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Abstract: The classic model of Markowitz for designing investment portfolios is an optimization
problem with two objectives: maximize returns and minimize risk. Various alternatives and improve-
ments have been proposed by different authors, who have contributed to the theory of portfolio
selection. One of the most important contributions is the Sharpe Ratio, which allows comparison
of the expected return of portfolios. Another important concept for investors is diversification,
measured through the average correlation. In this measure, a high correlation indicates a low level
of diversification, while a low correlation represents a high degree of diversification. In this work,
three algorithms developed to solve the portfolio problem are presented. These algorithms used
the Sharpe Ratio as the main metric to solve the problem of the aforementioned two objectives into
only one objective: maximization of the Sharpe Ratio. The first, GENPO, used a Genetic Algorithm
(GA). In contrast, the second and third algorithms, SAIPO and TAIPO used Simulated Annealing
and Threshold Accepting algorithms, respectively. We tested these algorithms using datasets taken
from the Mexican Stock Exchange. The findings were compared with other mathematical models of
related works, and obtained the best results with the proposed algorithms.

Keywords: Investment Portfolio Optimization; genetic algorithm; Simulated Annealing and Threshold
Accepting; Sharpe Ratio; Markowitz model

1. Introduction

In finance, applying the diversification of assets that make up an investment portfolio
aims to maximize profits and minimize risk. The mean-variance portfolio integration model
developed by Harry Markowitz in 1952 has been a widely accepted tool for asset portfolio
integration [1]. Markowitz’s portfolio theory states that the investor should analyze the
portfolio as a whole, studying the characteristics of risk and global return. The participation
of each asset is chosen based on its expected return. In other words, volatility is treated as a
risk factor, and the portfolio is integrated, considering the risks and seeking the maximum
level of profitability available [2]. Some investigations have expanded the work of the
Markowitz model, such as the mean semi-variance model [3], mean objective model [4],
and portfolio optimization models with fuzzy logic [5]. Different metaheuristics algorithms
have been applied to solve difficult problems, and recently important overviews have
been published regarding these types of problems [6–8]. The reason for employing these
algorithms is that they obtain suitable solutions within reasonable execution times [9]. For
instance, a two-stage multi-attribute portfolio analysis framework using genetic algorithms
(GA) to solve a multi-attribute portfolio selection problem was proposed [10]. Moreover,
Genetic Algorithms have been used for selecting and evaluating investment portfolios [11].
As seen in [12], the mean-variance approach was used as a reference to propose a new
model which included different constraints, using GA as an optimization method. Chen
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et al., applied machine learning algorithms to predict asset values of the Shanghai stock
market; they used a GA to solve a multi-objective optimization problem [13]. Pekar et al.,
used differential evolution (DE) to solve the portfolio selection problem [14]; where they
employed the Omega function and Sortino ratio to measure the portfolio’s risk based on the
Sharpe Ratio. Presently, DE algorithms have been applied in several portfolio applications:
Dow Jones [14], S&P, BOFA, Frank Russell, MSCI [15], and National Stock Exchange [16].
The use of DE combined with other methods has increased the quality of results [15,17].
Notably, in a previous study [15], the following algorithms were evaluated: NSGA-II,
Differential Evolution (GDE3), SMPSO, and SPEA2; where SPEA and Differential Evolution
were reported as the best algorithms. A modified Particle Swarm Optimization (PSO)
method is used in different indexes such as S&P 100, Hang Seng, DAX 100, FTSE 100, and
Nikkei [18]; the mathematical model includes bounding and cardinality constraints. A
Firefly Algorithm (FA) and an Imperialist Competitive Algorithm (ICA) are used to select
the best set of assets using the mean semi-variance approach as the objective function [19].
In [20] a hybrid algorithm was proposed that combines Ant Colony Optimization (ACO),
Artificial Bee Colony (ABC) optimization, and GA for solving the cardinality constrained
portfolio optimization problem.

Different classical and hybrid methods or techniques for portfolio integration have
been applied, such as Threshold Accepting (TA) and Simulated Annealing (SA). TA was
used to select sets of assets that minimized portfolio risks [21,22] and optimized tracking
errors [23]. Chang et al., [24] attempted to find the efficient frontier by using GA, TA, and SA
over several stock markets (DAX, FTSE, S&P, and Nikkei). Fogarasi and Levendovszky [25]
explored a solution to sparse mean reverting portfolio selection using a Greedy method
and an SA algorithm. In [26], the following algorithms were used: GA, Genetic network
programming (GNP), SA, and PSO. In [27], the quality of SA and GA in rectifying this
problem was performed by adding an aversion risk coefficient to the Markowitz model.
The results were similar; however, SA obtained shorter runtimes. Wang et al., used a
modified Generalized Simulated Annealing GSA and the Sharpe Ratio to construct optimal
portfolios; they used stocks from S&P 500 [28]. A High-Speed Hill-Climbing algorithm,
called HC-S-R, was proposed for the DAX stock exchange in [29]; where they applied a
similar acceptance criterion to TA and reported better results than the classical algorithm.
In [30], the Archive Multi-objective Simulated Annealing (AMOSA) was used to solve
the two objectives of the mean-variance model with eight stock indexes that included
NASDAQ, S&P 500, FTSE 100, and Hang Seng. In [31], a hybrid FA–SA algorithm was
proposed; the experimental results showed this algorithm performed better than FA, SA,
GA, and PSO when the transaction costs were considered. Kumar et al., applied a modified
SA combined with ABC, Radial Basis Function Network (RBFN), and an Artificial Neural
Network (ANN); where they integrated portfolios with stocks from NSE [32]. SA, GA, and
Quantum Annealing was applied in [33], with stocks from S&P 500, Nasdaq, Russel 2000,
and Wilshire 5000.

The algorithms GENPO, SAIPO, and TAIPO proposed in this work are based on the
Genetic Algorithm (GA), Simulated Annealing (SA), and Threshold Accepting (TA). These
proposed algorithms use the closing prices of the assets to calculate the indicators to obtain
the Sharpe Ratio (SR) [34] value of the portfolio, which is used as an evaluation function
in the search process of the algorithms. The algorithms used are focused on portfolio
integration and aimed at both diversification of assets and minimization of portfolio risks;
this was achieved through the model proposed by Sharpe [35] and is standard in using the
correlation between candidate assets [36,37]. In addition, a constraint was used that allowed
for the consideration of only the assets that had an expected return equal to or greater than
the Minimum Acceptable Rate of Return (MARR). To test the proposed algorithms, assets
from the Mexican Stock Exchange were used, then results were compared with the hybrid
algorithms developed by the mathematical models of related works.

The rest of this paper is organized as follows. In Section 2, we review the related
models, including the Markowitz model. Moreover, we describe the classical Simulated
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Annealing, Threshold Accepting, and Genetic Algorithms. In Section 3, the algorithms
proposed in this work are described. In Section 4, we present the experiments and results.
Finally, in Section 5, the conclusions of this work are presented.

2. Background & Related Works

As we mentioned before, this work proposes the use of classical algorithms GA,
TA, and SA. We present a general description of these algorithms in the first subsection.
Moreover, new successful models are usually based on the Markowitz model; they are
referred to here as Yu, Gilli, and Masese models. Then, we briefly present all these models
in the Related Works subsection.

2.1. Classical Genetic and Simulated Annealing like Algorithms
2.1.1. Genetic Algorithms

John Holland proposed Genetic Algorithms (GA) in 1975 [38]. These algorithms imitate
nature for solving complex problems [39–41]. They select solutions from the solution space
of the problems considered. Basically, a GA evolves a population of individuals (solutions)
by selecting operations similar to those in biological evolution (for instance, mutation and
crossing over). The procedure of the Classic GA is shown in Algorithm 1.

Algorithm 1. Classic Genetic Algorithm

1: Set first gen i = 0
2: Begin /* Produce new generation */
3: Begin /* Reproductive cycle */
4: Select two individuals, X1 y X2 of P(i),
5: Crossing point random selection.
6: Cross X1 y X2 getting two offspring Xh1, Xh2.
7: Insertion Xh1 y Xh2 in P(i)
8: Mutation random τ elements of P(i);
9: Compute fitness function (i) of τ elements,
10: Order individuals best evaluated in P(i).
11: Limit the population to its original size.
12: End
13: IF convergence = true or gen = max generation
14: End

2.1.2. Simulated Annealing and Threshold Accepting

Proposed by Kirkpatrick in the 1980s [42], the Simulated Annealing (SA) algorithm
is based on the Metropolis algorithm [43], which is used in the heat treatment of metals.
SA begins with an initial solution; then, a neighbor solution is selected randomly. A new
solution is accepted if it is better than the old solution; otherwise, the new solution is
accepted with a probability based on the Boltzmann distribution; with this criterion, the
acceptance rate of incorrect solutions decreases during the execution of the algorithm. This
strategy is used to escape from local optima. The parameters of this algorithm include an
initial temperature Ti, final temperature Tf , cooling rate α, and the number of iterations for
each metropolis cycle, as shown in Algorithm 2.

The Threshold Accepting (TA) algorithm was proposed by Dueck and Scheuer [44] and
is similar to Simulated Annealing. The fundamental difference is the acceptance criterion
of new solutions. In TA, a poor solution can be accepted if the decrease does not exceed a
certain tolerance or threshold, which decreases during the execution of the algorithm. This
criterion avoids calculating probabilities or making random decisions. The parameters of
this algorithm are the number of iterations niter, number of steps nsteps, and a threshold
sequence, as shown in Algorithm 3. Both SA and TA algorithms have been applied to
successfully solve different problems [45,46].
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Algorithm 2. Classic Simulated Annealing

1: Simulated Annealing
(

Ti, Tf, α
)

2: Tk = Ti
3: scurrent = random initial solution
4: while Tk ≥ Tf do
5: while Metropolis lenght do
6: snew = generateNeighbor (scurrent)
7: ∆ = E(snew)− E(scurrent)
8: if ∆ < 0 then
9: scurrent = snew

10: else if e
−∆
Tk < random(0, 1) then

11: scurrent = snew
12: end if
13: end while
14: Tk = α ∗ Tk
15: end while
16: end Simulated Annealing

Algorithm 3. Classic Threshold Accepting

1: Initialize niter and nsteps
2: Compute Threshold Sequence Tr, r = 1, 2, . . . niter
3: Generate random initial solution Xc ∈ X
4: for r = 1 to niter do
5: for i = 1 to nsteps do
6: Generate Xn ∈ N(Xc)
7: ∆ = f (Xn)− f (Xc)
8: if ∆ < Tr then
9: Xc = Xn
10: end if
11: end for
12: end for

The process of parameter tuning for the SA and TA algorithms used in this paper
is based on the analytical tuning method presented in [47]. This method states that the
initial and final temperatures are functions of the maximum and minimum cost or energy
values Emax and Emin. These values are used in the Boltzmann distribution criterion, which
establishes that, in a temperature T, a poor solution is accepted if random(0, 1) ≤ e−

∆E
T .

The values ∆Emax and ∆Emin are used in the Boltzmann distribution for determining the
initial and final temperatures. To obtain these values, a set of previous executions must be
carried out [46]. The parameters used in the tuning process are shown in Table 1.

The probability of accepting a new solution is close to one at high temperatures, thus
the deterioration of the energy is at a maximum. Ti is associated with ∆Emax and P(∆Emax),
and can be calculated with Equation (1), while P(∆Emax) is given by Equation (2). The
minimum deterioration P(∆Emin ), calculated with Equation (3), is used to establish Tf , as
shown in Equation (4).

The cooling scheme establishes the method behind decreases in temperature using
a factor α. For rapid decrements, an α value equal to 0.7 is commonly used, and for slow
decrements, the figure is 0.99 [46]. Given a current temperature Tk, the next temperature
value Tk+1 is calculated with Equation (5).

The parameter Lk, refers to the number of iterations of the Metropolis cycle at each
temperature. In high temperatures, few iterations are required, since the equilibrium
is reached quickly; for this reason, Lmin is usually close to one. Nevertheless, at low
temperatures, a more exhaustive search is required; therefore, a larger Lk is used. For
a given value of Lk, then Lk+1 can be calculated with Equation (6). Since Equations (5)
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and (6) are applied successively from Ti to Tf , Lmax is calculated as Lmax = βnLmin, while
Tf = αnTi, where n and β are calculated with Equations (7) and (8), respectively [48].

Table 1. Parameters used for SA and TA Analytical Tuning.

Parameter Description Equation

si, sj Current and candidate solution -

E(si), E
(

sj

)
Energy associated with si and sj -

∆Emax, ∆Emin Maximum and minimum deterioration -

Ti Initial temperature Ti =
−∆Emax

ln(P(∆Emax ))
(1)

P(∆Emax), P(∆Emin)
Probability of accepting a solution with
maximum and minimum deterioration

P(∆Emax ) = e
−∆Emax

Ti (2)

P(∆Emin ) = e
−∆Emin

Tf (3)

Tf Final temperature Tf =
−∆Emin

ln(P(∆Emin))
(4)

α Temperature decrease factor -

Tk Current temperature Tk+1= αTk (5)

Lk
Length of the Markov chain in

Metropolis cycle Lk+1= βLk (6)

Lmin Value of Lk at Ti -

n Number of steps from Ti to Tf n =
ln(Tf )−ln(Ti)

ln(α)
(7)

β Increment coefficient of Lk β = e
ln(Lmax)−ln(Lmin)

n (8)

Vsi Neighborhood of the solution si -

P
(

sj

)
Probability of selecting sj P

(
sj

)
= 1− e−

N
|Vsi | (9)

N Number of random samples in VSi N = −|Vsi|ln
(

1− P
(

sj

))
= C|Vsi| (10)

C Exploration level C = ln
(

P
(

sj

))
(11)

Lmax Value of Lk at Tf Lmax = C|Vsi| (12)

On the other hand, the probability of selecting the solution sj from N random samples
in VSi is given by Equation (9); for this expression, N is calculated with Equation (10),
where C defines the exploration level calculated with Equation (11). To guarantee a good
exploration level, the value of C must be between 1 ≤ C ≤ 4.6. Finally, once C is defined,
Lmax can be established with Equation (12).

2.2. Related Works
2.2.1. Markowitz Model

A typical feature of Markowitz’s theory is that it provides a quantitative solution to
portfolio asset allocation, as it considers the possible trade-off between expected return and
risk exposure between established securities or assets. Thus, the investment portfolio design
problem is a multi-objective optimization issue with two main objectives [1]: maximize the
expected return, and minimize the variance of the portfolio models with Equations (13)
and (14), respectively. This model uses a mean-risk relationship, which is known as the
mean-variance approach.

Max E(R) =
n

∑
i=1

µixi (13)
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Min σ2(R) =
n

∑
i=1

n

∑
j=1

xi xjσij (14)

Subject to :
n

∑
i=1

xi = 1 (15)

xi ≥ 0(i = 1, . . . , n) (16)

where E(R) is the expected return of the portfolio; µi is the expected return of asset i; xi is
the fraction or weight of asset i in the portfolio, this weight must be positive (Equation (16)),
in addition, the sum of all weights must be equal to one as shown in Equation (15); n is the
number of assets in the portfolio; σ2(R) is the variance of the portfolio; σij is the covariance
between asset i and j.

2.2.2. Yu Model

A genetic algorithm (GA) was proposed [10] for a two-stage multi-attribute portfolio
analysis framework to solve the portfolio selection problem. First, a GA is used for evaluat-
ing asset quality with multiple asset attributes, and some are selected. Then, another GA is
used to optimize capital allocation among the selected assets in the second stage. Finally,
the fitness function F(R) is used to make a rational trade-off between minimizing risk and
maximizing expected return, as shown in Equation (17).

minF(R) =
n

∑
i=1

n

∑
j=1

xi xjσij +

(
n

∑
i=1

µixi − γ

)2

(17)

where xi, xj are the portion of the stocks i, j integrating the portfolio, and σij; is the covariance

of them. Moreover, µi is the mean of the stock value and
n
∑

i=1
µixi is the expected return of

the portfolio. Finally, γ represents the MARR.
In another section, we present the results obtained with this model.

2.2.3. Gilli Model

This model uses a single-objective minimization approach based on the classical
Markowitz model. The Gilli model seeks to create optimal portfolios in terms of variance
and expected return [21]. The mathematical model is shown in Equations (18) and (19).

minF(R) = σ2(R) + p(γ− E(R)) (18)

p =

{
σ2(R)max – σ2(R)min

γ−R
0

when γ > E(R)
Otherwise

(19)

where, the variables σ2(R) and E(R) denote the variance and the expected return of the
portfolio, respectively, while p is a penalty function. The values for σ2(R) max, σ2(R) min
are the maximum and minimum variance, and R is an average of the expected return value
of numerous randomly generated portfolios. While γ is the required return and has been
pre-defined. These parameters are used for defining the scaling constant p. The problem in
this model is to define this scaling constant for achieving the best portfolios. Therefore, this
model uses the scaling constant for achieving optimal portfolios.
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2.2.4. Masese Model

This model is similar to the classical formulation of Markowitz for investment portfo-
lios, and is an optimization problem defined by Equation (20). This model aims to minimize
the variance of the portfolio [22]; they use the classical Threshold Accepting algorithm [44].

Min σ2(R) =
n

∑
i=1

n

∑
j=1

xi xjσij (20)

Subject to

xi
in f ≤ xi ≤ xsup

i (21)

nin f ≤ nsup (22)

where xi
in f and xsup

i , shown in Equation (21), are the minimum and maximum weights for
the stock in the portfolio, and nin f and nsup in Equation (22), are the constraints setting the
minimum and a maximum number of stocks in the portfolio. The authors of this paper
reported that their model outperforms the Markowitz Model for portfolio selection.

3. Proposed Algorithms

The three algorithms proposed in this work, GENPO [49], SAIPO, and TAIPO, are
described in this section. These algorithms use optimization heuristics for obtaining the
stocks and then integrating the portfolio that is modeled as an optimization problem.
GENPO uses a Genetic Algorithm, SAIPO uses a Simulated Annealing Algorithm, and
TAIPO uses a Threshold Accepting Algorithm.

3.1. Mathematical Model for the Evaluation Function

The Sharpe Ratio (SR) is a financial metric proposed by W. Sharpe [34]. This financial
ratio indicates how suitable an investment is concerning its risk. This ratio can be used to
determine which investment obtains the greatest return with the same risk. In other words,
it determines the additional return achieved by investing in riskier financial assets. SR is
calculated with Equation (23).

SR =
E(R)− γ

σ(R)
(23)

where E(R) is the portfolio’s expected return, γ is the MARR (Minimum Acceptable Rate
of Return), and σ(R) represents the portfolio’s risk. The MARR parameter means that any
stock (or investment) should not be part of the portfolio if it does not surpass it.

Sharpe Ratio (SR) is based on the Markowitz model, and it is assumed that there are
adequate statistics for determining: (a) the expected value of the shares and (b) the standard
deviation (the risk measure) of the asset value over a given period. On the other hand,
the problem of selecting the best stocks from a specific market can be formulated as those
that maximize the expected return and, at the same time, minimize the risk value of the
portfolio; a practical alternative centers on finding stocks which maximize the Sharpe ratio.
This strategy allows the discovery of portfolios with assets from different financial areas
selected when the SR is maximized.

The proposed model represented by Equation (24) seeks to maximize the Sharpe Ratio,
subject to the expected value of the portfolio being greater or equal to the MARR ratio.

maxSR =
E(R)− γ√

∑n
i=1 σi

2xi
2 + 2 ∑n

i=1 ∑n
j 6=i σiσjxixjρij

(24)
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Subject to

µi ≥ γ (25)

where E(R) = µixi is the expected return of the portfolio, µi is the expected return of asset
i, and xi is the weight of the asset i in the portfolio. This model includes a constraint shown
in Equation (25), that allows only assets with an expected return equal to or greater than
the MARR to be included in the portfolio. The MARR parameter is represented here by
γ. As mentioned before [49], maximizing the value of the Sharpe Ratio allows solving
the problem of two objectives in one. However, it is an NP-hard problem; thus, finding
the optimal solution is not an easy task. We used Equation (26) to estimate the risk of
the portfolio, while the average correlation of the portfolio was obtained with a simple
process [37]. This correlation is provided in Equation (27), and we used it to check that
the correlation of the entire portfolio had a low value. In [50], the correlation between
assets and bonds was analyzed. Similarly, a previous study [37] used a strategy to evaluate
portfolios and risks from different portfolios.

σ(R) =

√√√√ n

∑
i=1

σi
2xi

2 + 2
n

∑
i=1

n

∑
j 6=i

σiσjxixjρij (26)

∣∣∣ρp

∣∣∣ = σ2(R)−∑n
i=1 σi

2xi
2

2 ∑n
i=1 ∑n

j 6=i σiσjxixj
(27)

The interpretation of Equation (27) is as follows: if
∣∣∣ρp

∣∣∣ ∼= 1 the portfolio has little

diversification; on the other hand, if
∣∣∣ρp

∣∣∣ ∼= 0 the portfolio is highly diversified.
The portfolio solution found with the model implemented in this paper, contained

the weighted values of the assets xi; the expected value portfolio’s E(R) and its risk σ(R),
in addition to the Sharpe Ratio and average correlation of the portfolio

∣∣∣ρp

∣∣∣. This model
and the implemented algorithms aim to find a balance between the expected value and
the portfolio’s risk. Moreover, the implemented algorithms seek to find an equilibrium
between the Sharpe metric and the managing portfolio risk.

3.2. Genetic Portfolio Optimization Algorithm (GENPO)

Algorithm 4 shows the structure of the GENPO algorithm. This is a Genetic Algorithm
where the initial population is conformed randomly by a set of weights in the range (0,1);
additionally, the summation of these weights should be one. The fitness function was
previously shown in Equation (24), and is applied for each population generated by the
algorithm. Then, the subsequent generations are generated, choosing one or two solutions,
depending on the genetic operator used: crossover or mutation, respectively.

From lines 1 to 5, a population is generated using a random number in the range (0,1).
The fitness Sharpe Ratio (SR) is the fitness function based on Sharpe Ratio described

in Equation (24). Moreover, it establishes the population size and the generations.
Lines 6 to 16 integrate the selection step. Two individuals from the population are eval-

uated by the fitness function and two individuals from the binary tournament, evaluating
from the higher expected value.

In the Crossover step, the xi values (the portion of assets) are randomly selected to
generate offspring from the selected individuals in the previous step. These offspring could
be part of the population depending on their SR. They are sorted from highest to lowest.
The last two individuals are discarded from the population to retain the population size.
From line 17 to the end, lays up the best individual from each generation to store their
variables and performance.

The best individual from generation i is compared with the previous individuals of
generation i − 1. The process is repeated each time a new population is generated. This
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process is performed to determine if the number of generations achieves the maximum
permitted number without enhancement, which is used as a stop criterion.

The result of the algorithm is a portfolio with the best assets and the investment
proportion applied in each one. This combination of assets has the best profit–risk ratio
and the lowest correlation, leading to the highest portfolio diversification.

Algorithm 4. GENPO

1: Begin /* GENPO */
2: Set first gen i = 0
3: Generate initial population (portfolio) P(i)
4: Compute Sharpe Ratio (SR) evaluation initial for each individual SR(i)
5: While Converge = False or i < MaxGen do
6: Begin /* Produce new generation */
7: Begin /* Reproductive cycle */
8: Select two individuals (portfolios), X1 y X2 of P(i),
9: Crossing point random selection.
10: Cross X1 y X2 getting two offspring Xh1, Xh2.
11: Insertion Xh1 y Xh2 in P(i)
12: Mutation random τ elements of P(i);
13: Compute fitness function (i) of τ elements,
14: Order individuals best evaluated in P(i).
15: Limit the population to its original size.
16: End
17: Save best individual of the population P(i)
18: If SR(i + 1) < SR(i) + tolerance then //* if SR doesn’t grow enough *//
19: gamma = gamma + 1 //* gamma counter grow *//
20: If gamma >= conv then //*conv=generations number without improv SR *//
21 Convergence=TRUE
22: End
23: End while
24: i = i + 1
25: If i > MaxGen then
26: Converge: = TRUE
27: End

3.3. Simulated Annealing for Investment Portfolio Optimization (SAIPO)

The SAIPO algorithm uses the negative value of the Sharpe Ratio, shown in Equation (24),
as the objective function.

SAIPO (Algorithm 5) receives as initial parameters (line 1) an initial temperature (Ti),
final temperature (Tf ), a cooling rate α, an internal cycle length Lk, and an internal cycle
increment coefficient β. In line 2, a random initial solution is generated, represented by
Xc, defined as a portfolio with random weights. Then, in line 3, the negative value of
the Sharpe Ratio is calculated. In line 4, the current temperature Tk takes the value of the
initial temperature Ti. In line 5, the main cycle begins, which is executed until the current
temperature is greater than or equal to the final temperature. In line 6, the Metropolis cycle
begins. In line 7, a new solution is generated by applying a perturbation to the current
solution. This new solution is compared with the existing solution, then calculating the
difference between both solutions in line 8. When this difference is negative (line 9), the
new solution is accepted in line 10; if this new solution is better than the best previously
found, it is accepted as the best global solution in line 12. Alternatively, if the difference is
greater or equal to zero, the new solution is accepted by applying the Boltzmann acceptance
criterion in line 14. In line 19, the number of iterations of the Metropolis cycle (Lk) increases,
multiplying its previous value by β. In line 20, the current temperature Tk is decreased
by multiplying its value by the α value. Finally, in line 22, the Sharpe Ratio is calculated
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by multiplying its negative value by −1. Lastly, in line 23, the output of the algorithm
is generated.

Algorithm 5. SAIPO

1: Parameters (Ti, Tf, α, Lk, β)

2: Generate random initial solution Xc = Xbest
3: sc = f (Xn) = SRneg = sbest
4: k = 0; Ti = Tk
5: while Tk ≥ Tf do
6: while k < Lk do
7: Xn = Perturbation (Xc); sn = f (Xn)
8: ∆ = sn − sc
9: if ∆ < 0 then
10: sc = sn; Xc = Xn
11: if sc < sbest then
12: sbest = sc; Xbest = Xc
13: end if
14: else if random (0,1)< e−∆/Tk then
15: sc = sn; Xc = Xn
16: end if
17: k = k + 1
18: end while
19: Lk+1 = β ∗ Lk
20: Tk+1 = α ∗ Tk
21: end while
22: SR = −sbest
23: return SR, Xbest
24: end SAIPO

Based on the neighborhood structure method presented in [23], in this work, a pertur-
bation is applied to generate a neighbor solution Xn close to the current solution Xc. This
procedure is detailed in Algorithm 6.

Algorithm 6. Perturbation Procedure

1: Parameters (q, Xc)
2: Select two assets i and j randomly
3: If wi ≥ q then
4: wi = wi− q
5: else if wi < q then
6: q = wi
7: wi = 0
8: end if
9: wj = wj + q
10: Xn 3 (wi, wj)

In line 2, two assets i and j with weights wi and wj are randomly selected. Then, a
quantity q is subtracted from asset i in line 4, and the same quantity is added to asset j
in line 9. Therefore, the weight of asset i in the portfolio, when the neighbor solution is
generated, will be wi− q, and the weight of asset j will be wj + q. This quantity q is obtained
by experimentation.

3.4. Threshold Accepting for Investment Portfolio Optimization (TAIPO)

Algorithm 7 shows the TAIPO algorithm that shares the same structure as SAIPO.
These two algorithms have a temperature cycle and a Metropolis cycle. TAIPO has an
additional parameter in line 1: a decreasing tolerance rate δ. As in SAIPO, in the TAIPO
algorithm, a perturbation is applied to the current solution to generate a new solution
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in line 7. However, in this algorithm, if the new solution is worse, the current solution
is replaced if the difference does not exceed a certain tolerance (Tol) or threshold (line 9),
which decreases by multiplying its previous value by δ in line 17. In the beginning, Tol
has a value equal to Tk (line 4), which implies that at high temperatures, the new solution
will be generally accepted as the current solution. That is, during the processing of 90% of
temperatures, Tol has the same value of Tk; in this case, δ is equal to 1. For the remaining
temperatures, δ takes the value of 0.96, obtained by experimentation, making the process
more restrictive in the last iterations [46].

Algorithm 7. TAIPO

1: Parameters (Ti, Tf, α, Lk, β, δ)
2: Generate random initial solution Xc = Xbest
3: sc = f (Xn) = SRneg = sbest
4: k = 0; Tolk = Ti = Tk
5: while Tk ≥ Tf do
6: while k < Lk do
7: Xn = Perturbation (Xc); sn = f (Xn)
8: ∆ = sn − sc
9: if ∆ < Tolk then
10: Sc = Sn; Xc = Xn
11: if sc < sbest then
12: sbest = sc; Xbest = Xc
13: end if
14: end if
15: k = k + 1
16: end while
17: Tolk+1 = δ ∗ Tolk
18: Lk+1 = β ∗ Lk
19: Tk+1 = α ∗ Tk
20: end while
21: SR = −sbest
22: return SR, Xbest
23: end TAIPO

In this work, we used the classic TA algorithm and compared its performance with
the algorithms proposed. As described in Algorithm 3, TA used a threshold sequence. The
procedure shown in Algorithm 8, which is based on the method proposed in [23], was used
to generate this sequence.

Algorithm 8. Generation of Threshold Sequence

1: Initialize niter
2: for i = 1 to niter do
3: Generate random solution Xc
4: Xn = Perturbation (Xc) // Generate neighbor solution
5: Compute ∆i = | f (Xn)− f (Xc)|
6: end for
7: Sort ∆1 ≤ ∆2 ≤ ∆3 ≤ . . . ≤ ∆i and use as Threshold Sequence

In line 1, the size of the sequence is declared, which will be equal to the number of
iterations of the TA classic algorithm. In line 3, a random solution is generated, then in line
4, a neighbor solution is generated, applying the perturbation described in Algorithm 6.
In line 5, the difference between the new solution and the current solution is calculated.
This process is repeated until the given number of iterations is generated. Finally, these
differences are ordered from highest to lowest in line 7.

3.5. Proposed Algorithms Hybridized with Related Models

The Sharpe Ratio (Equation (24)) is regularly used as the objective function of GENPO,
SAIPO, and TAIPO. To compare the performance of the algorithms proposed in this work
with the related works described previously, we developed three hybrid algorithms using
the last algorithm but replaced the objective function with that used by the reference models
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of Gilli, Yu, and Masese. These three hybrid algorithms are named: GENPO-X, SAIPO-X,
and TAIPO-X, where X is the name of a reference model.

Hybrid Pseudocodes

The SAIPO Hybrid Algorithm shown in Algorithm 9 has a similar structure to the
single SAIPO of Algorithm 5. In the beginning, the initial parameters are specified in line 1.
Then, the objective function is defined in line 2. There are three alternatives or different
models. Used in line 3 is the model presented in [10], the Yu model, shown in Equation (17).
On the other hand, to use the Gilli model [21] calculated with Equation (18), it is necessary
to compute the penalty p, established with Equation (19). This process is shown in lines 4–8.
Finally, the function of the Masese model [22], calculated with Equation (20), is presented
in line 10.

After selecting the model, a random feasible solution is generated in line 11. Then,
the temperature cycle begins in line 13, and the Metropolis cycle begins in line 14. The
Sharpe ratio is calculated at the end of the algorithm (lines 29–30). The rest of the process
and parameters are similar to SAIPO.

Algorithm 9. SAIPO Hybrid Algorithm

1: Parameters (Ti, Tf, α, Lk, β)
2: Define objective function f (X)
3: if f (X) = Yu model then f (X) = σ2(R)− (

(
E(R)− γ2) end if //Objective function for Yu model

4: else if f (X) = Gilli model then
5: Generate 1000 random port f olios and compute σ2(R)max ; σ2(R)min ; R
6: if γ > E(R) then p =

σ2(R)max−σ2(R)min
γ−R

end if
7: else p = 0
8: f (X) = σ2(R) + p(γ− E(R)) //Objective function for Gilli model
9: end if
10: else if f (X) = Masese model then f (X) = σ2(R) end if //Objective function for Masese model
11: Generate a random feasible solution Xc
12: sc = sbest = f (Xc); k = 0; Xc = Xbest; Tk = Ti .
13: while Tk ≥ Tf do
14: while k < Lk do
15: Xn = Perturbation (Xc); sn = f (Xn)
16: ∆ = sn − sc ; r = random (0,1)
17: if ∆ < 0. then
18: sc = sn; Xc = Xn
19: if sc > sbest then sbest = sc; Xbest = Xc end if
20: else if r < ê(−∆/Tk) then
21: sc = sn; Xc = Xn
22: end if
23: k = k + 1
24: end while
25: Lk+1 = β ∗ Lk ;
26: Tk+1 = α ∗ Tk
27: end while
28: SRup = E(R)− γ; SRdown = σ(R)
29: SR = SRup/SRdown
30: return sbest, Xbest, SR
31: end SAIPO Hybrid Algorithm

Algorithm 10, TAIPO Hybrid Algorithm, is similar to the SAIPO Hybrid Algorithm,
changing the new solutions acceptance criterion, as shown in line 16.

Algorithm 11 illustrates the procedure of the GENPO Hybrid Algorithm. As with
TAIPO and SAIPO hybrid algorithms, the fitness function is defined in line 4. In line 6, the
Yu model is used as presented in [10], computed with Equation (17). On the other hand, the
process behind the Gilli model [21] shown in Equations (18) and (19) is described in lines
9–14. Finally, the function of the Masese model [22], shown in Equation (20), is presented in
lines 15–17. The remainder of the process is the same as in the GENPO algorithm.
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Algorithm 10. TAIPO Hybrid Algorithm

1: Parameters (Ti, Tf, α, Lk, β, δ)
2: Define objective function f (X)
3: if f (X) = Yu model then f (X) = σ2(R)− (

(
E(R)− γ2) end if //Objective function for Yu model

4: else if f (X) = Gilli model then
5: Generate 1000 random port f olios and compute σ2(R)max ; σ2(R)min ; R
6: if γ > E(R) then p =

σ2(R)max−σ2(R)min
γ−R

end if
7: else p = 0
8: f (X) = σ2(R) + p(γ− E(R)) //Objective function for Gilli model
9: end if
10: else if f (X) = Masese model then f (X) = σ2(R) end if //Objective function for Masese model
11: Generate a random feasible solution Xc
12: sc = sbest = f (Xc); k = 0; Tolk = Tk ; Xc = Xbest; Tk = Ti
13: while Tk ≥ Tf do
14: while k < Lk do
15: Xn = Perturbation (Xc); sn = f (Xn); ∆ = sn − sc
16: if ∆ < Tolk then sc = sn; Xc = Xn
17: if sc < sbest then sbest = sc; Xbest = Xc end if
18: end if
19: k = k + 1
20: end while
21: Tolk+1 = δ ∗ Tolk
22: Lk+1 = β ∗ Lk
23: Tk+1 = α ∗ Tk
24: end while
25: SRup = E(R)− γ; SRdown = σ(R)
26: SR = SRup/SRdown
27: return sbest, Xbest, SR
28: end TAIPO Hybrid Algorithm

Algorithm 11. GENPO Hybrid Algorithm

1: Begin /* GenPO */
2: Set first gen i = 0
3: Generate initial population (portfolio) P(i)
4: Define objective function f (X)
5: if f (X) = Yu model then
6: f (X) = σ2(R)− (

(
E(R)− γ2

)
7: end if //Objective function for Yu model
8: else if f (X) = Gilli model then
9: Generate 1000 random port f olios and compute σ2(R)max ; σ2(R)min ; R
10: if γ > E(R) then
11: p =

σ2(R)max−σ2(R)min
γ−R

end if
12: else p = 0
13: f (X) = σ2(R) + p(γ− E(R)) //Objective function for Gilli model
14: end if //Objective function for Gilli model.
15: else if f (X) = Masese model then
16: f (X) = σ2(R)
17: end if //Objective function for Masese model
18: While Converge = False or i<MaxGen do
19: Begin /* Produce new generation */
20: Begin /* Reproductive cycle */
21 Select two individuals (portfolios), X1 y X2 of P(i),
22: Crossing point random selection.
23: Cross X1 y X2 getting two offspring Xh1, Xh2.
24: Insertion Xh1 y Xh2 in P(i)
25: Mutation random τ elements of P(i);
26: Compute fitness function (i) of τ elements,
27: Order individuals best evaluated in P(i).
28: Limit the population to its original size.
29: End
30: Save best individual of the population P(i)
31: If f (X)(i + 1) < f (X)(i) + tolerance then //* if SR doesn´t grow enough *//
32: gamma = gamma + 1 //* gamma counter grow *//
33: If gamma >= conv then //* conv = generations number without improv SR *//
34: Convergence = TRUE
35: End
36: End while
37: i = i + 1
38: If i>MaxGen then
39: Converge: = TRUE
40: End
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4. Results

The experiments performed with the algorithms presented in this paper, and the
comparison with the hybrid algorithms described previously are shown in this section. To
perform analytical tuning for SAIPO and TAIPO algorithms, some previous executions
were required. Moreover, we showed the parameters used for those executions in Table 2.

Table 2. Tuning parameters for TAIPO and SAIPO algorithms.

Number of
Executions

Initial
Temperature

Ti

Final
Temperature

Tf
Lk

Alpha
Value

30 100 0.00001 100 0.95

4.1. Experiments

To test all algorithms, we used a dataset with 47 stocks taken from the Mexican Stock
Exchange. The period evaluated was from 1 January 2017 to 30 June 2018.

In this paper, the performance of the proposed algorithms was compared with the
Hybrid Algorithms described in Section 3.5. The MARR or risk-free rate used was 8%.
The main metric that we used was the Sharpe Ratio, which allowed measurement of the
relationship between expected return and risk. The performance of the algorithms was
also measured with other metrics: expected return, risk, average portfolio correlation, and
runtime. GENPO algorithm used an initial population of 50 individuals through 100 gen-
erations, and used 2 parents with a random selection cross point to generate 2 offspring,
then applied an 8% mutation for the entire population. Finally, a stop criterion was imple-
mented in the algorithm after 20 repetitions without improvement. Based on the evaluation,
the individuals were ordered from best to worst and the least qualified individuals were
eliminated from the population, leaving the population at its original size.

We compared the performance of the algorithms in two circumstances: first by ap-
plying the MARR constraint shown in Equation (25), which allowed only assets with an
expected return equal to or greater than the MARR to be included in the portfolio; and then
without this constraint. The average values of 30 runs are shown in Tables 3 and 4.

Table 3. Algorithm performance without MARR constraint.

Algorithm Sharpe
Ratio Risk Expected

Return
Average

Stocks
Runtime
(seconds)Correlation

TAIPO 8.1 0.0973 0.8683 0.0043 7 292.93
SAIPO 8.1 0.0973 0.8682 0.0041 7 301.63

TA 8.1 0.0976 0.871 0.0044 7 745.03
TAIPO-Yu 0.0015 0.0556 0.0801 0.0304 26 10.16
SAIPO-Yu 0.0055 0.0556 0.0803 0.0294 26 10.1

TA-Yu −0.0103 0.0587 0.0788 0.0346 27 5.46
TAIPO-Gilli 0.7685 0.0554 0.1226 0.0296 27 11.01
SAIPO-Gilli 0.7605 0.0554 0.1221 0.0297 27 11.23

TA-Gilli 0.7636 0.0554 0.1223 0.0297 27 5.78
TAIPO Masese 0.1765 0.0656 0.0919 0.0134 10 9.84
SAIPO Masese 0.4795 0.0664 0.1124 0.0117 10 10.52

TA Masese 0.6323 0.0662 0.1229 0.0127 10 11.8
GENPO 6.95 0.087 0.7244 0.0187 21 462.14

GENPO-Yu 0.3874 0.0575 0.0803 0.0157 44 430.62
GENPO-Gilli 0.8077 0.0563 0.1255 0.0164 43 561.57

GENPO-Masese 0.6034 0.0564 0.1141 0.0207 20 487.96

Note in Table 3, we obtained the best result of the Sharpe Ratio using the algorithms
TAIPO, SAIPO, and TA, while the second-best result was achieved by GENPO. When the
asset constraint was not applied, the TA-Yu algorithm selected a portfolio with negative SR.
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This negative value is a consequence of the expected lower return than the MARR (eight
percent), which is the acceptable minimum value for accepting a portfolio.

Table 4. Algorithm performance with MARR constraint.

Algorithm Sharpe
Ratio Risk Expected

Return
Average

Correlation Stocks Runtime
(seconds)

TAIPO 8.1 0.0980 0.8716 0.0048 7 17.43
SAIPO 8.1 0.0975 0.8699 0.0048 7 18.02

TA 8.1 0.0974 0.8687 0.0048 7 136.21
TAIPO-Yu 0.5915 0.0886 0.1324 0.0785 11 2.05
SAIPO-Yu 0.5915 0.0886 0.1324 0.0784 11 2.04

TA-Yu 0.5957 0.0884 0.1326 0.0785 11 2.81
TAIPO-Gilli 5.1604 0.0673 0.4273 0.0479 17 2.48
SAIPO-Gilli 5.1747 0.0673 0.4282 0.0478 17 2.53

TA-Gilli 5.148 0.0673 0.4264 0.048 17 3.15
TAIPO-Masese 3.3167 0.0714 0.317 0.0435 10 1.8
SAIPO-Masese 3.2771 0.0719 0.3154 0.0432 10 2.0

TA-Masese 3.3202 0.0718 0.3183 0.0427 10 3.79
GENPO 7.96 0.0951 0.8420 0.0011 9 68.64

GENPO-Yu 0.9061 0.0870 0.1569 0.0326 16 80.40
GENPO-Gilli 0.8663 0.0673 0.4215 0.0514 19 87.41

GENPO-Masese 4.9194 0.0676 0.4126 0.0384 13 88.25

In the risk metric, we obtained the best results with the hybrid algorithms SAIPO-
Gilli, TAIPO-Gilli, TA-Gilli, and GENPO-Gilli. In terms of expected return, the portfolios
obtained with TAIPO, SAIPO, TA, and GENPO, had higher values than the other algorithms.
As shown in Tables 3 and 4, TAIPO, SAIPO, and TA algorithms achieved equivalent results
in Sharpe Ratio with and without a constraint. However, the SR placed higher than the rest
of the algorithms when the MARR constraint was applied.

In Table 4, we observe that the average correlation is higher when the MARR con-
straint is implemented than when it does not (as in Table 3). However, this difference is
lower in TAIPO, SAIPO, and TA. We obtain the best average correlation value with the
GENPO algorithm.

When the MARR constraint satisfies the assets, they can conform to the portfolio, and
the algorithms may select them. In addition, portfolios with the lowest number of stocks
are collected with TAIPO, SAIPO, and TA, which can be advantageous for these algorithms.
We can observe that when the MARR is implemented, the runtime is reduced among all
algorithms. Although the TA algorithm attains similar results to TAIPO and SAIPO in the
Sharpe Ratio, the runtime is higher. Thus, the new TAIPO algorithm proposed in this paper
represents a better alternative than the classical Threshold Accepting algorithm. However,
SAIPO and TAIPO algorithms require a lower runtime than Genetic algorithms.

Table 5 shows the relationship between the result reached in the Sharpe Ratio and the
runtime (seconds), that is Sharpe Ratio

Runtime , of each algorithm; a higher value represents a better
result. When the constraint was applied, the best results were obtained with TAIPO-Gilli
and SAIPO-Gilli.

When the constraint was not implemented, we obtained the largest Sharpe Ratio
Runtime , with

the algorithm TA-Gilli. This metric can be used when seeking faster solutions, although
faster solutions do not necessarily obtain the best quality results.

4.2. Statistical Test

To compare the results, a Friedman test [51] was applied, considering 30 observations,
where each algorithm represented a treatment. Tables 6 and 7 show the results applied to
the TA, TAIPO, and SAIPO algorithms and their hybrid versions. With a significance value
of 5% and a p-value equal to zero, we can conclude that there are significant differences
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in at least one algorithm. In addition, those that reached the best results were the TAIPO,
SAIPO, and TA algorithms, with the higher sum of ranks.

Table 5. Sharpe Ratio vs. Runtime.

MARR Constraint Without MARR Constraint

Algorithm Sharpe/Runtime Sharpe/Runtime

TAIPO 0.4647 0.0277
SAIPO 0.4495 0.0269

TA 0.0595 0.0109
TAIPO-Yu 0.2885 0.0001
SAIPO-Yu 0.2900 0.0005

TA-Yu 0.2120 −0.0019
TAIPO-Gilli 2.0808 0.0698
SAIPO-Gilli 2.0453 0.0677

TA-Gilli 1.6343 0.1321
TAIPO-Masese 1.8426 0.0179
SAIPO-Masese 1.6386 0.0456

TA-Masese 0.8760 0.0536
GENPO 0.1160 0.0150

GENPO-Yu 0.0113 0.0009
GENPO-Gilli 0.0099 0.0014

GENPO-Masese 0.0557 0.0012

Table 6. Friedman Test TA, TAIPO and SAIPO Algorithms without MARR constraint.

Algorithm Median Sum of Ranks

TA 8.1051 332
SAIPO 8.1051 330
TAIPO 8.1040 328

TAIPO-Gilli 0.7650 207
SAIPO-Gilli 0.7699 199

TA-Gilli 0.7557 197
TA-Masese 0.5874 163

SAIPO-Masese 0.4451 148
TAIPO-Masese −0.3164 130

TA-Yu −0.0088 111
SAIPO-Yu 0.0067 105
TAIPO-Yu 0.0025 90

Table 7. Friedman Test TA, TAIPO and SAIPO Algorithms with MARR constraint.

Algorithm Median Sum of Ranks

SAIPO 8.1000 332
TA 8.1000 330

TAIPO 8.0990 328
SAIPO-Gilli 5.1709 254
TAIPO-Gilli 5.1566 240

TA-Gilli 5.1480 226
TA-Masese 3.2775 155

SAIPO-Masese 3.2226 149
TAIPO-Masese 3.2577 146

TA-Yu 0.5956 84
SAIPO-Yu 0.5923 53
TAIPO-Yu 0.5889 43

In both cases, whether a constraint is applied or not, the TAIPO, SAIPO, and TA
algorithms secured the best results in the Sharpe Ratio.
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For the algorithms GENPO–Sharpe and its hybrid variants, considering a significance
value of 5%, and with a p-value equal to zero, there were significant differences between
them. Table 8 shows results for instances without constraint.

Table 8. Friedman Test Genetics Algorithms without MARR constraint.

Algorithm Median Sum of Ranks

GENPO 7.032 120
GENPO-Gilli 0.769 81.5

GENPO-Masese 0.617 68.5
GENPO-Yu 0.033 30

In the same way, a Friedman test was applied for the instance with constraint, obtaining
a p-value equal to zero, showing a statistically significant difference. Results are displayed
in Table 9.

Table 9. Friedman Test Genetics Algorithms with MARR constraint.

Algorithm Median Sum of Ranks

GENPO 8.086 120
GENPO-Masese 4.921 90

GENPO-Yu 0.924 51
GENPO-Gilli 0.866 39

Table 10 shows the comparison of the best algorithms when the constraint was not ap-
plied. With a p-value of zero, the null hypothesis can be rejected, thus if there are differences
between the groups, the TAIPO, SAIPO, and TA algorithms show better performance.

Table 10. Friedman Test for best algorithms without MARR constraint.

Algorithm Median Sum of Ranks

TA 8.1049 92
SAIPO 8.1032 90
TAIPO 8.1037 88

GENPO 6.9434 30

Table 11 shows the results of the Friedman test undertaken to compare the performance
of the best algorithms in each group when the MARR constraint was applied.

Table 11. Friedman Test for best algorithms with MARR constraint.

Algorithm Median Sum of Ranks

GENPO 8.1055 77
SAIPO 8.1009 76

TA 8.1006 75
TAIPO 8.1002 72

With a p-value of 0.964 and a significance value of 0.05, we can conclude that there are
no significant differences.

5. Conclusions

This paper presents three algorithms for portfolio optimization: GENPO based on
Genetic Algorithms, SAIPO based on Simulated Annealing, and TAIPO, which improves
upon the classical Threshold Accepting algorithm (TA). We compared them with state-of-
the-art algorithms, namely: Gilli, Yu, and Masese models. This comparison was undertaken
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by replacing the Sharpe ratio with the objective functions used in these models. The
proposed algorithms maximize the Sharpe Ratio (SR) and apply the Minimum Acceptable
Rate of Return (MARR) as an essential constraint. Therefore, we present three families of
algorithms for portfolio optimization in this paper. For instance, the GA family constituents
are GENPO, GENPO-Yu, GENPO-Gilli, and GENPO-Masese.

The proposed algorithms were designed to select the best combination of assets
from any stock exchange such as S&P 500 and any other stock market. However, they
were only tested with datasets from the Mexican stock exchange (BMV). The optimal
result of these algorithms was defined as the proportion of each asset that maximized the
objective function.

The experimental results revealed that the proposed algorithms, GENPO, SAIPO, and
TAIPO, obtained the highest quality portfolio within each family. Upon application of the
MARR constraint, the portfolio with the highest quality was obtained. Moreover, for the
same algorithm, when this constraint was included, the execution time was significantly
shorter. Regarding the GA family, the proposed GENPO algorithm showed the highest
quality in both cases, with and without application of the MARR constraint. Moreover,
GENPO did not require excessive tuning time to obtain high-quality portfolios. Similarly,
the algorithms SAIPO, TAIPO, and TA showed superior performance with or without the
MARR constraint. In addition, they had the lowest average correlation than that of their
respective family.

Finally, in the statistical test, where the performance of the proposed algorithms
was compared, no significant differences were found when the MARR constraint was
applied. However, when the MARR constraint was not applied, SAIPO, TAIPO, and TA
obtained a significant difference in quality compared with the GENPO algorithm. The
difference was that the TAIPO and SAIPO algorithms converge faster than GENPO and TA
algorithms. Therefore, TAIPO and SAIPO represent excellent alternatives for the portfolio
integration problem.

The SAIPO and TAIPO algorithms contained more parameters than GENPO; their
tuning process was longer and involved a series of previous executions; for this reason,
the tuning of these algorithms was more complex than that of GENPO. However, once the
appropriate parameters were obtained, the execution time of SAIPO and TAIPO was shorter
than the time used by GENPO. However, with TAIPO, unlike SAIPO, for the acceptance
criterion of new solutions, the calculation of probabilities was not required, which rendered
the execution time of TAIPO slightly lower than SAIPO.

For future research, we propose an application of these algorithms to larger stock mar-
kets, including other objective functions and metrics. Finally, we propose the application
and extension of these algorithms with other heuristics for design portfolios among several
markets. Moreover, the applicability of these algorithms regarding derivatives and other
stocks remains a problem that should be studied.
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