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Abstract: The mutant distribution that accommodates both fitness and plating efficiency is an impor-
tant class of the Luria–Delbrück distribution. Practical algorithms for computing this distribution
do not coincide with the theoretically most elegant ones, as existing generic methods often either
produce unreliable results or freeze the computational process altogether when employed to solve
real-world research problems. Exploiting properties of the hypergeometric function, this paper
offers an algorithm that considerably expands the scope of application of this important class of
the Luria–Delbrück distribution. An integration method is also devised to complement the novel
algorithm. Asymptotic properties of the mutant probability are derived to help gauge the new
algorithm. An illustrative example and simulation results provide further guidelines on the use of
the new algorithm.

Keywords: mutation rate; fitness; plating efficiency; hypergeometric function

MSC: 92D15; 92D25; 62M15; 33C90

1. Introduction

The first distribution in the Luria–Delbrück (LD) distribution family was proposed
by Delbrück [1] to provide a mathematical foundation for a trailblazing experimental
protocol proposed by Luria. Their joint paper, now a classic in genetics research, ushered
in an 80-year period of relentless progress in the experimental determination of microbial
mutation rates. The experimental protocol is variously referred to as the fluctuation test, the
fluctuation experiment, or the Luria–Delbrück experiment. The data generated by such an
experiment are called fluctuation assay data, which is a sequence of nonnegative integers
representing the numbers of mutants found by the experimentalist in a series of cultures.
(For details about the experimental protocol, see Ref. [2].) Today, despite rapid advances in
sequencing technology, the LD experimental protocol remains a widely favored tool for
studying microbial mutation rates in the laboratory. While there has been little alteration to
the experimental protocol, the LD distribution family has been augmented considerably.

The first addition to the LD distribution family was made by Lea and Coulson [3] to
overcome an important drawback of the distribution proposed by Delbrück. Note that Del-
brück used a continuous distribution to model the number of bacterial mutants observed
in Luria’s experiments. However, the numbers of mutants in those experiments were small
random numbers, and they rarely exceeded 1000. Seeing that a continuous distribution
was not an efficient tool to model the number of mutants, Lea and Coulson employed
a stochastic birth process to construct a new discrete distribution. The distribution con-
structed by Lea and Coulson is uniquely determined by a single parameter m, which is the
expected number of mutations. Lea and Coulson defined their new distribution by giving
the probability generating function of the form

e−m exp
{

m
(

z
1× 2

+
z2

2× 3
+

z3

3× 4
+ . . .

)}
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along with its more compact form (1 − z)m(1−z)/z (see Equation (15) in Ref. [3]). This
distribution is now widely referred to as the Luria–Delbrück distribution mainly due to
historical reasons, as the original distribution proposed by Delbrück fell into disuse soon
after the work of Lea and Coulson.

Further augmentation of the LD distribution family was effected by laboratory needs
and theoretical considerations. Mandelbrot [4] and Koch [5] independently extended the
Lea–Coulson distribution to accommodate distinctive cell growth rates between mutants
and nonmutants. The resulting distribution has a fitness parameter w, which is the ratio
of the mutant growth rate to the nonmutant growth rate. Another driving force in the
augmentation of the LD distribution is the fact that the number of mutants in a culture is
often too large to count. This laboratory difficulty clamors for the study of distributions
having a plating efficiency parameter ε that indicates how large a portion of each culture
is actually plated to ease the counting burden. After a brief initial study of this kind of
distribution by Armitage ([6], p. 14), several investigators explored these distributions
more thoroughly in the 1990s [7–11]. More recently, further impetus for augmenting the
LD distribution family comes from work on mathematical modeling of tumor progression.
Antal and Krapivsky [12] studied the joint distribution of the numbers of both mutants
and nonmutants. They allowed not only distinct cell growth rates between mutants and
nonmutants, but also distinct cell death rates for both types of cells. In addition, Kessler
and Levine [13] proposed a unified approach for computing mutant probabilities.

Efficient algorithms for computing various LD distributions are key to meaningful
inference of microbial mutation rates. An algorithm must satisfy two practical requirements
to be useful in the analysis of fluctuation assay data. First, it should remain operational
for a wide range of key parameter values that an experimentalist might encounter in
the laboratory. Among such parameters are m, w and ε. Second, it should be capable of
computing pk (the probability of k mutants) reasonably fast for k ≤ K for some meaningful
K (e.g., K = 2000). In the past 30 years, an idea introduced by Ma et al. [14] to compute the
Lea–Coulson distribution has served as the backbone of several algorithms for computing
a variety of extensions of the Lea–Coulson distribution. In 2013, Kessler and Levine [15]
outlined a new, unified approach that relied on numerical integration to compute a much
wider class of LD distributions. More details were given later by the same authors [13].
Mazoyer et al. [16] employed a possibly similar integration-based approach to compute
a wide assortment of LD distributions in the R package flan. For the most part, the
implementation in flan achieved impressive accuracy and computing speed. However,
there are situations where this universal approach may not be optimal, convenient, or
practical, as shown by the following example.

This example was inspired by an inquiry from a yeast microbiologist. Her group was
planning fluctuation experiments to measure the rate of extra-chromosome loss in yeast
cells. Due to the high rates of extra-chromosome loss seen in a pilot study, these investiga-
tors would like to plate a 0.5% portion of each culture. They also planned to measure cell
growth rates to help enhance the accuracy of their rate estimates. Clearly, their data would
require an LD distribution involving m, w and ε. Because ε = 0.005, it is sensible to set
m = 100 as a testing value to allow a manageable number of mutants to be observed in the
plated portion of a culture. Next, a value for the fitness parameter w is needed. Meaningful
values for w lie around 1.0, and we here regard all real numbers on the interval (0.1, 2.0) as
values for w that may be encountered in real-world research. To produce a complete testing
example, we set w = 0.7. With this testing example, the latest version of flan (v. 0.9) can
compute pk easily for k ≤ 205. However, computing pk for any k ≥ 206 would cause flan to
stop responding. Perhaps such an annoying problem can be circumvented by tweaking
the algorithm on a case-by-case basis. Still, it is worthwhile to seek alternative algorithms
to compute this special type of three-parameter LD distributions. In this paper, we offer a
more practical algorithm for the three-parameter LD distribution that is crucial to the yeast
microbiologist’s investigation and to numerous other investigations. We begin by studying
this distribution’s probability generating function.
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2. The Probability Generating Function

As just mentioned, sometimes a culture may contain too many mutants for the ex-
perimentalist to count. A way of overcoming this difficulty is to count mutants in only a
fraction of the whole culture, a practice called partial plating. If an ε portion of the whole
culture is taken (plated, in microbiology parlance) to count mutants, it is conceptually
equivalent to subjecting all mutants in the whole culture to a binomial sampling process
with the success probability being ε. (The parameter ε is called the plating efficiency).
Therefore, the distribution of the number of mutants observed by the experimentalist is
related to the distribution of the number of mutants in the whole culture. Armitage ([6],
Equation (50)) gave the relation in terms of the two distributions’ generating functions
as follows.

GY(z) = GX(1− ε + εz). (1)

Here, GX and GY are respectively the generating functions of the number of mutants
in the whole culture and of the number of mutants in the plated culture, and ε is the plating
efficiency. A brief proof of Equation (1) may run as follows.

Let X be the number of mutants in the whole culture, and let Y be the number
of mutants in the plated culture. From elementary theory of conditional probability it
follows that

P(Y = k) =
∞

∑
m=k

P(Y = k|x = m)P(X = m)

=
∞

∑
m=k

(
m
k

)
εk(1− ε)m−kP(X = m).

(2)

Therefore,

GY(z) =
∞

∑
k=0

P(Y = k)zk

=
∞

∑
k=0

∞

∑
m=k

[(
m
k

)
εk(1− ε)m−kP(X = m)

]
zk

=
∞

∑
m=0

m

∑
k=0

[(
m
k

)
(εz)k(1− ε)m−k

]
P(X = m)

=
∞

∑
m=0

m

∑
k=0

[(
m
k

)(
εz

1− ε

)k
]
(1− ε)mP(X = m)

=
∞

∑
m=0

(1− ε + εz)mP(X = m) = GX(1− ε + εz).

(3)

Now the distribution to be investigated can be assembled by using (1). The distri-
bution of the number of mutants in the whole culture is the same distribution studied
by Mandelbrot [4] and Koch [5]. This distribution is known [17] to have an approximate
generating function of the form

g0(z) = exp

(
−m +

m
w

∞

∑
k=1

B
(

k, 1 + w−1
)

zk

)
(4)

where B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt denotes the beta function. However, an equivalent
expression due to Kessler and Levine [13] would facilitate subsequent development. Setting
the two cell death rates to zero and adopting new notation, we reduce Equation (45) of
Kessler and Levine [13] to

g1(z) = exp
{
−mF

(
1,

1
w

, 1 +
1
w

,
z

z− 1

)}
. (5)
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Here, the symbol F(a, b, c, z) is simplified notation for F(a, b; c; z), which denotes the
hypergeometric function as defined in Ref. [18], p. 238. Note that the generating function
g1(z) in (5) is well-defined for z ∈ (−∞, 1). The adoption of the hypergeometric function to
help manipulate the generating function in (4) has caused the generating function to lose its
definition at z = 1, as g1(z) is clearly undefined at z = 1. However, this small price paid for
mathematical convenience does not compromise the ensuing development. Combining (1)
with (5) and simplifying, we obtain the desired generating function G(z) = g1(1− ε + εz)
of the form

G(z) = exp
{
−mF

(
1,

1
w

, 1 +
1
w

,
z + θ

z− 1

)}
(6)

with
θ =

1− ε

ε
. (7)

3. An Integration-Based Method

Let pk be the probability of k mutants. That is, pk = [zk]G(z). Here, we use the
notation [zk] f (z) to denote the coefficient of zk in the Maclaurin series expansion of f (z).
The integration method is based on Cauchy’s integral formula for derivatives:

pk =
1

2πi

∫
γ

G(z)
zk+1 dz. (8)

Note that G(z) is the pgf in (6) and γ is a circle around the origin with a radius smaller
than one. By definition, for any given r ∈ (0, 1), the above integral can be computed by

pk =
1

2π

∫ 2π

0

G(reiθ)

rkeikθ
dθ,

where eiθ = cos(θ) + i sin(θ). However, in practice, there are important drawbacks to this
idea. First, the integrand is a complex-valued function, which makes implementation and
computation needlessly complicated. Second, it is not clear how to choose an appropriate
value of r for a given problem, as a poorly chosen value of r can lead to a nonsensical result.
Kessler and Levine [13] proposed a clever way of deforming the integration contour γ to
overcome these difficulties. In this section, we adapt their strategy to devise an improved
integration-based algorithm for computing pk.

The basic idea of Kessler and Levine was to transform the complex integral in (8) to
a real integral along the positive real axis. One way to accomplish this task is to deform
the contour γ into a new contour as depicted in Figure 1, which has previously been done
in Ref. [19]. We first transform the integral in (8) to a real integral along the ray [1, ∞]. To
facilitate the transformation, we rewrite the hypergeometric function appearing in the pgf
in (6). Applying the transform z→ 1/z via Equation (9.5.9) in Ref. [18], we obtain

F
(

1,
1
w

, 1 +
1
w

,
z + θ

z− 1

)
=

Γ( 1
w − 1)

wΓ( 1
w )

1− z
θ + z

F
(

1, 1− 1
w

, 2− 1
w

,
z− 1
z + θ

)

+
π

w sin(π
w )

(
1− z
θ + z

)1/w
F
(

1
w

, 0,
1
w

,
z− 1
z + θ

)
.

(9)
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1

Figure 1 A contour used to derive the algorithm for computing pk given by (15).

33

Figure 1. A contour used to derive the algorithm for computing pk given by (15).

Note that the hypergeometric function appearing in the first term on the right-hand
side of (9) will invalidate this transform when w = 1/k for k = 2, 3, · · · , because F(α, β, γ, z)
is undefined for γ = 0,−1,−2, · · · . This kind of drawback of the integration approach
has been noticed in a previous study [19]. The practical implications of this drawback
are worth noting. For example, when w = 0.5, the integration-based algorithm fails
altogether. Moreover, for values of w close to 0.5, the algorithm may produce unreliable
results. Nevertheless, the transform in (9), introduced to the study of the Luria–Delbrück
distribution by Kessler and Levine [13], simplifies the integral in (8) in two important
ways. First, for z ∈ [1, ∞), (z− 1)/(z + θ) ∈ [0, 1). Therefore, the hypergeometric function
appearing in the first term on the right-hand side of (9) is a single-valued function of z for z
on both edges of the ray [1, ∞). Second, because F(a, 0, c, z) = 1 for all z, the second term
on the right-hand side of (9) does not involve the hypergeometric function; but it can be
a multivalued function, depending on whether z lies on the upper edge or lower edge of
the ray. Therefore, we now focus on the second term on the right-hand side of (9) with the
hypergeometric function removed.

For z on the upper and lower edges of the the ray [1, ∞], which are labeled L1 and L2,
respectively, in Figure 1, we have(

1− z
θ + z

)1/w
= exp

{
1
w

[
log

x− 1
x + θ

∓ iπ
]}

=

(
x− 1
x + θ

)1/w
exp

(
∓i

π

w

)
=

(
x− 1
x + θ

)1/w[
cos

π

w
∓ i sin

π

w

]
.

(10)

Therefore, it follows that

−mπ

w sin π
w

(
1− z
θ + z

)1/w
=
−mπ

w

(
x− 1
x + θ

)1/w[
cot

π

w
∓ i
]
. (11)
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Exponentiating (11) and then taking the imaginary part, we find that one factor of the
integrand is

B(x) := exp

[
−mπ

w tan(π
w )

(
x− 1
x + θ

)1/w
]
× sin

[
mπ

w

(
x− 1
x + θ

)1/w
]

. (12)

More precisely, B(x) is the imaginary part of the quantity in (11) when z lives on the
upper edge of the ray [1, ∞]. If z is on the lower edge of the ray, the imaginary part of (11)
is −B(x).

In light of (9), the other factor of the integrand is

A(x) := exp

[
mΓ( 1

w − 1)

wΓ( 1
w )

x− 1
θ + x

F
(

1, 1− 1
w

, 2− 1
w

,
x− 1
x + θ

)]
. (13)

It is now necessary to assume that the integral along the small circle Cr and that long
the large circle CR vanish as r → 0 and R → ∞. As shown in Ref. [19], this kind of claim
requires excessive amounts of tedious mathematics to prove, and we do not attempt to
prove the two claims here. Assuming the validity of these two claims, we add the integrals
on L1 and L2 to obtain

pk =
1
π

∫ ∞

1

A(x)B(x)
xk+1 dx. (14)

Following Kessler and Levine [13], we recast the above to an integral on the entire
positive real axis:

pk =
1
π

∫ ∞

0

exp(A1(t) + A2(t)/ tan(π/w))

(t + 1)k+1 sin(−A2(t))dt, (15)

where

A1(t) :=
mΓ(w−1 − 1)

wΓ(w−1)

t
t + θ + 1

F
(

1, 1− 1
w

, 2− 1
w

,
t

t + θ + 1

)
,

A2(t) :=
−mπ

w

(
t

t + θ + 1

)1/w
.

(16)

Note that the expressions for p0 and p1 are expressible as

p0 = exp{−mF(1, 1/w, 1 + 1/w,−θ)}

and
p1 =

mp0

ε(1 + w)
F(2, 1 + 1/w, 2 + 1/w,−θ).

4. A More Practical Algorithm

Unlike the preceding strategy that extracts pk directly from the generating function
G(z), the strategy here focuses on the expansion of H(z) after recasting the generating
function as G(z) = exp(αH(z)). The success of this strategy relies on an obscure property
of the exponential function. Let g(z) and G(z) be functions analytic inside the unit circle.
Let g(z) = ∑∞

k=0 qkzk and G(z) = ∑∞
k=0 pkzk. Assume further that G(z) = exp(αg(z)). Then

the pk sequence can be determined by the qk sequence as follows.

p0 = exp(αq0)

pn =
α

n

n−1

∑
k=0

(n− k)qn−k pk =
α

n

n

∑
k=1

kqk pn−k (n ≥ 1).
(17)

Equation (17) can be established by differentiating the identity G(z) = exp(αg(z)) and
then equating the coefficients for each separate power of z. This helpful relation can be
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traced to a once-popular calculus textbook published in the 1950s ([20], p. 448). In 1992,
Ma et al. [14] used it to compute the Lea–Coulson distribution.

It follows from (6) that the generating function can be viewed as G(z) = exp(−mh(z))
with

h(z) = F
(

1,
1
w

, 1 +
1
w

,
z + θ

z− 1

)
.

A straightforward way to compute the qk sequence is to regard h(z) as a composite function

h(z) = F
(

1,
1
w

, 1 +
1
w

, l(z)
)

with
l(z) = (z + θ)/(z− 1).

The qk sequence can then be obtained by Faà di Bruno’s formula [21]. Theoretically, it
seems an easy task. First, applying the Leibniz rule to the function l(z) leads to

l(k)(z) =
(−1)kk!(z + θ)

(z− 1)k+1 +
(−1)k−1k!
(z− 1)k . (18)

Therefore,
lk ≡ l(k)(0) = −(1 + θ)k!. (19)

Second, note that

dk

dzk F
(

1,
1
w

, 1 +
1
w

, z
)

=
(1)k(1/w)k
(1 + 1/w)k

F
(

k + 1, k +
1
w

, k + 1 +
1
w

, z
)

=
k!

kw + 1
F
(

k + 1, k +
1
w

, k + 1 +
1
w

, z
)

.

(20)

Hence, gk ≡ F(k)(1, 1/w, 1 + 1/w, l(0)) can be computed by

gk =
k!

kw + 1
F
(

k + 1, k +
1
w

, k + 1 +
1
w

,−θ

)
. (21)

Third, the derivatives hk ≡ h(k)(0) can be computed from the lk and gk sequences
using Faà di Bruno’s formula (e.g., Equation (2.2) in Ref. [21]). Finally, note that q0 =
F(1, 1/w, 1 + 1/w,−θ) and for k ≥ 1 we have qk = hk/k!. Despite its obvious educational
value, this method is of limited use in practice. According to the results of this author’s
computational experiments, the computation of qk by this method is prohibitively expensive
when k > 25.

A more practical algorithm for computing qk can be devised by a novel route. Applying
Pfaff’s formula (e.g., Equation (9.5.1) in Ref. [18]) yields

F
(

1,
1
w

, 1 +
1
w

,
z + θ

z− 1

)
=

1− z
1 + θ

F
(

1, 1, 1 +
1
w

,
z + θ

1 + θ

)
. (22)

Therefore, we can rewrite the generating function in (6) as G(z) = exp(H(z)) with

H(z) =
m

1 + θ
(z− 1)F

(
1, 1, 1 +

1
w

,
z + θ

1 + θ

)
. (23)
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Applying the differentiation formula for the hypergeometric function, e.g.,
Equation (9.2.3) in Ref. [18], we have for k ≥ 1

fk ≡[zk]F
(

1, 1, 1 +
1
w

,
z + θ

1 + θ

)
=

k!Γ(1 + 1/w)

Γ(k + 1 + 1/w)

(
1

1 + θ

)k
F
(

k + 1, k + 1, k + 1 +
1
w

,
θ

1 + θ

)
=

k!Γ(1 + 1/w)

Γ(k + 1 + 1/w)
εkF
(

k + 1, k + 1, k + 1 +
1
w

, 1− ε

)
.

(24)

Clearly,

f0 = F
(

1, 1, 1 +
1
w

, 1− ε

)
. (25)

It follows from (23) that qk = [zk]H(z) can be computed by

qk = mε( fk−1 − fk) (k ≥ 1) (26)

with
q0 = −mε f0. (27)

The computation of the qk sequence can be improved by noting that for k ≥ 1

fk−1 − fk = ηk

[
Fk−1 −

kε

k + 1/w
Fk

]
,

where

Fk = F
(

k + 1, k + 1, k + 1 +
1
w

, 1− ε

)
(k ≥ 0) (28)

and

ηk =
(k− 1)!Γ(1 + 1/w)

Γ(k + 1/w)
εk−1.

Furthermore, setting η1 = 1, we can also compute the ηk sequence recursively.

ηk+1 =
kε

k + 1/w
ηk (k ≥ 1). (29)

It follows from (26) and (27) that

qk = mεηk

[
Fk−1 −

kε

k + 1/w
Fk

]
(30)

with
q0 = −mεF0. (31)

The forgoing development gives the following recipe for computing pi for i = 0, 1, . . . , n.

1. computing ηi for i = 1, . . . , n by (29).
2. computing Fi for i = 0, . . . , n by (28).
3. computing qi for i = 0, . . . , n by (30) and (31).
4. computing pi for i = 0, . . . , n by (17).

5. Asymptotic Behavior of the Mutant Probability

Knowledge of the asymptotic behavior of pn is of theoretical interest in its own right.
Moreover, it plays a helpful role in testing computer implementations of algorithms for
computing pn. A standard tool for fathoming the asymptotic behavior of pn is classical
analysis that relies on so-called transfer theorems in the spirit of the Tauberian method. To
seek an asymptotic expression for pn by this route, we first cite two existing results.
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Proposition 1. Let f (z) be a complex-valued function analytic in ∆(ψ, η) \ {1} for some η > 0
and ψ ∈ (0, π/2). Assume that as z→ 1 in ∆(ψ, η),

f (z) ∼ K(1− z)α

for some constants K and α. If α 6= 0, 1, . . ., then

[zn] f (z) ∼ K
Γ(−α)

n−α−1.

On the other hand, if α is a nonnegative integer, then

[zn] f (z) ∼ o(n−α−1).

Here, the symbol ∆(ψ, η) defines the close domain {z : |z| ≤ 1 + η, | arg(z− 1)| ≥ ψ}
with η > 0 and ψ ∈ (0, π/2). This result is due to Flajolet and Odlyzko ([22], Corollary 2).

The second result has appeared in the classic text of Titchmarsh ([23], p. 226) as an
exercise for students.

Proposition 2. Assume that a + b > c. As z→ 1,

F(a, b, c, z) ∼ Γ(c)Γ(a + b− c)
Γ(a)Γ(b)

(1− z)c−a−b. (32)

In Proposition 2 as stated in Ref. [23], z approaches 1 only along the real axis within
the unit circle. In the following informal process, we assume that (32) holds for z → 1
inside some ∆(ψ, η). This assumption requires the symbol F(a, b, c, z) in (32) to represent
the analytic continuation of the hypergeometric function defined in the complex plane cut
long the segment [1, ∞].

Now an intuitive derivation of the asymptotic behavior of pn can be executed. Begin
with the function H(z) defined in (23). Note that

lim
z→1

z + θ

1 + θ
= 1.

Therefore, in view of Proposion 2, as z→ 1, for w > 1,

F
(

1, 1, 1 +
1
w

,
z + θ

1 + θ

)
∼ Γ

(
1 +

1
w

)
Γ
(

1− 1
w

)(
1− z
1 + θ

)−1+1/w
. (33)

Because (23) can be rewritten as

H(z) =
−m(1− z)

1 + θ
F
(

1, 1, 1 +
1
w

,
z + θ

1 + θ

)
,

it follows from (33) that as z→ 1

H(z) ∼ Γ
(

1 +
1
w

)
Γ
(

1− 1
w

)
(−m)ε1/w(1− z)1/w. (34)

Observe that (34) is equivalent to

H(z) = Γ
(

1 +
1
w

)
Γ
(

1− 1
w

)
(−m)ε1/w(1− z)1/w + o((1− z)1/w).
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Hence it follows from the relation G(z) = eH(z) that

G(z) = 1−mΓ
(

1 +
1
w

)
Γ
(

1− 1
w

)
ε1/w(1− z)1/w + o((1− z)1/w). (35)

Let G∗(z) = G(z) − 1. Then G∗(z) satisfies the condition G∗(z) ∼ K(1 − z)1/w.
Applying Proposition 1 to G∗(z) and noting the identity Γ(1− 1/w) = (−1/w)Γ(−1/w),
we obtain the relation

[zn]G∗(z) ∼ m
w

Γ
(

1 +
1
w

)
ε1/wn−1−1/w.

As the constant 1 in (35) has no effect on the asymptotic behavior of [zn]G(z), we
conclude that

pn ∼
m
w

Γ
(

1 +
1
w

)
ε1/wn−1−1/w. (36)

The foregoing argument ceases to work when w ≤ 1. However, the case w = 1 has
been tackled earlier by a slightly different approach [24], and the result is in agreement
with (36):

pn ∼
εm
n2 .

It appears an elusive goal to translate the above intuitive argument into a formal
mathematical proof of (36). A perspicacious reviewer has offered a refreshing, rigorous
proof that makes ingenious use of elaborate probabilistic machinery. To help the reader
focus on the essence of the probabilistic proof, we present separately two results that
play an integral role in the proof but that may distract the reader from the main idea if
not proved before the proof of (36). The first result is a special case of a theorem due to
Borovkov ([25], p. 258).

Proposition 3. Let h(z) be analytic in a region containing the unit disk. Then

[zn] exp(h(z)) ∼ exp(h(1))[zn]h(z).

If g(z) = eh(z) is a probability generating function, then h(1) = 0 because g(1) ≡ 1.
Therefore, [zn]g(z) ∼ [zn]h(z).

The next result is more elementary.

Proposition 4. Let f1 and f2 be nonnegative continuous functions on (0, ∞). Let Yn be a sequence
of nonnegative discrete random variables. Assume that

1. ∑∞
k=1 fi(k) < ∞ for i = 1, 2;

2. f1(x) ∼ f2(x) as x→ ∞;

3. there exists a sequence {cn; n ≥ 1} of positive constants such that cn → ∞ and P(
∞⋂

n=1
{Yn ≥

cn}) = 1.

Then
E[ f1(Yn)] ∼ E[ f2(Yn)].

Proof. Given ε > 0, there exists xε > 0 such that x > xε implies

(1− ε) f2(x) < f1(x) < (1 + ε) f2(x).

On the other hand, due to assumption 3, there exists nε > 1 such that

Yn > xε for all n > nε
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holds almost everywhere. Therefore, for n > nε,

(1− ε) f2(Yn) < f1(Yn) < (1 + ε) f2(Yn)

holds almost everywhere. Note that assumption 1 guarantees the existence of E[ fi(Yn)] for
i = 1, 2. Taking expectations leads to

(1− ε)E[ f2(Yn)] ≤ E[ f1(Yn)] ≤ (1 + ε)E[ f2(Yn)],

which is the desired conclusion.

Now we proceed to present the probabilistic proof of (36). Consider the generating
function g0 in (4). Combining (1) and (4) leads to the generating function of interest

G0(z) = exp(A(z)),

where

A(z) = −m +
m
w

∞

∑
k=0

B(k, 1 + w−1)(1− ε + εz)k.

Let an = [zn]A(z). Applying the usual binomial-expansion formula and collecting
coefficients of zn, we have

an =
m
w

∞

∑
k=n

B(k, 1 + w−1)

(
k
n

)
εk(1− ε)k−n

=
m
εw

∞

∑
j=0

B(n + j, 1 + w−1)

(
n + j

j

)
εn+1(1− ε)j.

Now, consider two real-valued functions defined on (0, ∞):

φ(x) =
m
εw

B(x, 1 + w−1) =
mΓ(1 + w−1)

εw
Γ(x)

Γ(x + 1 + w−1)
(37)

and

ψ(x) =
mΓ(1 + w−1)

εw

(
1
x

)1+1/w
. (38)

Observe that φ(x) ∼ ψ(x) as x → ∞ (see, e.g., p. 15 of Ref. [18]). Write

an = E[φ(n + νn)], (39)

where νn is a random variable following a negative binomial distribution with parameters
n + 1 and ε. Because νn can be viewed as the sum of n + 1 independently and identically
distributed random variables obeying the geometric distribution with parameter ε, it
follows from the strong law of large numbers (see, e.g., p. 42 of Ref. [26]) that

νn

n + 1
a.e.−→ 1− ε

ε
.

Here, the symbol a.e.−→ signifies convergence almost everywhere. Therefore,

1 +
νn

n
a.e.−→ 1 +

1− ε

e
=

1
ε

. (40)

For any α > 0, the random variable 1 + νn/n satisfies

0 <
(

1 +
νn

n

)−α
=

(
n

n + νn

)α

≤ 1.
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Hence it follows from the dominated convergence theorem (see, e.g., p. 42 of Ref. [26])
and (40) that

lim
n→∞

E
[(

1 +
νn

n

)−α
]
= εα. (41)

Clearly, ψ(x) satisfies assumption 1 in Proposition 4. Because Γ(x)/Γ(x + a) ∼ x−a,
it follows that φ(x) also satisfies assumption 1. Moreover, the random variable sequence
Yn := n + νn satisfies assumption 3 in Proposition 4 with cn = n. In view of Proposition 4
and (41), (39) leads to

an = E[φ(n + νn)] ∼ E[ψ(n + νn)]

= E[ψ(n(1 + νn/n))] =
mΓ(1 + 1/w)

εw

(
1
n

)1+1/w
E
[(

1 +
νn

n

)−(1+1/w)
]

∼ mΓ(1 + 1/w)

εw

(
1
n

)1+1/w
ε1+1/w =

mΓ(1 + 1/w)

w
ε1/w

n1+1/w .

This is equivalent to (36) due to Proposition 3.
To show the usefulness of formula (36), we here employ it as a check on the recursive

algorithm given in the preceding section. Consider cases where m = 58.7 and ε = 0.005.
For w = 1.4, 1.0, 0.7 and selected values of n, Tables 1–3 list exact values of pn computed
by the recursive algorithm and their corresponding asymptotic values p̃n computed by
formula (36). The relative errors, defined by |pn − p̃n| ÷ pn, are shown in the last column.

Table 1. Comparison of exact and asymptotic pk. m = 58.7, ε = 0.005, w = 1.4.

k Recursive Asymptotic Error

1000 6.3946195 × 10−6 6.2485639 × 10−6 2.28%
1200 4.6651675 × 10−6 4.5713128 × 10−6 2.01%
1400 3.5743179 × 10−6 3.5097405 × 10−6 1.81%
1600 2.8383575 × 10−6 2.7916453 × 10−6 1.65%
1800 2.3163411 × 10−6 2.2812359 × 10−6 1.52%
2000 1.9314605 × 10−6 1.9042712 × 10−6 1.41%
2500 1.3147908 × 10−6 1.2989647 × 10−6 1.20%
3000 9.6046479 × 10−7 9.5029417 × 10−7 1.06%
3500 7.3661056 × 10−7 7.2961229 × 10−7 0.95%
4000 5.8539548 × 10−7 5.8033314 × 10−7 0.86%
4500 4.7803264 × 10−7 4.7422815 × 10−7 0.80%
5000 3.9881054 × 10−7 3.9586392 × 10−7 0.74%
5500 3.3853023 × 10−7 3.3619173 × 10−7 0.69%
6000 2.9149900 × 10−7 2.8960539 × 10−7 0.65%
7500 1.9865134 × 10−7 1.9754916 × 10−7 0.55%
8000 1.7780098 × 10−7 1.7685851 × 10−7 0.53%
8500 1.6021445 × 10−7 1.5940085 × 10−7 0.51%
9000 1.4523093 × 10−7 1.4452265 × 10−7 0.49%
9500 1.3235060 × 10−7 1.3172937 × 10−7 0.47%

10,000 1.2118944 × 10−7 1.2064088 × 10−7 0.45%
10,500 1.1144824 × 10−7 1.1096090 × 10−7 0.44%
11,000 1.0289091 × 10−7 1.0245558 × 10−7 0.42%
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Table 2. Comparison of exact and asymptotic pk. m = 58.7, ε = 0.005, w = 1.0.

k Recursive Asymptotic Error

1000 2.9574909 × 10−7 2.9350000 × 10−7 0.76%
1200 2.0513796 × 10−7 2.0381944 × 10−7 0.64%
1400 1.5058433 × 10−7 1.4974490 × 10−7 0.56%
1600 1.1521612 × 10−7 1.1464844 × 10−7 0.49%
1800 9.0988439 × 10−8 9.0586420 × 10−8 0.44%
2000 7.3670246 × 10−8 7.3375000 × 10−8 0.40%
2500 4.7113536 × 10−8 4.6960000 × 10−8 0.33%
3000 3.2701091 × 10−8 3.2611111 × 10−8 0.28%
3500 2.4016450 × 10−8 2.3959184 × 10−8 0.24%
4000 1.8382465 × 10−8 1.8343750 × 10−8 0.21%
4500 1.4521236 × 10−8 1.4493827 × 10−8 0.19%
5000 1.1760123 × 10−8 1.1740000 × 10−8 0.17%
5500 9.7176953 × 10−9 9.7024793 × 10−9 0.16%
6000 8.1645662 × 10−9 8.1527778 × 10−9 0.14%
7500 5.2239033 × 10−9 5.2177778 × 10−9 0.12%
8000 4.5910062 × 10−9 4.5859375 × 10−9 0.11%
8500 4.0665264 × 10−9 4.0622837 × 10−9 0.10%
9000 3.6270442 × 10−9 3.6234568 × 10−9 0.10%
9500 3.2551386 × 10−9 3.2520776 × 10−9 0.09%

10,000 2.9376332 × 10−9 2.9350000 × 10−9 0.09%
10,500 2.6644134 × 10−9 2.6621315 × 10−9 0.09%
11,000 2.4276104 × 10−9 2.4256198 × 10−9 0.08%

Table 3. Comparison of exact and asymptotic pk. m = 58.7, ε = 0.005, w = 0.7.

k Recursive Asymptotic Error

1000 2.8496504 × 10−9 2.8380054 × 10−9 0.41%
1200 1.8289321 × 10−9 1.8227030 × 10−9 0.34%
1400 1.2571893 × 10−9 1.2535188 × 10−9 0.29%
1600 9.0866594 × 10−10 9.0634442 × 10−10 0.26%
1800 6.8242226 × 10−10 6.8087237 × 10−10 0.23%
2000 5.2823729 × 10−10 5.2715748 × 10−10 0.20%
2500 3.0711312 × 10−10 3.0661083 × 10−10 0.16%
3000 1.9718894 × 10−10 1.9692016 × 10−10 0.14%
3500 1.3558537 × 10−10 1.3542696 × 10−10 0.12%
4000 9.8019343 × 10−11 9.7919126 × 10−11 0.10%
4500 7.3626620 × 10−11 7.3559704 × 10−11 0.09%
5000 5.6999368 × 10−11 5.6952742 × 10−11 0.08%
5500 4.5218134 × 10−11 4.5184507 × 10−11 0.07%
6000 3.6602731 × 10−11 3.6577779 × 10−11 0.07%
7500 2.1286359 × 10−11 2.1274749 × 10−11 0.05%
8000 1.8197713 × 10−11 1.8188408 × 10−11 0.05%
8500 1.5705871 × 10−11 1.5698313 × 10−11 0.05%
9000 1.3669876 × 10−11 1.3663663 × 10−11 0.05%
9500 1.1987501 × 10−11 1.1982339 × 10−11 0.04%

10,000 1.0583261 × 10−11 1.0578931 × 10−11 0.04%
10,500 9.4005077 × 10−12 9.3968451 × 10−12 0.04%
11,000 8.3961125 × 10−12 8.3929899 × 10−12 0.04%

6. Examples and Simulation Results

As alluded to earlier, the foregoing algorithms were motivated by an investigation on
chromosome loss in yeast cells. The experimental context of this investigation is similar
to that described in a previous study in Refs. [27,28]. In this experimental context, the
colonies are the equivalent of the parallel cultures in a classic fluctuation experiment [28].
Tables 4 and 5 give two fictitious data sets that mimic the real-world data to highlight
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several important features of such data. First, as reported by Wu et al. [28], there is high
variation in Nt, the final total number of viable cells in a culture. Second, there is also high
variation in the plating efficiency ε. Due to these two challenging features, the mutation rate
µ should be estimated directly, not via the estimation of m as is commonly practiced [2,29].
Therefore, the log likelihood function is

l(µ) =
n

∑
i=1

log p(yi; µNt,i, εi, w). (42)

Table 4. Fictitious data set A (w = 1.5).

Nt ε × 100% Mutant

881,200 0.12 2
1,147,200 0.11 1
529,800 0.22 19

1,215,300 0.14 42
230,000 0.2 10
748,400 0.04 0
296,500 0.4 6
378,800 0.87 8

1,318,500 0.63 32
1,328,000 0.27 10
999,400 0.28 3

1,567,500 0.5 11

Table 5. Fictitious data set B (w = 0.8).

Nt ε × 100% Mutant

432,900 0.86 213
54,300 5.61 31
145,600 2.40 481
103,700 4.70 79
138,600 3.69 151
115,000 5.25 161
100,100 3.57 833
51,400 8.14 895
364,100 1.46 1262
118,800 3.93 899

Here, yi is the number of mutants in the ith culture; Nt,i and εi are respectively Nt
and ε for the ith culture. The experiment consists of n cultures and w is the fitness that is
assumed to be constant cross all cultures (or colonies in the present context). The maximum
likelihood (ML) estimator of µ, denoted by µ̂, is defined by

µ̂ = arg max
µ

l(µ). (43)

Many optimization algorithms can be employed to compute µ̂. The golden section
search method ([30], p. 293) is one of the simplest methods for that purpose. The experi-
mentalist starts the computational process by first bracketing the mutation rate via trial
and error or by using prior knowledge. Furthermore, the log likelihood function in (42)
can also be used to compute confidence intervals (CIs) for the mutation rates. Specifically,
to compute the two boundary points of a (1− α)100% CI for the mutation rate, we solve
numerically the following equation:

l(µ) = l(µ̂)− 0.5χ2
α,1. (44)
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Here, χ2
α denotes the (1 − α)th quantile of the χ2 distribution with one degree of

freedom. The bisection method ([30], p. 261) can be used to solve (44). The foregoing work
extends previous research [31].

Assume that the unknown mutation rates in both fictitious experiments lie in the
interval [1× 10−6, 1× 10−2]. Applying the above ideas to the first experiment yields a
mutation rate estimate µ̂ = 5.91× 10−4 and a 95% likelihood ratio confidence interval
[4.16× 10−4, 7.86× 10−4]. For the second experiment, the same method yields µ̂ = 0.00126
and a 95% likelihood ratio confidence interval [0.000833, 0.00172].

Another essential task in microbial mutation research is the comparison of muta-
tion rates under different conditions or between different strains. Let yi,j j = 1, 2 and
i = 1, . . . , nj be mutant data generated by two fluctuation experiments. In particular, the
sample sizes are n1 and n2 respectively. Let the symbol Nt,i,j, εi,j and wj be corresponding
values of the parameters Nt, ε and w associated with the mutant count data yi,j. Let the
two mutation rates be µ1 and µ2, respectively. Here, wj is assumed to be constant for all
cultures in experiment j (j = 1, 2), but this assumption can be relaxed without affecting the
ensuing discussion.

The preferred method for comparing mutation rates in two independent fluctuation
experiments is the likelihood ratio (LR) test [32]. To perform an LR test, we first compute
ML estimates µ̂1 and µ̂2 separately using log likelihood functions l1 and l2 similarly defined
as in (42). We next construct a combined log likelihood function

lc(µ) =
n1

∑
i=1

p(yi,1; µNt,i,1, εi,1, w1) +
n2

∑
i=1

p(yi,2; µNt,i,2, εi,2, w2), (45)

from which we compute a combined mutation rate estimate µ̂c according to the definition

µ̂c = arg max
µ

lc(µ). (46)

Finally, we compute an LR statistic Λ using the definition

Λ = 2(l1(µ̂1) + l2(µ̂2)− lc(µ̂c)). (47)

The test statistic Λ asymptotically obeys a chi-squared distribution with one degree of
freedom. Applying the LR test to the mutation rates in the two fictitious experiments, we
obtain Λ = 8.026 and p = 4.61× 10−3.

In addition, two groups of experiments were simulated to help assess the performance
of the new algorithm. Each group comprises 10,000 experiments with a common mu-
tation rate 5× 10−6, and each experiment comprises 20 cultures. In the first group, the
other parameter values were w = 1.2, Nt = 2× 108 and ε = 0.002; in the second group,
w = 0.7, Nt = 9× 107 and ε = 0.06. The above inference methods were applied to the
two groups of simulated experiments to gauge the new algorithm for computing mutant
distributions. The means and medians of the ML estimates and the coverage rates of the
attendant 95% CIs are summarized in Table 6. The overall distributional patterns of the
ML estimates are displayed in Figure 2. Moreover, experiments in the two groups were
paired by their indices and then the LR test was performed on each of the 10,000 pairs
of experiments. The sorted p-values produced by the tests exhibited an expected linear
pattern as shown in Figure 3. Among the p-values, 545 of them were below 0.05. These
results indicate that the new algorithm performed satisfactorily in this simulation study.

Table 6. Summary of algorithm performance.

Group Mean of µ̂ Median of µ̂ 95% CI Coverage

A 5.071 × 10−6 5.029 × 10−6 94.75%
B 5.010 × 10−6 5.001 × 10−6 95.30%
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Figure 2. Distributional patterns of maximum likelihood estimates of mutation rates based on two
groups of simulated experiments. Each group comprises 10,000 experiments simulated by assuming
a common mutation rate of 5× 10−6.
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Figure 3 The p-values generated by performing likelihood ratio tests on 10,000 pairs of

simulated fluctuation experiments. Because the two mutation rates were equal, the sorted p-

values exhibited an expected linear pattern. The solid line represents the observed p-values,

and the dashed line represents the theoretical reference lines with slope 10−4 and y-intercept

0.

35

Figure 3. The p-values generated by performing likelihood ratio tests on 10,000 pairs of simulated
fluctuation experiments. Because the two mutation rates were equal, the sorted p-values exhibited
an expected linear pattern. The solid line represents the observed p-values, and the dashed line
represents the theoretical reference lines with slope 10−4 and y-intercept 0.

7. Concluding Remarks

This paper raises an oft-overlooked issue in research on the Luria–Delbrück distribu-
tion. Pure mathematical elegance is sometimes incongruous with real-world problems. A
practical solution to a complex problem may occasionally appear inelegant and cumber-
some at first sight. A large proportion of fluctuation experiments will produce data that are
more amenable to the seemingly complicated and inefficient recursive algorithm presented
here than to the integration or other existing algorithms. Admittedly, no algorithm is
infallible under all circumstances. Combinations of values of m, ε, w and k can be found
that allow certain p(k; m, ε, w) to baffle the new algorithm as well as the existing algorithms
for the Luria–Delbrück distribution. Thus, caution is advisable in practice. Furthermore,



Axioms 2022, 11, 730 17 of 18

a unified algorithm does not seem to be recommendable. If either w = 1 or ε = 1 holds,
practitioners should use the simpler, more efficient existing algorithms [17]. The present in-
vestigation may herald a new paradigm for the estimation of microbial mutation rates using
the Luria–Delbrück protocol. The examples based on fictitious data show how variations in
Nt and ε can be accounted for simultaneously using the new algorithm. The new algorithm
may catalyze the exploration of untrodden territories in microbial mutation research.
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