c; q〉m−n〈b2; q〉n〈b1 + b2 + 1− c; q〉m
〈2 + b2 − c; q〉m〈1; q〉n〈1; q〉m−n

xmy−n

QE(−nb2 + n).

(118)
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This solution is a q-analogue of ([5], p. 31).

Proof. For the case ρ = b2 + 1− c, σ = −b2 we obtain the recurrence
Cm+1,n

Cmn
= 〈a+1−c+m−n,b1+b2+1−c+m;q〉1

〈1+m−n,2+b2−c+m;q〉1
Cm,n+1

Cmn
= 〈1+m−n,−b2−n;q〉1
〈a+m−n+1−c,−1−n;q〉1

.
(119)

The solution to this recurrence, using (6.14 [1]), is

h3(x, y; q) = xb2+1−cy−b2
∞

∑
m,n=0

〈a + 1− c; q〉m−nxmy−n

〈−b2 + 1− n; q〉n〈b1 + b2 + 1− c; q〉m
〈2 + b2 − c; q〉m〈−n; q〉n〈1; q〉m−n

=RHS.

(120)

6. Second q-Appell Function

Now we put γi = 0, , αi = βi = 1, ai = a in (49).

Theorem 8. A q-analogue of ((1) [6]), ([7], p. 50). The q-difference equation for Φ2 has the
following four independent solutions in the vicinity of (0, 0).

f1(x, y; q) ≡ Φ2(a; b1, b2; c1, c2|q; x, y),

f2(x, y; q) ≡ x1−c1 Φ2(a− c1 + 1; b1 − c1 + 1, b2; 2− c1, c2|q; x, y),

f3(x, y; q) ≡ y1−c2 Φ2(a− c2 + 1; b1, b2 − c2 + 1; c1, 2− c2|q; x, y),

f4(x, y; q) ≡ x1−c1 y1−c2

Φ2(a− c1 − c2 + 2; b1 − c1 + 1, b2 − c2 + 1; 2− c1, 2− c2|q; x, y).

(121)

Proof. According to (40) and (43), we find

f3(x, y; q)

≡ 2φ1(a + θq,2, b1; c1|q; x)y1−c2 2φ1(a + 1− c2, b2 + 1− c2; 2− c2|q; y)

=RHS.

(122)

f4(x, y; q)

= x1−c1 2φ1(a + 1− c1 + θq,2, b + 1− c1; 2− c1|q; x)

y1−c2 2φ1(a + 2− c1 − c2, b + 2− c2 + 1; 2− c2|q; y)

=RHS.

(123)

Remark 2. The asymmetric expressions for f4(x, y) in ([3], p. 804 f) are in error.

A q-analogue of ([3], p. 804).

Theorem 9. A q-integral representation of Φ2(a; b1, b2; c1, c2|q; x, y)
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Φ2(a; b1, b2; c1, c2|q; x, y) ∼= Γq

[
c1

a, c1 − a

] ∫ 1

0
ta−1 (qt; q)c1−a−1

(xt; q)b1
∞

∑
m=0

〈b2, a + 1− c1; q〉m
〈1, c2; q〉m

(−ty)m(tqc1−a; q)−m

QE
(
−
(

m
2

)
+ m(c1 − a− 1)

)
dq(t).

(124)

Proof. According to (7.50 [1]) we have

LHS = 2φ1(a + θq,2, b1; c1|q; x)2φ1(a, b2; c2|q; y)

=Γq

[
c1

a + θq,2, c1 − a− θq,2

] ∫ 1

0
ta+θq,2−1

(qt; q)c1−a−θq,2−1

(xt; q)b1

2φ1(a, b2; c2|q; y) dq(t)=RHS.

(125)

Theorem 10. The functions f3(x, y; q) and f4(x, y; q) have q-integral representations

f3(x, y; q) ∼= x1−c1 Γq

[
c2

a, c2 − a

] ∫ 1

0
ta−1 (qt; q)c2−a−1

(yt; q)b2
∞

∑
m=0

〈a + 1− c1, a + 1− c2, b1 + 1− c1; q〉m
〈1, 2− c1, a; q〉m

(−xt)m(tqc2−a; q)−m

QE
(
−
(

m
2

)
+ m(c2 − a− 1)

)
dq(t).

(126)

f4(x, y; q) ∼= x1−c1 y1−c2 Γq

[
2− c1

a + 1− c1, 1− a

] ∫ 1

0
ta−c1

(qt; q)−a

(xt; q)b1+1−c1
∞

∑
m=0

〈a + 2− c1 − c2, b2 − c2 + 1, a; q〉m
〈1, 2− c2, a + 1− c1; q〉m

(−yt)m(tq1−a; q)−m

QE
(
−
(

m
2

)
−ma

)
dq(t).

(127)

Proof. Use formulas (122) and (123).

7. Third q-Appell Function

Let us put αi = βi = 0, γi = 1, ci = c, ai = a, bi = b in (49).

Theorem 11. A q-analogue of ([3], p. 805). The third q-Appell function has q-integral representation

Φ3(a1, a2; b1, b2; c|q; x, y) ∼= Γq

[
c

a1, c− a1

] ∫ 1

0
ta1−1 (qt; q)c−a1−1

(xt; q)b1
∞

∑
m=0

〈a2, b2; q〉m
〈1, c− a1; q〉m

ym(qc−a1 t; q)m dq(t).
(128)

Proof. Using (7.50 [1]), we have

LHS=Γq

[
c + θq,2

a1, c− a1 + θq,2

] ∫ 1

0
ta1−1

(qt; q)c−a1−θq,2−1

(xt; q)b1

2φ1

[
a2, b2

c

∣∣∣∣q; y
]

by(43)
= RHS.

(129)
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8. Fourth q-Appell Function

Finally, we put γi = 0, αi = βi = 1, ai = a, bi = b in (49). We have

Φ4(a, b; c1, c2|q; x, y) = 2φ1(a + θq,2, b + θq,2; c1|q; x)2φ1(a, b; c2|q; y). (130)

Theorem 12. A q-analogue of ([3], p. 807). The fourth q-Appell function has q-integral represen-
tation

Φ4(a, b; c1, c2|q; x, y) ∼= Γq

[
c1

a, c1 − a

] ∫ 1

0
ta−1 (qt; q)c1−a−1

(xt; q)b
∞

∑
m=0

〈a + 1− c1, b; q〉m
〈1, c2; q〉m

(−yt)m (tqc1−a; q)−m

(xtqbt; q)m

QE
(
−
(

m
2

)
−m(a + 1− c1)

)
dq(t).

(131)

Proof. Using (7.50 [1]) and (43), we have

LHS=Γq

[
c1 + θq,2

a + θq,2, c1 − a− θq,2

] ∫ 1

0
ta+θq,2−1

(qt; q)c1−a−θq,2−1

(xt; q)b+θq,2

2φ1

[
a, b
c2

∣∣∣∣q; y
]
=RHS.

(132)

Theorem 13. A q-analogue of ([3], pp. 807–808). The q-difference equation for Φ4 has the
following four independent solutions in the vicinity of (0, 0).

f1(x, y; q) ≡ Φ4(a, b; c1, c2|q; x, y),

f2(x, y; q) ≡ y1−c2 Φ4(a− c2 + 1; b− c2 + 1; 2− c2, c1|q; x, y),

f3(x, y; q) ≡ x1−c1 Φ4(a− c1 + 1; b− c1 + 1; 2− c1, c2|q; x, y),

f4(x, y; q) ≡ x1−c1 y1−c2

Φ4(a− c1 − c2 + 2, b−c1 − c2 + 2; 2− c1, 2− c2|q; x, y).

(133)

Proof. According to (40) and (43), we find

f2(x, y; q)

= 2φ1(a + θq,2, b + θq,2; c1|q; x)y1−c2 2φ1(a + 1− c2, b + 1− c2; 2− c2|q; y)

=RHS.

(134)

f4(x, y; q)

= x1−c1 2φ1(a + 1− c1 + θq,2, b + 1− c1 + θq,2; 2− c1|q; x)

y1−c2 2φ1(a + 2− c1 − c2, b + 2− c1 − c2; 2− c2|q; y)

=RHS.

(135)

Theorem 14. The functions f2(x, y; q) and f4(x, y; q) have q-integral representations
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f2(x, y; q) ∼= y1−c2 Γq

[
c1

a, c1 − a

] ∫ 1

0
ta−1 (qt; q)c1−a−1

(xt; q)b
∞

∑
m=0

〈a + 1− c1, a + 1− c2, b + 1− c2; q〉m
〈1, a, 2− c2; q〉m

(−yt)m (tqc1−a; q)−m

(xtqbt; q)m

QE
(
−
(

m
2

)
−m(a + 1− c1)

)
dq(t).

(136)

f4(x, y; q) ∼= x1−c1 y1−c2 Γq

[
2− c1

a + 1− c1, 1− a

] ∫ 1
0 ta−c1 (qt;q)−a

(xt;q)b1+1−c1
∞
∑

m=0

〈a+2−c1−c2,b2−c2+1,a;q〉m
〈1,2−c2,a+1−c1;q〉m

(−yt)m(tq1−a; q
)
−m

QE
(
−
(

m
2

)
−ma

)
dq(t).

(137)

Proof. Use formulas (134) and (135).

9. Conclusions

We have given the other solutions to the systems of q-difference equations in three
forms

1. the factorized, umbral form
2. the series expansion, with convergence regions, q-analogues of [3]
3. possibly, a q-integral representation

These convergence regions are always larger than in the ordinary case, sometimes
q-deformed cones arise. Our method leads to more direct computation of the other solu-
tions of Appell differential and similar differential equations than the papers by Horn and
Borngässer. We have illustrated the new symbolic calculus in the special case q-Appell
functions, since more complex functions would lead to longer computations. These compu-
tations are similar to the solutions of differential equations by the Frobenius method. We
started with the solutions in the vicinity of (0, 0) and obtained the usual indicial equation
for the exponents. Then we found all solutions, which was treated by Borngässer [5]. With
the help of a lemma, we found a recurrence for the unknown coefficients, and the unknown
function was sometimes another q-Appell function and sometimes a q-Horn function.

Then, by the symbolic operator formulas, we found q-integral representations of the
formulas in the basis. For the solutions around (0, ∞) we found λ = b2 and by using
another lemma, we obtained another q-Horn function in the basis of solutions.

10. Discussion

The Frobenius method [8] for solutions of differential equations originates from papers
by Thomae [9], who studied logarithmic solutions of the Euler equation and Thomé [10],
who wrote about very general solutions of differential equations, convergent in disks
around a point a.

Thanks to Debiard and Gaveau for their most interesting papers on multiple hyper-
geometric functions. We have retained their notation as much as possible. The Debiard–
Gaveau umbral method was neither used in the thesis by Borngässer [5], nor in the papers
by Horn [4]. However, the umbral q-difference equations for q-Appel functions in our
book ([1], p. 436), in the spirit of Mellin [11] and Thomae [9], are equivalent to the q-
difference equations in this paper. The paper is also interesting for the case q = 1, since
Borngässer’s thesis [5], in German, is almost unknown, and is now available, in part,
in English. In a future paper, we will discuss the q-difference equations and q-integral
representations of the corresponding q-Horn functions. Likewise, the confluent forms [12],
as well as other multiple q-hypergeometric functions can be treated with this method.
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