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Abstract: In this paper, we shall discuss a newly introduced concept of center-radius total-ordered
relations between two intervals. Here, we address the Hermite–Hadamard-, Fejér- and Pachpatte-type
inequalities by considering interval-valued Riemann–Liouville fractional integrals. Interval-valued
fractional inequalities for a new class of preinvexity, i.e., cr-h-preinvexity, are estimated. The fractional
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Some numerical examples are also provided to validate the presented inequalities.
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1. Introduction

It is well known that if the function K : I→ R is preinvex with respect to ψ, i.e.,

K (g + `ψ(s, g)) ≤ `K (s) + (1− `) K (g),

and I 6= ∅ ∈ R is an invex set with respect to ψ : I× I 6= ∅→ R, then for all g, s ∈ X; ` ∈
[0, 1], we have

K

(
g +

1
2

ψ(s, g)
)
≤ 1

ψ(s, g)

∫ g+ψ(s,g)

g
K (y)dy ≤ K (g) +K (s)

2
.

The above-mentioned inequality is a modification of the classical Hermite–Hadamard
inequality given as (see [1]):

K

(
g + s

2

)
≤ 1

s− g

∫ s

g
K (y)dy �cr

K (g) +K (s)
2

.

The Hermite–Hadamard inequality has played an important role in the development
of the theory of convex analysis. It has attracted many mathematicians and has been the
source of many generalizations. One of the recent aspects of the theory of inequality has
been to establish new versions of the classical Hermite–Hadamard inequality using new
fractional operators.
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Definition 1. (see [2,3]) Let K ∈ L[g, s] on [g, s]. Then, the left and right Riemann–Liouville
fractional integrals for the order α > 0 are defined as follows:

Iα
g+K (x) :=

1
Γ(α)

∫ x

g
(x− u)α−1 K (u)du (0 5 g < x < s)

and
Iα
s−K (x) :=

1
Γ(α)

∫ s

x
(u− x)α−1 K (u)du (0 5 s < x < s),

respectively, where Γ(α) =
∫ ∞

0 uα−1e−udu is the Euler gamma function.

To make a move in this direction, Sarikaya et al. (see [2]) improved this inequality by
presenting its fractional counterpart for Riemann–Liouville fractional integrals given as:

Suppose K : [g, s]→ R is a convex function with 0 ≤ g ≤ s. If K ∈ L[g, s], then for
α > 0,

K

(
g + s

2

)
≤ 2α−1Γ(α + 1)

(s− g)α

[
Iα

g+K (s) + Iα
s−K (g)

]
≤ K (g) +K (s)

2
.

Fractional calculus is a basic concept in applied sciences and mathematics. Researchers
are driven to use fractional calculus as a tool to address many practical issues. Fractional
analysis and inequality theory have coevolved in the modern age. Various fractional ver-
sions of Hermite–Hadamard-, Fejer-, Ostrowski-, and Pachpatte-type inequalities have
received much attention over the years. Many scholars have used the Riemann–Liouville
fractional integral operators to study the Ostrowski inequality (see [4]), Simpson-type
inequality (see [5]), and Hermite–Hadamard–Mercer inequalities (see [6]) in addition to the
aforementioned inequality. Through fractional integral operators of the Katugampola type,
the Hermite–Hadamard inequality and its Fejér counterpart were studied by Katugampola
et al. (see [7]). Fernandez and Mohammed (see [8]) employed Atangana–Baleanu frac-
tional operators to present alternative variants of the Hermite–Hadamard inequality, and
Tariq et al. (see [9]) proved Simpson–Mercer type inequalities. The Hermite–Hadamard
inequality was also studied using the Caputo–Fabrizio fractional integrals (see [10,11]).
Recently, Butt et al. (see [12]), presented new versions of Jensen- and Jensen–Mercer-type in-
equalities in the fractal sense. New fractional versions of Hermite–Hadamard–Mercer- and
Pachpatte–Mercer-type inclusions have been established for convex [13] and harmonically
convex functions [14], respectively. Hermite–Hadamard inequalities have been further
generalized for convex interval-valued [15] and LR-Bi convex fuzzy interval-valued func-
tions [16]. Kashuri et al. [17] established Beesack–Wirtinger-type inequalities for different
convexities. Several other interesting versions of the mentioned inequalities can also be
found in the literature (see [18–20]). This analysis discloses the strong connection shared
between fractional integral operators and integral inequalities.

In this paper, we are interested in incorporating the concepts of a new type of interval-
valued analysis, i.e., center–radius order with fractional calculus, to present our results.
To be more specific, Hermite–Hadamard-type inequalities and their refinements, such as
Pachpatte-type inequalities and Fejér-type inequalities, are discussed for interval-valued
preinvex functions, the product of two preinvex functions, and symmetric functions.

Throughout this paper, we use the following notation:

• RI is the set of all closed intervals of R;
• R+

I is the set of all positive closed intervals of R;
• R−I is the set of all negative closed intervals of R.

cr-Order Relation

Let e = [e, ē] ∈ RI , then the center of the interval is defined as ec =
e+e

2 and the radius
of the interval is defined as er =

e−e
2 . Together, they are represented as:
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e = 〈ec, er〉 =
〈

e + e
2

,
e− e

2

〉
.

Definition 2. The center–radius-order relation for e = [e, e] = 〈ec, er〉, f = [f, f] = 〈fc, fr〉 ∈ RI
is defined as:

e �cr f⇐⇒
{

ec < fc, if ec 6= fc;
er ≤ fr, if ec = fc.

We have either e �cr f or f �cr e for any two intervals e, f ∈ RI .

Definition 3. (see [21]) Let K : [g, s] ⊂ R be an interval-valued function defined as

K = [K , K ].

Then, we say the function K is Riemann integrable over [g, s], if and only if K and K are
Riemann integrable over [g, s], i.e.,

(IR)
∫ s

g
K (u)du =

[
(R)

∫ s

g
K (u)du, (R)

∫ s

g
K (u)d

]
.

The set of all Riemann-integrable interval-valued functions over [g, s] are represented by IR([g,s]).

Corollary 1. Let K : [g, s] be an interval-valued mapping such that K =
[
K , K

]
with

K , K ∈ R[g,s]. Then

Iα
g+K (x) =

[
Iα
g+K (x), Iα

g+K (x)
]

and
Iα
s−K (x) =

[
Iα
s−K (x), Iα

s−K (x)
]
.

Shi et al. (see [22]) improved the properties of integration and explained that it preserves
the order with respect to the cr-order as well.

Theorem 1. Let the two interval-valued functions K , G : [g, s] ⊂ R be defined as

K = [K , K ] and G = [G , G ].

Then, ∫ s

g
K (u)du �cr

∫ s

g
G (u)du

holds if K (u) �cr G (u) for all u ∈ [g, s].

Example 1. Let K = [u, u+ 1] and G = [u2 + 1, 2u+ 1]. Then for u ∈ [0, 1]

Kc = u+
1
2

, Kr =
1
2

, Gc =
u2 + 2u+ 2

2
and Gr =

2u− u2

2
.

From Definition 2, we have K (u) �cr G (u), u ∈ [0, 1] since∫ 1

0
[u, u+ 1]du =

[
1
2

,
3
2

]
and ∫ 1

0
[u2 + 1, 2u+ 1]du =

[
4
3

, 2
]

.
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Now, again using Definition 2, we have∫ 1

0
K (u)du �cr

∫ 1

0
G (u)du.

Figures 1 and 2 show the graphical representation of Theorem 1.

u+
u
3

3

u
2

2
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Figure 1. Graphical validation of Theorem 1.
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Figure 2. The graph of Kc = u+ 1
2 , Kr =

1
2 , Gc =

u2+2u+2
2 and Gr =

2u−u2

2 .

We choose the center-radius order interval-valued analysis defined by Bhunia et al.
(see [23]) among the multiple interpretations and definitions of interval-valued analysis
offered by various authors (see [24–27]). Despite initially appearing to be equivalent, each
specified notion and its definitions are entirely distinct. Numerous researchers have con-
nected various convex functions and integral inequalities within the framework of interval-
valued analysis, yielding several noteworthy results. The Ostrowski-type inequalities were
examined by Chalco-Cano (see [28]), the Minkowski-type inequalities were established by
Roman-Flores (see [29]), and the Opial-type inequalities were investigated by (see [30]).
The interval-valued h-convex function was proposed by Zhao et al. (see [31]), who also
established a refinement of the Hermite–Hadamard inequality. Left–right interval-valued
and fuzzy interval-valued functions were introduced by Zhang et al. (see [26]) and Costa
et al. (see [27]) to prove Jensen’s inequalities. The interval (h1, h2)-convex function was first
described by An et al. [32]. Zhao et al. [33] improved on this idea by creating matching
H-H-type inequalities and interval-valued coordinated convex functions. This was also used
to support the H-H- and Fejer-type inequalities for n-polynomial convex interval-valued
functions [34] and preinvex functions [35,36]. Recently, Lai et al. [37] expanded the idea of
interval-valued preinvex functions to include interval-valued coordinated preinvex functions.

The inclusion and interval of the partial lower–upper (LU) or left–right (LR) order
connections are what support these findings. Therefore, it is crucial to understand how to
use a total order relation to look at the convexity and inequality of interval-valued functions.
In the course of this study, we deal with the complete interval order relation, or cr-order,
as proposed by Bhunia et al. [23]. Investigating the cr-h-preinvexity of interval-valued
functions in terms of cr-order for fractional integrals is the main objective of this study.
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Recently, the use of fractional calculus and interval-valued analysis have increased
exponentially with respect to integral inequalities. To move forward in this direction, it is
necessary to incorporate the concepts of cr-order interval-valued analysis and fractional
calculus to present new inequalities. There have not been many studies done considering
the Hermite–Hadamard inequality for center–radius (cr)-order interval-valued functions.
To fill this gap in the literature, we aim to establish some Hermite–Hadamard-type inequal-
ities and their refinements with the help of fractional calculus, fuzzy calculus, time-scale
calculus, and quantum calculus. Particularly in this article, we shall start our study by
incorporating fractional calculus and interval-valued cr-preinvexity to present our main
results. In subsequent articles, we shall focus on considering these concepts in the above-
mentioned directions.

The novelty of the current study is that for the first time in the literature, we employ
fractional operators to establish our inequalities concerning the center–radius-ordered
relation. In terms of how integral inequalities such as the Hermite–Hadamard-, Pachpatte-,
and Fejér-types can be combined with the concepts of the cr-interval-valued function,
this study provides a new avenue in the subject of inequalities. Here, it is important to
emphasize the distinction between the cr-order interval-valued analysis notion and the
traditional interval-valued analysis concept. Here, we calculate the intervals using the
concept of center and radius defined as ec =

e+e
2 and er =

e−e
2 , respectively, where e and e

are endpoints of an interval e.
The rest of the paper is organized as follows: In Section 1, we review the necessary

conditions and pertinent information pertaining to the associated interval-valued analysis
and integral inequalities. In Section 2, we explain the concept of preinvexity and cr-order
functions. In Section 3, we derive the Hermite–Hadamard and its relevant inequalities for
the cr-h-preinvex functions. In Section 5, we provide a succinct conclusion and discuss
several open research questions that are related to the findings of this work.

2. Preliminaries

In the year 1981, Hanson (see [38]) introduced the concept of invex functions in the
context of the bifunction ψ(·, ·). Invex sets and preinvex functions were studied by Ben-
Israel and Mond (see [39]) shortly after Hanson’s study was published. Convexity is a more
narrowly defined concept than preinvexity. In 1988, Weir and Mond (see [40]) investigated
the theory of preinvexity using the idea of invex sets.

Definition 4. (see [40]) Let g ∈ X ⊂ Rn; then, X is said to be invex at g with respect to
ψ : X×X→ Rn if for each s ∈ X,

g + `ψ(s, g) ∈ X, ` ∈ [0, 1].

Condition C: (see [41]) Let X ⊂ Rn be an open invex subset with respect to ψ : X×X→ R.
For any g, s ∈ X and ` ∈ [0, 1],

ψ(s, s + ` ψ(g, s)) = −` ψ(g, s), (1)

and
ψ(g, s + ` ψ(g, s)) = (1− `) ψ(g, s). (2)

In fact, using condition C, for any g, s ∈ X and `1, `2 ∈ [0, 1], one has

ψ(s + `2 ψ(g, s), s + `1 ψ(g, s)) = (`2 − `1)ψ(g, s).

Definition 5. (see [42]) The function K : I→ R is said to be h-preinvex with respect to ψ if

K (g + `ψ(s, g)) 5 h(`)K (s) + h(1− `) K (g), (∀g, s ∈ X; ` ∈ [0, 1]),

where I 6= ∅ ∈ R is an invex set with respect to ψ : I× I 6= ∅→ R and h 6= 0.
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Interval-Valued cr-h-Preinvex Functions and Relevant Results

Sahoo et al. (see [43]) introduced the concept of interval valued cr-h-Preinvex function
and established some alternative forms of the Hermite–Hadamard, Fejer and Pachhpatte
type inclusions. The new definitions and some of their results are given as follows:

Definition 6. Let h : [0, 1]→ R+ be a real function and K : [g, g+ψ(s, g)] be an interval-valued
mapping given by K = [K , K ]. Then, we say the function K is interval-valued cr-h-preinvex
with respect to ψ iff

K (g + `ψ(s, g)) �cr h(`)K (s) + h(1− `) K (g) (∀g, s ∈ X; ` ∈ [0, 1]).

Theorem 2. Assuming K : [g, g + ψ(s, g)]→ R is an interval-valued mapping, i.e.,

K (u) =
[
K (u), K (u)

]
for all u ∈ [g, s]. If K : [g, g + ψ(s, g)]→ R is a cr-h-preinvex function. Then, for h( 1

2 ) > 0,

1

2h
(

1
2

)K

(
g +

1
2

ψ(s, g)
)
�cr

1
ψ(s, g)

∫ g+ψ(s,g)

g
K (u)du �cr [K (g) +K (s)]

∫ 1

0
h(t)dt,

holds true.

Theorem 3. Suppose that K , G : [g, g + ξ(s, g)]→ R is an interval-valued function given by

K (y) =
[
K (y), K (y)

]
and G (y) =

[
G (y), G (y)

]
for all y ∈ [g, s] and K , G ∈ IR([g,s]). If K : [g, g + ξ(s, g)]→ R is a cr− h1-preinvex function
and G : [g, g + ξ(s, g)]→ R is a cr− h2-preinvex function, then

1
ξ(s, g)

∫ g+ξ(s,g)

g
K (y)G (y)dy

�cr M(g, s)
∫ 1

0
h1(1− `)h2(1− `)d`+N (g, s)

∫ 1

0
h1(1− `)h2(`)d`, (3)

where
M(g, s) = K (g)G (g) +K (s)G (s)

and
N (g, s) = K (g)G (s) +K (s)G (g).

Proposition 1. Let K : [g, g + ψ(s, g)] → RI be interval-valued functions given by K =
[K , K ] = 〈Kc, Kr〉. If Kc and Kr are h-preinvex functions, then K is an interval-valued
cr-h-preinvex functions.

To take the relevant work forward, we present new fractional versions of the above in-
clusions for the newly introduced notion via Riemann–Liouville fractional integral operators.

3. Riemann–Liouville Fractional Inclusions for Interval-Valued cr-Preinvexities

In the following results, we intend to study the application of cr-ordered functions in
integral inequalities via fractional operators.

Theorem 4. Suppose K : [g, g + ψ(s, g)]→ R is an interval-valued function that is given by

K (u) =
[
K (u), K (u)

]
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for all u ∈ [g, s]. If K : [s + ψ(g, s), s] → R is a cr-h-preinvex function. Then for h( 1
2 ) > 0,

we have

1

αh
(

1
2

)K

(
g +

1
2

ψ(s, g)
)
�cr

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g) + Iα

g+K (g + ψ(s, g))
]

�cr [K (g) +K (g + ψ(s, g))]
∫ 1

0
`α−1[h(`) + h(1− `)]d`.

Proof. Using the cr-h-preinvexity and from condition C,

K

(
x +

1
2

ψ(y, x)
)
�cr h

(
1
2

)
[K (x) +K (y)].

For x = g + `ψ(s, g) and y = g + (1− `)ψ(s, g). It is seen that

K

(
g + `ψ(s, g) +

1
2

ψ(g + (1− `)ψ(s, g), g + `ψ(s, g))
)

�cr h

(
1
2

)
[K (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g))].

This implies that

1

h
(

1
2

)K

(
g +

1
2

ψ(s, g)
)
�cr [K (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g))]. (4)

Upon multiplication of (4) by `α−1 and then integrating over [0, 1],

1

h
(

1
2

)K

(
g +

1
2

ψ(s, g)
) ∫ 1

0
`α−1d`

�cr

[∫ 1

0
`α−1K (g + `ψ(s, g))d`+

∫ 1

0
`α−1K (g + (1− `)ψ(s, g))d`

]
=

[∫ 1

0
`α−1(K (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g)))d` ,∫ 1

0
`α−1(K (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g))

)
d`
]

=

[∫ g+ψ(s,g)

g

(
u− g

ψ(s, g)

)α−1
K (u)

du
ψ(s, g)

+
∫ g+ψ(s,g)

g

(
g + ψ(s, g)− u

ψ(s, g)

)α−1

K (u)
du

ψ(s, g)
,

∫ g+ψ(s,g)

g

(
u− g

ψ(s, g)

)α−1
K (u)

du
ψ(s, g)

+
∫ g+ψ(s,g)

g

(
g + ψ(s, g)− u

ψ(s, g)

)α−1

K (u)
du

ψ(s, g)

]

=

[
Γ(α)

(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g) + Iα

g+K (g + ψ(s, g))
]
,

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g) + Iα

g+K (g + ψ(s, g))
]]

=
Γ(α)

(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g) + Iα

g+K (g + ψ(s, g))
]
.

Now, it can be concluded that

1

αh
(

1
2

)K

(
g +

1
2

ψ(s, g)
)
�cr

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g) + Iα

g+K (g + ψ(s, g))
]
. (5)

Hence, the first inequality is established. For the next part, we have

K (g + `ψ(s, g)) �cr h(`)K (s) + h(1− `) K (g)
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and
K (g + (1− `)ψ(s, g)) �cr h(`)K (g) + h(1− `) K (s).

Consequently, we have∫ 1

0
`α−1K (g + `ψ(s, g))d`+

∫ 1

0
`α−1K (g + (1− `)ψ(s, g))d`

�cr [K (g) +K (g + ψ(s, g))]
∫ 1

0
`α−1[h(`) + h(1− `)]d`.

We conclude,

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g) + Iα

g+K (g + ψ(s, g))
]

�cr [K (g) +K (g + ψ(s, g))]
∫ 1

0
`α−1[h(`) + h(1− `)]d`. (6)

We have the required inequality by combining (5) and (6), i.e.,

1

αh
(

1
2

)K

(
g +

1
2

ψ(s, g)
)
�cr

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g) + Iα

g+K (g + ψ(s, g))
]

�cr [K (g) +K (g + ψ(s, g))]
∫ 1

0
`α−1[h(`) + h(1− `)]d`.

Remark 1. Choosing ψ(s, g) = s− g in Theorem 4, one gets the following results:

1

αh
(

1
2

)K

(
g + s

2

)
�cr

Γ(α)
(s− g)α

[
Iα
s−K (g) + Iα

g+K (s)
]

�cr [K (g) +K (s)]
∫ 1

0
`α−1[h(`) + h(1− `)]d`.

Remark 2. Choosing h(`) = ` and ψ(s, g) = s− g in Theorem 4, one gets new findings for
cr-convex functions:

K

(
g + s

2

)
�cr

Γ(α + 1)
2(s− g)α

[
Iα
s−K (g) + Iα

g+K (s)
]
�cr

K (g) +K (s)
2

,

where Γ(α + 1) = αΓ(α).

Theorem 5. Let K , G : [g, g + ψ(s, g)]→ R be interval-valued functions, given as:

K (u) =
[
K (u), K (u)

]
and G (u) =

[
G (u), G (u)

]
for all u ∈ [g, s] and K , G ∈ IR([g,s]). If K : [g, g+ ψ(s, g)]→ R is a cr− h1-preinvex function
and G : [g, g + ψ(s, g)]→ R is a cr− h2-preinvex function, then

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)G (g) + Iα

g+K (g + ψ(s, g))G (g + ψ(s, g))
]

�cr M(g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

+N (g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(1− `) + h1(1− `)h2(`)]d` (7)

holds true, where
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M(g, g + ψ(s, g)) = K (g)G (g) +K (s)G (s)

and
N (g, g + ψ(s, g)) = K (g)G (s) +K (s)G (g).

Proof. Using the cr-h-preinvexity, we have

K (g + `ψ(s, g)) �cr h1(`)K (s) + h1(1− `) K (g)

and
G (g + `ψ(s, g)) �cr h2(`)G (s) + h2(1− `) G (g).

Consequently, upon multiplication, it follows

K (g + `ψ(s, g)) · G (g + `ψ(s, g))
�cr [h1(`)K (s) + h1(1− `) K (g)] · [h2(`)G (s) + h2(1− `) G (g)]

= h1(`)h2(`)[K (s)G (s)] + h1(1− `)h2(1− `)[K (g)G (g)]

+ h1(`)h2(1− `)[K (s)G (g)] + h1(1− `)h2(`)[K (g)G (s)]. (8)

Similarly,

K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))
�cr [h1(`)K (g) + h1(1− `) K (s)] · [h2(`)G (g) + h2(1− `) G (s)]

= h1(`)h2(`)[K (g)G (g)] + h1(1− `)h2(1− `)[K (s)G (s)]

+ h1(`)h2(1− `)[K (g)G (s)] + h1(1− `)h2(`)[K (s)G (g)]. (9)

Addition of (8) and (9), then multiplication by `α−1, and finally integrating over [0, 1]
results in

∫ 1

0
`α−1K (g + `ψ(s, g)) · G (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))d`

=

[∫ 1

0
`α−1K (g + `ψ(s, g)) · G (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))d`,∫ 1

0
`α−1K (g + `ψ(s, g)) · G (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))d`

]
�cr [K (s)G (s) +K (g)G (g)]

∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

+ [K (g)G (s) +K (s)G (g)]
∫ 1

0
`α−1[h1(`)h2(1− `) + h1(1− `)h2(`)]d`

=

[
[K (s)G (s) +K (g)G (g)]

∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

+ [K (g)G (s) +K (s)G (g)]
∫ 1

0
`α−1[h1(`)h2(1− `) + h1(1− `)h2(`)]d`,

[K (s)G (s) +K (g)G (g)]
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

+ [K (g)G (s) +K (s)G (g)]
∫ 1

0
`α−1[h1(`)h2(1− `) + h1(1− `)h2(`)]d`

]
.
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From Definition 3, it follows

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)G (g) + Iα

g+K (g + ψ(s, g))G (g + ψ(s, g))
]

�cr [K (g)G (g) +K (s)G (s)]
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

+ [K (g)G (s) +K (s)G (g)]
∫ 1

0
`α−1[h1(`)h2(1− `) + h1(1− `)h2(`)]d`

=M(g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

+N (g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(1− `) + h1(1− `)h2(`)]d`.

This completes the proof.

Remark 3. Choosing ψ(s, g) = s− g in Theorem 5, one gets findings for cr-h-convex functions, i.e.,

Γ(α)
(s− g)α

[
Iα
s−K (g)G (g) + Iα

g+K (s)G (s)
]

�cr M(g, s)
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

+N (g, s)
∫ 1

0
`α−1[h1(`)h2(1− `) + h1(1− `)h2(`)]d`,

Theorem 6. Let K , G : [s + ψ(g, s), s]→ R be interval-valued functions, given as

K (u) =
[
K (u), K (u)

]
and G (u) =

[
G (u), G (u)

]
for all u ∈ [g, s] and K , G ∈ IR([g,s]). If K : [s + ψ(g, s), s]→ R is a cr− h1-preinvex function
and G : [s + ψ(g, s), s]→ R is a cr− h2-preinvex function, then

1

αh1

(
1
2

)
h2

(
1
2

)K

(
g +

1
2

ψ(s, g)
)
· G
(

g +
1
2

ψ(s, g)
)

�cr
Γ(α)

(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)G (g) + Iα

g+K (g + ψ(s, g))G (g + ψ(s, g))
]

+M(g, g + ψ(s, g))
∫ 1

0
`α−1[h1(1− `)h2(`) + h1(`)h2(1− `)]d`

+N (g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

holds true, whereM(g, g + ψ(s, g)) and N (g, g + ψ(s, g)).

Proof. Using the cr-h-preinvexity and condition C,

1

h
(

1
2

)K

(
g +

1
2

ψ(s, g)
)
�cr [K (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g))].

It follows that

K

(
g +

1
2

ψ(s, g)
)
= K

(
g + `ψ(s, g) +

1
2

ψ(g + (1− `)ψ(s, g), g + `ψ(s, g))
)

�cr h1

(
1
2

)
[K (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g))] (10)
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and

G

(
g +

1
2

ψ(s, g)
)
= G

(
g + `ψ(s, g) +

1
2

ψ(g + (1− `)ψ(s, g), g + `ψ(s, g))
)

�cr h2

(
1
2

)
[G (g + `ψ(s, g)) + G (g + (1− `)ψ(s, g))]. (11)

Upon multiplying (10) and (11), one gets

K

(
g +

1
2

ψ(s, g)
)
· G
(

g +
1
2

ψ(s, g)
)

�cr h1

(
1
2

)
[K (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g))] · h2

(
1
2

)
[G (g + `ψ(s, g)) + G (g + (1− `)ψ(s, g))]

= h1

(
1
2

)
h2

(
1
2

)
[K (g + `ψ(s, g)) · G (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))

+K (g + `ψ(s, g)) · G (g + (1− `)ψ(s, g)) +K (g + (1− `)ψ(s, g)) · G (g + `ψ(s, g)),

K (g + `ψ(s, g)) · G (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))

+ K (g + `ψ(s, g)) · G (g + (1− `)ψ(s, g)) +K (g + (1− `)ψ(s, g)) · G (g + `ψ(s, g))
]

= h1

(
1
2

)
h2

(
1
2

){[
K (g + `ψ(s, g)) · G (g + `ψ(s, g)), K (g + `ψ(s, g)) · G (g + `ψ(s, g))

]
+
[
K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g)), K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))

]
+
[
K (g + `ψ(s, g)) · G (g + (1− `)ψ(s, g)), K (g + `ψ(s, g)) · G (g + (1− `)ψ(s, g))

]
+
[
K (g + (1− `)ψ(s, g)) · G (g + `ψ(s, g)), K (g + (1− `)ψ(s, g)) · G (g + `ψ(s, g))

]}
= h1

(
1
2

)
h2

(
1
2

)
[K (g + `ψ(s, g)) · G (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))]

+ h1

(
1
2

)
h2

(
1
2

)
[K (g + `ψ(s, g)) · G (g + (1− `)ψ(s, g)) +K (g + (1− `)ψ(s, g)) · G (g + `ψ(s, g))]

Using the concept of interval-valued analysis,

�cr h1

(
1
2

)
h2

(
1
2

)
[K (g + `ψ(s, g)) · G (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))]

+ h1

(
1
2

)
h2

(
1
2

)
[(h1(`)K (s) + h1(1− `) K (g)) · (h2(`)G (g) + h2(1− `) G (s))

+ (h1(`)K (g) + h1(1− `) K (s)) · h2(`)G (s) + h2(1− `) G (g)]

= h1

(
1
2

)
h2

(
1
2

)
{K (g + `ψ(s, g)) · G (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))

+M(g, g + ψ(s, g))[h1(1− `)h2(`) + h1(`)h2(1− `)] +N (g, g + ψ(s, g))[h1(`)h2(`) + h1(1− `)h2(1− `)]}.
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Upon multiplication by `α−1 and integrating over [0, 1], one has

1
α
K

(
g +

1
2

ψ(s, g)
)
· G
(

g +
1
2

ψ(s, g)
)

�cr h1

(
1
2

)
h2

(
1
2

){∫ 1

0
`α−1K (g + `ψ(s, g)) · G (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))d`

+M(g, g + ψ(s, g))
∫ 1

0
`α−1[h1(1− `)h2(`) + h1(`)h2(1− `)]d`

+ N (g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

}
= h1

(
1
2

)
h2

(
1
2

){[∫ 1

0
`α−1K (g + `ψ(s, g)) · G (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))d`,∫ 1

0
`α−1K (g + `ψ(s, g)) · G (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) · G (g + (1− `)ψ(s, g))d`

]
+M(g, g + ψ(s, g))

∫ 1

0
`α−1[h1(1− `)h2(`) + h1(`)h2(1− `)]d`

+ N (g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

}
.

Consequently,

1

αh1

(
1
2

)
h2

(
1
2

)K

(
g +

1
2

ψ(s, g)
)
· G
(

g +
1
2

ψ(s, g)
)

�cr
Γ(α)

(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)G (g) + Iα

g+K (g + ψ(s, g))G (g + ψ(s, g))
]

+M(g, g + ψ(s, g))
∫ 1

0
`α−1[h1(1− `)h2(`) + h1(`)h2(1− `)]d`

+N (g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`.h.

This completes the proof.

Remark 4. Choosing ψ(s, g) = s− g in Theorem 6, one gets

1

αh1

(
1
2

)
h2

(
1
2

)K

(
g + s

2

)
· G
(

g + s
2

)
�cr

Γ(α)
(s− g)α

[
Iα
s−K (g)G (g) + Iα

g+K (s)G (s)
]

+M(g, s)
∫ 1

0
`α−1[h1(1− `)h2(`) + h1(`)h2(1− `)]d`

+N (g, s)
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`.

Theorem 7. (Hermite–Hadamard–Fejér-type inequality of the first kind)
LetK : [s + ψ(g, s), s]→ R be an interval-valued function, given as

K (u) =
[
K (u), K (u)

]
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for all u ∈ [g, s]. If K : [s+ψ(g, s), s]→ R is a cr-h-preinvex function and W : [s+ψ(g, s), s]→
R, W > 0 is symmetric with respect to g + 1

2 ψ(s, g), then assuming

∫ g+ψ(s,g)

g
W (u)du > 0,

the following inequalities hold true:

K

(
g +

1
2

ψ(s, g)
)

Γ(α)
(ψ(s, g))α

[
Iα
g+W (g + ψ(s, g)) + Iα

(g+ψ(s,g))−W (g)
]

�cr 2h
(

1
2

)
Γ(α)

(ψ(s, g))α

[
Iα
g+K (g + ψ(s, g))W (g + ψ(s, g)) + Iα

(g+ψ(s,g))−K (g)W (g)
]
.

Proof. Using the cr-h-preinvexity and condition C, we have

K

(
g +

1
2

ψ(s, g)
)
�cr h

(
1
2

)
[K (g + `ψ(s, g))d`+K (g + (1− `)ψ(s, g))d`].

Multiplying by `α−1W (g + `ψ(s, g)) = `α−1W (g + (1− `)ψ(s, g)) and integrating
over [0, 1],

K

(
g +

1
2

ψ(s, g)
) ∫ 1

0
`α−1W (g + `ψ(s, g))d`

�cr h

(
1
2

)[∫ 1

0
`α−1K (g + `ψ(s, g)) ·W (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) ·W (g + (1− `)ψ(s, g))d`

]
= h

(
1
2

)[∫ 1

0
`α−1K (g + `ψ(s, g)) ·W (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) ·W (g + `ψ(s, g))d`

]
. (12)

since ∫ 1

0
`α−1K (g + `ψ(s, g)) ·W (g + `ψ(s, g))d`

=
1

(ψ(s, g))α

∫ g+ψ(s,g)

g
(u− g)α−1K (u)W (u)du

=
Γ(α)

(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)W (g)

]
. (13)

Additionally,∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) ·W (g + `ψ(s, g))d`

=
1

(ψ(s, g))α

∫ g+ψ(s,g)

g
(u− g)α−1K (2g + ψ(s, g)− u)W (u)du

=
1

(ψ(s, g))α

∫ g+ψ(s,g)

g
((g + ψ(s, g))− u)α−1K (u)W (g + s− u)du

=
1

(ψ(s, g))α

∫ g+ψ(s,g)

g
((g + ψ(s, g))− u)α−1K (u)W (u)du

=
Γ(α)

(ψ(s, g))α

[
Iα
g+K (g + ψ(s, g))W (g + ψ(s, g))

]
, (14)
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and ∫ 1

0
`α−1W (g + `ψ(s, g))d` =

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−W (g)

]
. (15)

Using (13), (14), and (15) in (12), we have

1
2
K

(
g +

1
2

ψ(s, g)
)

Γ(α)
(ψ(s, g))α

[
Iα
g+W (g + ψ(s, g)) + Iα

(g+ψ(s,g))−W (g)
]

(16)

�cr h

(
1
2

)
Γ(α)

(ψ(s, g))α

[
Iα
g+K (g + ψ(s, g))W (g + ψ(s, g)) + Iα

(g+ψ(s,g))−K (g)W (g)
]
.

From (16), we have

K

(
g +

1
2

ψ(s, g)
)

Γ(α)
(ψ(s, g))α

[
Iα
g+W (g + ψ(s, g)) + Iα

(g+ψ(s,g))−W (g)
]

�cr 2h
(

1
2

)
Γ(α)

(ψ(s, g))α

[
Iα
g+K (g + ψ(s, g))W (g + ψ(s, g)) + Iα

(g+ψ(s,g))−K (g)W (g)
]
.

This completes the proof.

Remark 5. Choosing ψ(s, g) = s− g in Theorem 7, one gets findings for cr-h-convex functions, i.e.,

K

(
g + s

2

)
Γ(α)

(s− g)α

[
Iα
g+W (s) + Iα

s−W (g)
]

�cr 2h
(

1
2

)
Γ(α)

(s− g)α

[
Iα
g+K (s)W (s) + Iα

s−K (g)W (g)
]
.

Theorem 8. (Hermite–Hadamard–Fejér inequality of the second kind)
Let K : [s + ψ(g, s), s]→ R be an interval-valued function, given as

K (u) =
[
K (u), K (u)

]
for all u ∈ [g, s]. If K : [s+ψ(g, s), s]→ R is a cr-h-preinvex function and W : [s+ψ(g, s), s]→
R, W > 0 is symmetric with respect to g + 1

2 ψ(s, g), then the following inequalities hold true:

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)W (g) + Iα

g+K (g + ψ(s, g))W (g + ψ(s, g))
]

�cr [K (g) +K (s)]
∫ 1

0
`α−1[h(`) + h(1− `)]W (g + `ψ(s, g))d`. (17)

Proof. Considering K as a cr-h-preinvexity and W as symmetric with respect to g +
1
2 ψ(s, g), we have

K (g + `ψ(s, g)) ·W (g + `ψ(s, g)) �cr [h(`)K (s) + h(1− `) K (g)] ·W (g + `ψ(s, g))

and

K (g + (1− `)ψ(s, g)) ·W (g + (1− `)ψ(s, g))
�cr [h(`)K (g) + h(1− `) K (s)] ·W (g + (1− `)ψ(s, g)).

Upon addition of the above inequalities, we have

K (g + `ψ(s, g)) ·W (g + `ψ(s, g)) +K (g + (1− `)ψ(s, g)) ·W (g + (1− `)ψ(s, g))
�cr [K (g)(h(1− `)W (g + `ψ(s, g)) + h(`)W (g + (1− `)ψ(s, g)))
+ K (s)(h(`)W (g + `ψ(s, g)) + h(1− `)W (g + (1− `)ψ(s, g)))].
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Now, using the symmetry property of W , we have

[K (g)(h(1− `)W (g + `ψ(s, g)) + h(`)W (g + (1− `)ψ(s, g)))

+ K (s)(h(`)W (g + `ψ(s, g)) + h(1− `)W (g + (1− `)ψ(s, g)))]

= K (g)[h(`) + h(1− `)]W (g + `ψ(s, g)) +K (s)[h(`) + h(1− `)]W (g + `ψ(s, g)).

= [K (g) +K (s)][h(`) + h(1− `)]W (g + `ψ(s, g)). (18)

Multiplying the above inequality by `α−1 and then integrating over [0, 1], we have∫ 1

0
`α−1K (g + `ψ(s, g)) ·W (g + `ψ(s, g))d`

+
∫ 1

0
`α−1K (g + (1− `)ψ(s, g)) ·W (g + (1− `)ψ(s, g))d`

�cr [K (g) +K (s)]
∫ 1

0
`α−1[h(`) + h(1− `)]W (g + `ψ(s, g))d`. (19)

From Definition 3 and 1, we have

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)W (g) + Iα

g+K (g + ψ(s, g))W (g + ψ(s, g))
]

�cr [K (g) +K (s)]
∫ 1

0
`α−1[h(`) + h(1− `)]W (g + `ψ(s, g))d`.

This completes the proof.

Remark 6. Choosing ψ(s, g) = s− g in Theorem 8, one gets findings for cr-h-convex functions, i.e.,

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)W (g) + Iα

g+K (g + ψ(s, g))W (g + ψ(s, g))
]

�cr [K (g) +K (s)]
∫ 1

0
`α−1[h(`) + h(1− `)]W (g + `ψ(s, g))d`.

Remark 7. Combining Theorems 7 and 8 for W (u) = 1, we have Theorem 4.

4. Numerical Estimations

Example 2. Let K (u) = [−u2 + 1, u2 + 2], ψ(s, g) = s− g, g = 0, and s = 1. Then, for α = 1
2

and h(`) = `, all assumptions of Theorem 4 are satisfied. We have

1

αh
(

1
2

)K

(
g +

1
2

ψ(s, g)
)
≈ [3, 9],

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g) + Iα

g+K (g + ψ(s, g))
]
≈
[

4.75
1.875

,
17.75
1.875

]
and

[K (g) +K (g + ψ(s, g))]
∫ 1

0
`α−1[h(`) + h(1− `)]d` ≈ [2, 10].

Consequently,

[3, 9] �cr

[
4.75
1.875

,
17.75
1.875

]
�cr [2, 10].

This ultimately confirms the validity of Theorem 4.
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Example 3. Let K (u) = [u2, u3 + 1], G (u) = [−u2 + 1, u2 + 2], ψ(s, g) = s− g, g = 0 and
s = 1. Then, for h(`) = ` and α = 1

2 all assumptions of Theorem 5 are satisfied. Let us denote

Γ(α)
(ψ(s, g))α

[
Iα
(g+ψ(s,g))−K (g)G (g) + Iα

g+K (g + ψ(s, g))G (g + ψ(s, g))
]
≈ [0.43, 12.78],

M(g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(`) + h1(1− `)h2(1− `)]d`

+N (g, g + ψ(s, g))
∫ 1

0
`α−1[h1(`)h2(1− `) + h1(1− `)h2(`)]d` ≈ [0.53, 15.47].

Thus, it can be easily seen that

[0.43, 12.78] �cr [0.53, 15.47].

This ultimately confirms the validity of Theorem 5.

Example 4. Similarly, if we take all the assumptions of Example 3, then all the hypotheses in
Theorem 6 are satisfied.

Example 5. Let K (u) = [u2, u3 + 1], ψ(s, g) = s− g, g = 0, and s = 1. Then, for h(`) = ` and

symmetric function W (u) =
(

1
2 − u

)2
, where u ∈ [0, 1] is symmetric about 1

2 , we have

K

(
g +

1
2

ψ(s, g)
)

Γ(α)
(ψ(s, g))α

[
Iα
g+W (g + ψ(s, g)) + Iα

(g+ψ(s,g))−W (g)
]
≈
[

7
60

,
21
40

]
,

2h
(

1
2

)
Γ(α)

(ψ(s, g))α

[
Iα
g+K (g + ψ(s, g))W (g + ψ(s, g)) + Iα

(g+ψ(s,g))−K (g)W (g)
]

≈ [0.20, 0.65].

Let A =
[

7
60 , 21

40

]
, and B = [0.20, 0.65]. Then, Ac ≈ 0.32 and Bc ≈ 0.42. Thus, from

Definition 2, it can be easily seen that[
7

60
,

21
40

]
�cr [0.20, 0.65].

This ultimately confirms the validity of Theorem 7.

Example 6. Similarly, if we take all the assumptions of Example 5, then all the hypotheses in
Theorem 8 are satisfied.

5. Conclusions

A suitable technique for introducing uncertainty into prediction processes is to use
interval-valued functions. Using a new idea from [43], we proved fractional versions of the
Hermite–Hadamard-, Fejér-, and Pachpatte-type inequalities. We demonstrated that our
findings can generate a few novel findings for the cr− h-convex function and h-preinvex
functions.A new approach for cr-ordered interval-valued inequalities involving the well-
known Riemann–Liouville fractional integral was introduced. For clarification of the results,
some numerical examples were studied as well. In the future, this approach can also be
generalized for other fractional operators such as Atangana–Baleanu, Caputo–Fabrizio,
tempered, generalized fractional integral operators, etc. Furthermore, this methodology
can also be applied to various non-symmetric functions.

This innovative concept can be applied to future presentations of various inequalities,
such as those of the Hermite–Hadamard, Ostrowski, Jensen–Mercer, Bullen, and Simpson
types. These inequalities can also be established for a variety of interval-valued quantum
calculus, fuzzy calculus, and fractional calculus.
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