# Nonhomogeneous Dirichlet Problems with Unbounded Coefficient in the Principal Part

*Axioms*: Mathematical Analysis)

## Abstract

**:**

## 1. Introduction

**Hypothesis 1 (H1).**

**Hypothesis 2 (H2).**

**Theorem 1.**

**Example 1.**

## 2. Bounded Solutions to Problem (1)

**Lemma 1.**

**Proof.**

**Theorem 2.**

**Proof.**

## 3. Truncation Problem and Proof of Theorem 1

**Proposition 1.**

**Proof.**

**Theorem 3.**

**Proof.**

**Proof of Theorem 1.**

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Universitext; Springer: New York, NY, USA, 2011. [Google Scholar]
- Motreanu, D.; Tornatore, E. Nonhomogeneous degenerate quasilinear problems with convection. Nonlinear Anal. Real World Appl.
**2023**, 71, 103800. [Google Scholar] [CrossRef] - Drabek, P.; Kufner, A.; Nicolosi, F. Quasilinear Eliptic Equations with Degenerations and Singularities; De Gruyter Series in Nonlinear Analysis and Applications; Walter de Gruyter & Co.: Berlin, Germany, 1997; Volume 5. [Google Scholar]
- Kufner, A. Weighted Sobolev Spaces; John Wiley & Sons, Inc.: New York, NY, USA, 1985. [Google Scholar]
- Alves, C.D.; Moameni, A. Super-critical Neumann problems on unbounded domains. Nonlinearity
**2020**, 33, 4568–4589. [Google Scholar] [CrossRef] - Costea, N.; Kristaly, A.; Varga, C. Variational and monotonicity methods in nonsmooth analysis. In Frontiers in Mathematics; Birkhäuser/Springer: Cham, Switzerland, 2021. [Google Scholar]
- Moameni, A. Critical point theory on convex subsets with applications in differential equations and analysis. J. Math. Pures Appl.
**2020**, 141, 266–315. [Google Scholar] [CrossRef] - de Araujo, A.L.A.; Faria, L.F.O. Positive solutions of quasilinear elliptic equations with exponential nonlinearity combined with convection term. J. Differ. Equ.
**2019**, 267, 4589–4608. [Google Scholar] [CrossRef][Green Version] - Faraci, F.; Puglisi, D. Nodal solutions of semi-linear elliptic equations with dependence on the gradient. Bull. Sci. Math.
**2022**, 175, 103101. [Google Scholar] [CrossRef] - Gasinski, L.; Winkert, P. Existence and uniqueness results for double phase problems with convection term. J. Differ. Equ.
**2021**, 268, 4183–4193. [Google Scholar] [CrossRef][Green Version] - Guarnotta, U.; Marano, S.A. Infinitely many solutions to singular convective Neumann systems with arbitrarily growing reactions. J. Differ. Equ.
**2021**, 271, 849–863. [Google Scholar] [CrossRef] - Zeng, S.; Bai, Y.; Gasinski, L. Nonlinear nonhomogeneous obstacle problems with multivalued convection term. J. Geom. Anal.
**2022**, 32, 75. [Google Scholar] [CrossRef] - Bobkov, V.; Tanaka, M. Multiplicity of positive solutions for (p,q)-Laplace equations with two parameters. Commun. Contemp. Math.
**2022**, 24, 2150008. [Google Scholar] [CrossRef] - Zeng, S.; Radulescu, V.D.; Winkert, P. Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions. SIAM J. Math. Anal.
**2022**, 54, 1898–1926. [Google Scholar] [CrossRef] - Motreanu, D. Degenerated and competing Dirichlet problems with weights and convection. Axioms
**2021**, 10, 271. [Google Scholar] [CrossRef] - Carl, S.; Le, V.K.; Motreanu, D. Nonsmooth variational problems and their inequalities. In Comparison Principles and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Motreanu, D.
Nonhomogeneous Dirichlet Problems with Unbounded Coefficient in the Principal Part. *Axioms* **2022**, *11*, 739.
https://doi.org/10.3390/axioms11120739

**AMA Style**

Motreanu D.
Nonhomogeneous Dirichlet Problems with Unbounded Coefficient in the Principal Part. *Axioms*. 2022; 11(12):739.
https://doi.org/10.3390/axioms11120739

**Chicago/Turabian Style**

Motreanu, Dumitru.
2022. "Nonhomogeneous Dirichlet Problems with Unbounded Coefficient in the Principal Part" *Axioms* 11, no. 12: 739.
https://doi.org/10.3390/axioms11120739