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Abstract: The dissipative quasi-geostrophic equation with dispersive forcing is considered. By
striking new balances between the dispersive effects of the dispersive forcing and the smoothing
effects of the viscous dissipation, we obtain the global well-posedness for Cauchy problem of the
dissipative quasi-geostrophic equation with dispersive forcing for arbitrary initial data, provided
that the dispersive parameter is large enough.
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1. Introduction

The dissipative quasi-geostrophic equation with dispersive forcing has been pro-
posed as a simple model describing the evolution of a surface buoyancy involved with
investigating wave-turbulence interactions, see [1–3]. In this paper, we investigate global
well-posedness to Cauchy problem of the dissipative quasi-geostrophic equation with
dispersive forcing:

∂tθ + (u · ∇)θ + κΛαθ + Ωu2 = 0, in R2 × (0, ∞),
u = R⊥θ = (−R2θ,R1θ), in R2 × (0, ∞),
θ|t=0 = θ0, in R2,

(1)

where the unknown real-value scalar function θ represents the potential temperature,
and can also be interpreted as a buoyancy field; u = (u1, u2) denotes velocity field, which is
determined by θ; α ∈ (0, 2], κ > 0 is a dissipation coefficient, Ω ∈ R \ {0} is an amplitude
parameter; Λ = (−∆)

1
2 is the Zygmund operator, andRi = − ∂i

Λ (i = 1, 2) is the i-th Riesz
transform. For the sake of simplicity, we will set κ = 1 throughout the paper.

When Ω = 0, the system (1) is the classical quasi-geostrophic equation, which is a
special case of the general quasi-geostrophic approximation for atmospheric and oceanic
fluid flow with small Rossby and Ekman numbers. We may refer to [4] for more details
about its background in geophysics. According to the scaling transform and the L∞-
maximum principle of [5], the cases α > 1, α = 1 and α < 1 are called subcritical, critical and
supercritical, respectively. However, in the geophysical fluid dynamics, the perturbations
of buoyancy generally give rise to the dispersive waves (see [6]), and it is quite common to
encounter problems, which involve the presence of both advection and dispersion (see for
example, Chapter 5 in the text by Majda [7] and Chapter 5 in the text by Chemin et al. [8]).
Therefore, it is justified to consider the dissipative quasi-geostrophic equation with an
environmental horizontal buoyancy gradient term Ωu2.

When Ω = 0, the study of global regularity or global well-posedness issue of prob-
lem (1) for the subcritical and critical cases (α ≥ 1) is in a satisfactory state; see [9,10] for
the subcritical case and [11,12] for the critical case. Whereas, it is still a challenging open
problem for the supercritical case (α < 1), and we may refer the interested reader to [13–17]
and the references therein for the conditions of global well-posednes and the conditional
global regularity.
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When Ω 6= 0, the global well-posedness or global regularity results are quite few.
By applying the modulus of continuity method developed in [12], Kiselev and Nazarnov [2]
proved the global regularity of problem (1) with α = 1 for the arbitrary smooth periodic
initial data. We would like to point out that it is too hard to generalize this result to
the whole space case, since the dispersive term Ωu2 plays a negative role. Relying on
the Strichartz-type estimates for the corresponding linear dispersive problem, Cannone,
Miao and Xue [18] established the global regulatity of problem (1) with the initial data
in H2−α(R2) for α < 1, provided that parameter Ω is large enough. Based on the more
detailed analysis, Wan and Chen [19] obtained the global existence of the smooth solution of
problem (1) with α < 1 under large dispersive parameter and small dissipation coefficient.
Recently, Angulo-Castillo, Ferreira and Kosloff [20] obtained the long-time solvability for
the 2D inviscid dispersive quasi-geostrophic equation with improved regularity. Fujii [21]
studied the long-time existence and asymptotic behavior of solutions for the 2D inviscid
quasi-geostrophic equation with large dispersive forcing.

Inspired by the above literatures, in this paper, by applying the sharp dispersive
estimates established in [22] for the linear operator group {eR1t}t∈R related to dispersive
term Ωu2, and by striking some new balances between the dispersive effects of term Ωu2
and the smoothing effects of term Λαθ, we obtain the following global well-posedness for
problem (1) with subcritical dissipation.

2. Main Results

Theorem 1. Let α ∈ (1, 2], r ∈ [1, ∞] and max{ 3
2 , 4

1+α} < p < 2. Let s ∈ R satisfy

1 +
2
p
− α < s < 1 +

2
p
− 2α(1− 1

p
) and

4
p
− 2 < s < 2− 2

p
,

and δ ∈ [2, ∞) satisfy

0 <
1
δ
<

1
p
− 1

2
and

1
α
(s− 1− 2

p
+ α) +

1
2
− 1

p
<

1
δ
<

1
2α

(s− 1− 2
p
+ α).

Then there exists a positive constant C such that for Ω ∈ R \ {0} and θ0 ∈ Ḃs
p,r(R2) satisfying

‖θ0‖Ḃs
p,r
≤ C|Ω|

1
α (s−1− 2

p +α), (2)

the problem (1) possesses a unique mild solution

θ ∈ C
(
[0, ∞); Ḃs

p,r(R2)
)⋂

L̃δ
(
0, ∞; Ḃ

s+ 2
p′ −

2
p

p′ ,r (R2)
)
,

where 1
p′ +

1
p = 1.

By applying the TT∗ argument, we further obtain the global well-posedness result of
problem (1) for the endpoint case p = 2, as follows.

Theorem 2. Let α ∈ (1, 2], r ∈ [1, ∞] and s ∈ (2− α, 16−5α
8+3α ). Let q ∈ (2, 3] satisfy

max
{1

4
(s + 1),

1
2
(1− s)

}
<

1
q
<

1
2
− 2

3α
(s− 2 + α),

and δ ∈ [2, ∞) satisfy

0 <
1
δ
<

1
2
(

1
2
− 1

q
) and

1
α
(s− 2 + α) +

1
q
− 1

2
<

1
δ
<

1
2α

(s− 2 + α).
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Then there exists a positive constant C such that for Ω ∈ \{0} and θ0 ∈ Ḃs
2,r(R2) satisfying

‖θ0‖Ḃs
2,r
≤ C|Ω|

1
α (s−2+α), (3)

the problem (1) possesses a unique mild solution

θ ∈ C
(
[0, ∞); Ḃs

2,r(R2)
)⋂

L̃δ
(
0, ∞; Ḃ

s+ 2
q−1

q,r (R2)
)
.

Remark 1. In [18], Cannone, Miao and Xue verified the existence of a positive constant Ω0 for each
given initial data, and proved the global regularity of problem (1) if |Ω| > Ω0. It is worth pointing
out that by fully exploiting the dispersive effects originated from the term Ωu2, Theorems 1 and 2
give the specific characterizations of the relationship between initial data θ0 and parameter Ω, i.e., (2)
and (3), for ensuring the global well-posedness of problem (1).

Remark 2. Note that system (1) is invariant under the scaling

θλ(t, x) = λα−1θ(λαt, λx), Ωλ = λαΩ (4)

for λ > 0. It is easy to check that the size conditions (2) and (3) are invariant under the scaling (4).

The rest of this paper is organized as follows. In Section 3, we collect some basic facts
on the Littlewood-Paley theory, Besov spaces and some basic estimates. In Section 4, we
derive some linear estimates related to the linear problem. In Section 5, we present the
proofs of Theorems 1 and 2.

Throughout the paper, C stands for a harmless constant. In particular, C = C(·, · · · , ·)
means that this constant depends only on the quantities appearing in the parentheses.
For any scaler function space X, we shall use the same notation X to denote its 2-vector
counterpart to simplify the notation. Both Fg and ĝ stand for Fourier transform of g with
respect to space variables, while F−1 stands for the inverse Fourier transform. In some
places of the paper, we may use Lp and Ḃs

p,r to stand for Lp(R2) and Ḃs
p,r(R2), respectively.

3. Preliminaries

Let S (R2) be the Schwartz space of smooth functions over R2, and let S ′(R2) be
the space of tempered distributions. First, we recall the homogeneous Littlewood-Paley
decomposition. Let ϕ, ψ ∈ S (R2) be two radial functions such that their Fourier transforms
ϕ̂ and ψ̂ satisfy the following properties:

supp ϕ̂ ⊂ B := {ξ ∈ R2 : |ξ| ≤ 4
3
},

supp ψ̂ ⊂ C := {ξ ∈ R2 :
3
4
≤ |ξ| ≤ 8

3
}

and
∑
j∈Z

ψ̂(2−jξ) = 1 for all ξ ∈ R2 \ {0}.

Let ψj(x) := 22jψ(2jx) for j ∈ Z. We define by ∆j, the following frequency localization
operator in S ′(R2):

∆j f := ψj ∗ f = 22j
∫
R2

ψ(2j(x− y) f (y)dy for j ∈ Z and f ∈ S ′(R2). (5)

Define S ′h(R
2) := S ′(R2)/P [R2], where P [R2] denotes the linear space of polynomials

on R2. It is known that the operator ∆j maps Lp into Lp with norm independent of j and p,
see [23].
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Now, we introduce the definitions of the homogeneous Besov space Ḃs
p,r(R2) and the

Chemin-Lerner type space L̃δ(0, ∞; Ḃs
p,r(R2)), and recall some basic facts on the Littlewood-

Paley theory and Besov spaces.

Definition 1 ([23]). Let s ∈ R and 1 ≤ p, r ≤ ∞, and let u ∈ S ′h(R
2), we set (with the usual

convection if r = ∞)

‖u‖Ḃs
p,r

:=
(

∑
j∈Z

2jsr‖∆ju‖r
Lp

) 1
r
.

• For s < 2
p (or s = 2

p , if r = 1), we define

Ḃs
p,r(R2) := {u ∈ S ′h(R

2)|‖u‖Ḃs
p,r

< ∞};

• If k ∈ N, 2
p + k ≤ s < 2

p + k + 1 (or s = 2
p + k + 1, if r = 1), then Ḃs

p,r(R2) is defined as

the subset of distributions u ∈ S ′h(R
2) such that ∂δu ∈ Ḃs−k

p,r whenever |δ| = k.

Definition 2 ([23]). For s ∈ R and 1 ≤ r, δ ≤ ∞, we set (with the usual convection of r = ∞)

‖u‖L̃δ(0,∞;Ḃs
p,r)

:=
(

∑
j∈Z

2jsr‖∆ju‖r
Lδ(0,∞;Lp)

) 1
r
.

We then define the space L̃δ(0, ∞; Ḃs
p,r(R2)) as the set of temperate distributions u over (0, ∞)×R2

such that lim
j→−∞

Sju = 0 in S ′(0, ∞×R2) and ‖u‖L̃δ(0,∞;Ḃs
p,r)

< ∞.

Lemma 1 (Bernstein, [23]). Let B be a ball and C a ring centred at the origin of R2. A constant C
exists such that for any positive real number λ, any non-negative integer k, and any couple of real
numbers (p, q) with q ≥ p ≥ 1, there hold

• Suppû ⊂ λB =⇒ sup|α|=k ‖∂αu‖Lq ≤ Ck+1λ
k+2( 1

p−
1
q )‖u‖Lp ;

• Suppû ⊂ λC =⇒ C−(k+1)λk‖u‖Lp ≤ sup|α|=k ‖∂αu‖Lp ≤ Ck+1λk‖u‖Lp ,
where Suppû = {ξ|û(ξ) 6= 0}.

Lemma 2 (Product laws, [24]). Let (p0, p1, p2, r, λ1, λ2) ∈ [1, ∞]6 such that 1
p0
≤ 1

p1
+

1
p2

, p1 ≤ λ2, p2 ≤ λ1, 1
p0
≤ 1

p1
+ 1

λ1
≤ 1 and 1

p0
≤ 1

p2
+ 1

λ2
≤ 1. If s1 + s2 + 2 inf{0, 1− 1

p1
−

1
p2
} > 0, s1 +

2
λ2

< 2
p1

and s2 +
2

λ1
< 2

p2
, then

‖uv‖
Ḃ

s1+s2−2( 1
p1

+ 1
p2
− 1

p0
)

p0,r

≤ C‖u‖Ḃ
s1
p1,r
‖v‖Ḃs2

p2,∞
.

Remark 3. It is easy to generalize Lemma 2 to the spaces L̃δ(0, ∞; Ḃs
p,r(R2)). The general principle

is that the indices s, p, r behave just as in the stationary case whereas the time exponent δ behaves
according to Hölder’s inequality, one may check [23] for more details.

To study the problem (1), we shall consider the following equivalent integral equation

θ(t) = eΩR1teΛαtθ0 −
∫ t

0
eΩR1(t−τ)eΛα(t−τ)(R⊥θ(τ) · ∇θ(τ))dτ, for t > 0. (6)

The following smoothing effects of semigroup {eΛαt}t>0 and dispersive effects of semigroup
{eΩR1t}t>0 are the keys to obtain our global well-posedness results.
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Lemma 3 ([25]). Let α > 0, −∞ < s1 ≤ s2 < ∞, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r ≤ ∞. There
exists a positive constant C = C(s1, s2, p), such that

‖∆je−Λαt f ‖Lp2 ≤ C2−(s2−s1)jt−
1
α (s2−s1)− 2

α (
1

p1
− 1

p2
)‖∆j f ‖Lp1 ,

for all t > 0, j ∈ Z and f ∈ S ′(R2). Moreover,

‖e−Λαt f ‖Ḃs2
p2,r
≤ Ct−

1
α (s2−s1)− 2

α (
1

p1
− 1

p2
)‖ f ‖Ḃ

s1
p1,r

for all t > 0 and f ∈ Ḃs1
p1,r.

Lemma 4 ([22]). Let 1 ≤ p ≤ 2. There exists a constant C = C(p) > 0 such that

‖eR1t∆j f ‖Lp′ ≤ C(1 + |t|)−(
1
p−

1
2 )22j( 2

p−1)‖∆j f ‖Lp

for all t ∈ R, j ∈ Z and f ∈ S ′(R2), where 1
p + 1

p′ = 1 and ∆j is frequency localization operator
defined in (5). Moreover,

‖eR1t f ‖Ḃs
p′ ,r
≤ C(1 + |t|)−(

1
p−

1
2 )‖ f ‖

Ḃ
s+2( 2

p−1)
p,r

for all t ∈ R and f ∈ Ḃ
s+2( 2

p−1)
p,r (R2) with s ∈ R and 1 ≤ r ≤ ∞, where 1

p′ +
1
p = 1.

Moreover, a direct application of Mihlin’s theorem implies the following Lp − Lp type
estimate for the semigroup {e±R1t}t>0.

Lemma 5. For 1 < p < ∞, there exists a positive constant C = C(p) such that

‖eR1t f ‖Lp ≤ C(1 + |t|)2‖ f ‖Lp

for all t ∈ R and f ∈ Lp. Moreover,

‖eR1t f ‖Ḃs
p,r
≤ C(1 + |t|)2‖ f ‖Ḃs

p,r

for all t ∈ R and f ∈ Ḃs
p,r with s ∈ R, p ∈ (1, ∞) and r ∈ [1, ∞].

4. Linear Estimates

We firstly establish the linear estimates for the semigroup {eΩR1teΛαt}t≥0.

Lemma 6. For α ∈ (0, 2], s ∈ R, p ∈ [1, 2) and r ∈ [1, ∞], let δ ∈ [1, ∞] satisfy

0 <
1
δ
<

1
p
− 1

2
.

There exists a positive constant C = C(p, δ) such that

‖eΩR1te−Λαt f ‖
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

≤ C|Ω|−
1
δ ‖ f ‖Ḃs

p,r (7)

for Ω ∈ R\{0}, where 1
p + 1

p′ = 1.
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Proof. By Definition 2, we have

‖eΩR1te−Λαt f ‖
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

=

(
∑
j∈Z

2
(s+ 2

p′ −
2
p )jr‖∆jeΩR1te−Λαt f ‖r

Lδ(0,∞;Lp′ )

) 1
r

.

Therefore, it suffices to show that

‖∆jeΩR1te−Λαt f ‖Lδ(0,∞;Lp′ ) ≤ C|Ω|−
1
δ 2

j( 2
p−

2
p′ )‖∆j f ‖Lp

for all t > 0 and Ω ∈ R\{0}.
In fact, by Lemmas 3 and 4, we see

‖eΩR1te−Λαt∆j f ‖Lp′ ≤ C(1 + |Ω|t)−(
1
2−

1
p′ )2

j( 2
p−

2
p′ )‖∆j f ‖Lp .

Due to 0 < 1
δ < 1

p −
1
2 , there exists a positive constant C = C(p, δ) such that

( ∫ ∞

0
(1 + |Ω|t)−(

1
2−

1
p′ )δdt

) 1
δ ≤ C|Ω|−

1
δ for Ω ∈ R\{0}

and ∥∥‖∆jeΩR1te−Λαt f ‖Lp′
∥∥

Lδ(0,∞)
≤ C|Ω|−

1
δ 2

j( 2
p−

2
p′ )‖∆j f ‖Lp

for Ω ∈ R\{0}. This completes the proof.

The following lemma is concerned with the endpoint case p = 2, in which we may
use the TT? argument.

Lemma 7. For α ∈ (0, 2], s ∈ R, q ∈ (2, ∞) and r ∈ [1, ∞], let δ ∈ [2, ∞) satisfy

0 <
1
δ
<

1
2
(

1
2
− 1

q
).

There exists a positive constant C = C(s, q, δ) such that

‖eΩR1te−Λαt f ‖
L̃δ(0,∞;Ḃ

s+ 2
q−1

q,r )
≤ C|Ω|−

1
δ ‖ f ‖Ḃs

2,r

for Ω ∈ R\{0}.

Proof. By Definition 2, we observe

‖eΩR1te−Λαt f ‖
L̃δ(0,∞;Ḃ

s+ 2
q−1

q,r )
=

(
∑
j∈Z

2(s+
2
q−

2
2 )jr‖∆jeΩR1te−κΛαt f ‖r

Lδ(0,∞;Lq)

) 1
r

.

We claim for q ∈ (2, ∞) and 0 < 1
δ < 1

2 (
1
2 −

1
q ) that

‖∆jeΩR1te−Λαt f ‖Lδ(0,∞;Lq) ≤ C2(1−
2
q )j|Ω|−

1
δ ‖∆j f ‖L2 , j ∈ Z. (8)

The proof of (8) is based on the usual TT? argument, which goes back to Tomas [26]
(see also Strichartz [27]). Indeed, by duality, it suffices to prove that∣∣∣∣ ∫ ∞

0

∫
R2

eΩR1te−Λαt∆j f (x)ϕ(t, x)dxdt
∣∣∣∣ ≤ C2j(1− 2

q )|Ω|−
1
δ ‖∆j f ‖L2‖ϕ‖Lδ′ (0,∞;Lq′ )

for ϕ ∈ C∞
0 ((0, ∞)×R2), where 1

q′ +
1
q = 1 and 1

δ +
1
δ′ = 1.
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Here, we introduce a new Littlewood-Paley operator ∆̃j, defined by

∆̃j f := (ψj−1 + ψj + ψj+1) ∗ f , j ∈ Z, ∀ f ∈ S ′(R2).

It is easy to check that ∆̃j∆j f = ∆j f for all j ∈ Z and f ∈ S ′(R2), and ∆̃j is also bounded
in Lp.

By Hölder’s inequality, we deduce∣∣∣ ∫ ∞

0

∫
R2

eΩR1te−Λαt∆j f (x)ϕ(t, x)dxdt
∣∣∣ = ∣∣∣ ∫ ∞

0

∫
R2

∆j f (x)e−ΩR1te−Λαt∆̃j ϕ(t, x)dxdt
∣∣∣

≤ ‖∆j f ‖L2

∥∥∥ ∫ ∞

0
e−ΩR1te−Λαt∆̃j ϕ(t)dt

∥∥∥
L2

.
(9)

Moreover, it follows from Parseval’s formula and Hölder’s inequality that∥∥∥ ∫ ∞

0
e−ΩR1te−Λαt∆̃j ϕ(t)dt

∥∥∥2

L2

=
∫
R2

∫ ∞

0

∫ ∞

0
e−ΩR1te−Λαt∆̃j ϕ(t, x)e−ΩR1τe−Λατ∆̃j ϕ(τ, x)dtdτdx

≤
∫ ∞

0

∫ ∞

0
‖ϕ(t)‖Lq′

∥∥∥eΩR1(τ−t)e−Λα(t+τ)∆̃j ϕ(τ)
∥∥∥

Lq
dtdτ.

(10)

Applying Lemma 3 and Lemma 4 yields∥∥∥eΩR1(τ−t)e−Λα(t+τ)∆̃j ϕ(τ)
∥∥∥

Lq
≤ C(1 + |Ω||t− τ|

)−( 1
2−

1
q )22j(1− 2

q )‖∆̃j ϕ(τ)‖Lq′ . (11)

Substituting (11) into (10), together with Hölder’s inequality and Young’s inequality, we obtain∥∥∥ ∫ ∞

0
e−ΩR1te−Λαt∆̃j ϕ(t)dt

∥∥∥2

L2
≤ C22j(1− 2

q )‖ϕ‖Lδ′ (0,∞;Lq′ )

∥∥∥ ∫ ∞

0
KΩ(t− τ)‖ϕ(τ)‖Lq′ dτ

∥∥∥
Lδ(0,∞)

≤ C22j(1− 2
q )‖ϕ‖2

Lδ′ (0,∞;Lq′ )
‖KΩ‖

L
δ
2 (0,∞)

,
(12)

where KΩ(t) := (1 + |Ω||t|)−(
1
2−

1
q ). Due to 0 < 1

δ < 1
2 (

1
2 −

1
q ), there exists a positive

constant C = C(δ, q) such that

‖KΩ‖
L

δ
2 (0,∞)

= |Ω|−
2
δ

( ∫ ∞

0
(1 + τ)

− δ
2 (

1
2−

1
q )dτ

) 2
δ

≤ C|Ω|−
2
δ ,

which implies∥∥∥ ∫ ∞

0
e−ΩR1te−Λαt∆̃j ϕ(t)dt

∥∥∥2

L2
≤ C22j(1− 2

q )|Ω|−
2
δ ‖ϕ‖2

Lδ′ (0,∞;Lq′ )
. (13)

Substituting (13) into (9) yields the desired estimate. This completes the proof.

The following lemmas will be used to deal with Duhamel’s term in the equivalent
integral Equation (6).

Lemma 8. For α ∈ (0, 2], p ∈ (1, 2) and r ∈ [1, ∞], let s ∈ R satisfy

1 +
2
p
− α < s < 1 +

2
p
− α(1− 1

p
),

and δ ∈ [2, ∞) satisfy

1
α
(s− 1− 2

p
+ α) +

1
2
− 1

p
<

1
δ
<

1
α
(s− 1− 2

p
+ α).



Axioms 2022, 11, 720 8 of 13

There exists a positive constant C = C(s, p, δ) such that∥∥∥ ∫ t

0
eΩR1(t−τ)e−Λα(t−τ)∇ f (τ)dτ

∥∥∥
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

≤ C|Ω|−[
1
α (s−1− 2

p +α)− 1
δ ]‖ f ‖

L̃
δ
2 (0,∞;Ḃ

2s− 2
p

p,r )

for Ω ∈ R\{0}, where 1
p′ +

1
p = 1.

Proof. By Definition 2, one sees∥∥∥ ∫ t

0
eΩR1(t−τ)e−Λα(t−τ)∇ f (τ)dτ

∥∥∥
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

=
∥∥∥{2

j(s+ 2
p′ −

2
p )
∥∥∥∆j

∫ t

0
eΩR1(t−τ)e−Λα(t−τ)∇ f (τ)dτ

∥∥∥
Lδ(0,∞;Lq)

}
j∈Z

∥∥∥
`r(Z)

.

It thus suffices to show that∥∥∥ ∫ t

0

∥∥eΩR1(t−τ)e−Λα(t−τ)∇∆j f (τ)
∥∥

Lp′ dτ
∥∥∥

Lδ(0,∞)
≤ C|Ω|−[

1
α (s−1− 2

p +α)− 1
δ ]2

j(s− 2
p′ )
∥∥∆j f

∥∥
L

δ
2 (0,∞;Lp)

.

In fact, by Lemma 1, 3 and 4, as well as Young’s inequality, one deduces∥∥∥ ∫ t

0

∥∥eΩR1(t−τ)e−Λα(t−τ)∇∆j f (τ)
∥∥

Lp′ dτ
∥∥∥

Lδ(0,∞)
≤ C2

j(s− 2
p′ )
∥∥∥ ∫ t

0
KΩ(t− τ)

∥∥∆j f (τ)
∥∥

Lp dτ
∥∥∥

Lδ(0,∞)

≤ C2
j(s− 2

p′ )‖KΩ‖Lδ′ (0,∞)

∥∥∆j f
∥∥

L
δ
2 (0,∞;Lp)

,

where KΩ(t) := (1 + |Ω|t)−(
1
2−

1
p′ )t−

1
α (1+

2
p−s) and 1

δ +
1
δ′ = 1. Since δ ∈ [2, ∞) satisfies

1
α
(s− 1− 2

p
+ α) +

1
p′
− 1

2
<

1
δ
<

1
α
(s− 1− 2

p
+ α),

there exists a positive constant C = C(s, p, δ) such that

‖KΩ‖Lδ′ (0,∞) = |Ω|
−[ 1

α (s−1− 2
p +α)− 1

δ ]
( ∫ ∞

0
(1 + τ)

−( 1
2−

1
p′ )δ

′
τ
− 1

α (1+
2
p−s)δ′dτ

) 1
δ′

≤ C|Ω|−[
1
α (s−1− 2

p +α)− 1
δ ]

for Ω ∈ R \ {0}. This completes the proof.

Lemma 9. For α ∈ (0, 2],r ∈ [1, ∞] and s ∈ (2− α, 2), let q ∈ (2, ∞) satisfy 1
q < 1

α (2− s) and
δ ∈ [2, ∞) satisfy

1
α
(s− 2 + α) +

1
q
− 1

2
<

1
δ
<

1
α
(s− 2 + α).

Then there exists a positive constant C = C(s, q, δ) such that∥∥∥ ∫ t

0
eΩR1(t−τ)eΛα(t−τ)∇ f (τ)dτ

∥∥∥
L̃δ(0,∞;Ḃ

s+ 2
q−1

q,r )
≤ C|Ω|−[

1
α (s−2+α)− 1

δ ]‖ f ‖
L̃

δ
2 (0,∞;Ḃ

2s−2+ 2
q′

q′ ,r )

for Ω ∈ R\{0}, where 1
q′ +

1
q = 1.
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Proof. By Definition 2, one sees∥∥∥ ∫ t

0
eΩR1(t−τ)eΛα(t−τ)∇ f (τ)dτ

∥∥∥
L̃δ(0,∞;Ḃ

s+ 2
q−1

q,r )

=
∥∥∥{2j(s+ 2

q−1)
∥∥∥∆j

∫ t

0
eΩR1(t−τ)eΛα(t−τ)∇ f (τ)dτ

∥∥∥
Lδ(0,∞;Lq)

}
j∈Z

∥∥∥
`r(Z)

.

Then, it suffices to show that∥∥∥ ∫ t

0

∥∥eΩR1(t−τ)eΛα(t−τ)∇∆j f (τ)
∥∥

Lq dτ
∥∥∥

Lδ(0,∞)
≤ C|Ω|−[

1
2 (s−

1
2 )−

1
δ ]2

j(s+ 2
q′ −

2
q−1)∥∥∆j f

∥∥
L

δ
2 (0,∞;Lq′ )

.

In fact, by Lemma 1, Lemma 3 and Lemma 4, as well as Young’s inequality, one
then obtains ∥∥∥ ∫ t

0

∥∥eΩR1(t−τ)eΛα(t−τ)∇∆j f (τ)
∥∥

Lq dτ
∥∥∥

Lδ(0,∞)

≤ C2
j(s+ 2

q′ −
2
q−1)

∥∥∥ ∫ t

0
KΩ(t− τ)

∥∥∆j f (τ)
∥∥

Lq′ dτ
∥∥∥

Lδ(0,∞)

≤ C2
j(s+ 2

q′ −
2
q−1)‖KΩ‖Lδ′ (0,∞)

∥∥∆j f
∥∥

L
δ
2 (0,∞;Lq′ )

,

(14)

where KΩ(t) := (1 + |Ω|t)−(
1
2−

1
q )t−

1
α (2−s) and 1

δ +
1
δ′ = 1. Due to

1
α
(s− 2 + α)− 1

2
+

1
q
<

1
δ
<

1
α
(s− 2 + α),

there exists a positive constant C = C(s, q, δ) such that

‖KΩ‖Lδ′ (0,∞) = |Ω|
−[ 1

α (s−2+α)− 1
δ ]

( ∫ ∞

0
(1 + τ)

−δ′( 1
2−

1
q )τ−

δ′
α (2−s)dτ

) 1
δ′

≤ C|Ω|−[
1
α (s−2+α)− 1

δ ]

(15)

for all Ω ∈ R \ {0}. Plugging (15) into (14), one concludes the proof.

5. Proofs of Theorems 1 and 2

In this section, we are devoted to giving the proofs of Theorems 1 and 2.

Proof of Theorem 1. For Ω ∈ R \ {0} and θ0 ∈ Ḃs
p,r(R2), it follows from Lemma 6 that

there exists a positive constant C0 such that

‖eΩR1te−Λαtθ0‖
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

≤ C0|Ω|−
1
δ ‖θ0‖Ḃs

p,r
. (16)

Define the mapping B and the solution space Y by

B(θ)(t) := eΩR1te−Λαtθ0 +
∫ t

0
eΩR1(t−τ)eΛα(t−τ)∇ ·

(
θ(τ) · R⊥θ(τ)

)
dτ

and

Y :=
{

θ ∈ L̃δ(0, ∞; Ḃ
s+ 2

p′ −
2
p

p′ ,r (R2)) : ‖θ‖
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

≤ 2C0|Ω|−
1
δ ‖θ0‖Ḃs

p,r

}
.
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Applying Lemma 8 gives that there exists a positive constant C1, such that∥∥∥ ∫ t

0
eΩR1(t−τ)eΛα(t−τ)∇ ·

(
θ(τ) · R⊥θ(τ)

)
dτ
∥∥∥

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

≤ C1|Ω|
−[ 1

α (s−1− 2
p +α)− 1

δ ]‖θ(τ) · R⊥θ(τ)‖
L̃

δ
2 (0,∞;Ḃ

2s− 2
p

p,r )
.

(17)

Moreover, since 4
p − 2 < s < 2− 2

p and 1
p ≤

2
3 , by taking s1 = s2 = s + 2

p′ −
2
p , p0 = p,

p1 = p2 = p′ and λ1 = λ2 = p′
p′−2 , Lemma 2 and Remark 3, together with the fact that the

R is bounded in Besov spaces, imply that there exists a positive constant C2 such that

‖θ(τ) · R⊥θ(τ)‖
L̃

δ
2 (0,∞;Ḃ

2s− 2
p

p,r )
≤ C2‖θ‖2

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

.
(18)

Hence, from (16)–(18), we observe for all θ ∈ Y that

‖B(θ)‖
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

≤ C0|Ω|−
1
δ ‖u0‖Ḃs

p,r
+ C1C2|Ω|−[

1
α (s−1− 2

p +α)− 1
δ ]‖θ‖2

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

≤ C0|Ω|−
1
δ ‖θ0‖Ḃs

p,r
+ 4C2

0C1C2|Ω|−
2
δ |Ω|−[

1
α (s−1− 2

p +α)− 1
δ ]‖θ0‖2

Ḃs
p,r

≤ C0|Ω|−
1
δ ‖θ0‖Ḃs

p,r

{
1 + 4C0C1C2|Ω|−

1
α (s−1− 2

p +α)‖θ0‖Ḃs
p,r

}
.

(19)

and similarly, for all θ, σ ∈ Y, we see

‖B(θ)−B(σ)‖
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

=
∥∥∥ ∫ t

0
eΩR1(t−τ)eΛα(t−τ)∇ ·

[
[θ(τ)− σ(τ)] · R⊥θ(τ) + σ(τ) · R⊥[θ(τ)− σ(τ)]

]
dτ
∥∥∥

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

≤ C1C2|Ω|−[
1
α (s−1− 2

p +α)− 1
δ ]
(
‖θ‖

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

+ ‖σ‖
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

)
‖θ − σ‖

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

≤ 4C0C1C2|Ω|−
1
α (s−1− 2

p +α)‖θ0‖Ḃs
p,r
‖u− v‖

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

.

(20)

Now, let us assume θ0 ∈ Ḃs
p,r(R2) satisfing

‖θ0‖Ḃs
p,r
≤ 1

16C0C1C2
|Ω|

1
α (s−1− 2

p +α),

(19) and (20) immediately thus imply for every θ, σ ∈ Y that

‖B(θ)‖
L̃δ(0,∞;Ḃ

s+ 2
p′ −

2
p

p′ ,r )

≤ 2C0|Ω|−
1
δ ‖θ0‖Ḃs

p,r

and
‖B(θ)−B(σ)‖

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

<
1
2
‖θ − σ‖

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

.

Therefore, by the contraction mapping principle, there exists a unique solution θ ∈ Y
satisfying (6) for all t > 0.
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It remains to demonstrate that the solution θ ∈ Y also belongs to C([0, ∞); Ḃs
p,r(R2)).

By the definition of Besov spaces and applying Minkowski’s inequality, we have

‖θ(t)‖Ḃs
p,r
≤ C

∥∥∥∥{2sj
∥∥∥eΩR1te−Λαt∆jθ0

∥∥∥
Lp

}
j∈Z

∥∥∥∥
`r

+ C
∥∥∥∥{2js

∫ t

0

∥∥∥∆jeΩR1(t−τ)e−Λα(t−τ)∇ ·
(
θ(τ) · R⊥θ(τ)

)∥∥∥
Lp

dτ
}

j∈Z

∥∥∥∥
`r

Furthermore, by applying Lemmas 1 and 3, together with (18) and Young’s inequality,
we obtain

‖θ(t)‖Ḃs
p,r
≤ C(1 + |Ω|t)2‖u0‖Ḃs

p,r
+ C

∥∥∥∥{2j(2s− 2
p )
∫ t

0
KΩ(t− τ)

∥∥∥∆j
(
θ(τ) · R⊥θ(τ)

)∥∥∥
Lp

dτ
}

j∈Z

∥∥∥∥
`r

≤ C(1 + |Ω|t)2‖u0‖Ḃs
p,r
+ C‖KΩ‖

L( δ
2 )
′
(0,t)
‖θ · R⊥θ‖

L̃
δ
2 (0,∞;Ḃ

2s− 2
p

p,r )
,

≤ C(1 + |Ω|t)2‖θ0‖Ḃs
p,r
+ C‖KΩ‖

L( δ
2 )
′
(0,t)
‖θ‖2

L̃δ(0,∞;Ḃ
s+ 2

p′ −
2
p

p′ ,r )

,

(21)

where KΩ(t) := (1+ |Ω|t)2t−
1
α (1+

2
p−s) and 1

( δ
2 )
′ +

1
( δ

2 )
= 1. Due to 1

δ < 1
2α (s− 1− 2

p + α), it

is easy to check that there exists a continuous function C(t) > 0 defined on [0, ∞) such that∫ t

0
(1 + |Ω|τ)2( δ

2 )
′
τ
− 1

α (1+
2
p−s)( δ

2 )
′
dτ ≤ C(t). (22)

Substituting (22) into (21) implies that θ(t) ∈ Ḃs
p,r(R2) for t ≥ 0. The standard argument

immediately implies θ ∈ C([0, ∞); Ḃs
p,r(R2)). This completes the proof of Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 is quite similar to that of Theorem 1. By re-
placing the solution space Y with

Y :=
{

θ ∈ L̃δ(0, ∞; Ḃ
s+ 2

q−1
q,r (R2)) : ‖θ‖

L̃δ(0,∞;Ḃ
s+ 2

q−1
q,r (R3))

≤ 2C0|Ω|−
1
δ ‖θ0‖Ḃs

2,r

}
,

and using Lemmas 7, 9 and 2, we shall verify that there exists a unique solution θ ∈ Y
satisfying (6) for all t > 0. Here, we would like to point out that by the similar argument
of (18), the conditions q ∈ (2, 3], 1

4 (s + 1) < 1
q and 1

2 (1− s) < 1
q ensure that

‖θ · R⊥θ‖
L̃

δ
2 (0,∞;Ḃ

2s−2+ 2
q′

q′ ,r )

≤ C‖θ‖2

L̃δ(0,∞;Ḃ
s+ 2

q−1
q,r )

.

It remains to demonstrate that the solution θ ∈ Y also belongs to C([0, ∞); Ḃs
2,r(R2)).

Similarly, we obtain

‖θ(t)‖Ḃs
2,r
≤ ‖eΩR1te−Λαtθ0‖Ḃs

2,r
+

∥∥∥∥{2js
∫ t

0

∥∥∥∆jeΩR1(t−τ)e−Λα(t−τ)∇ · (R⊥θ(τ)⊗ θ(τ))
∥∥∥

L2
dτ
}

j∈Z

∥∥∥∥
`r

≤ C‖θ0‖Ḃs
2,r
+ C

∥∥∥∥{2
j(2s+ 2

q′ −2)
∫ t

0
(t− τ)−

1
α (2−s)

∥∥∥∆j(R⊥θ(τ)⊗ θ(τ))
∥∥∥

Lq′
dτ
}

j∈Z

∥∥∥∥
`r

≤ C‖θ0‖Ḃs
2,r
+ C

( ∫ t

0
τ−

1
α (2−s)( δ

2 )
′
dτ
) 1

( δ
2 )
′ ‖R⊥θ(τ)⊗ θ(τ)‖

L̃
δ
2 (0,∞;Ḃ

2s+ 2
q′ −2

q′ ,r )

≤ C‖θ0‖Ḃs
2,r
+ C

( ∫ t

0
τ−

1
α (2−s)( δ

2 )
′
dτ

) 1
( δ

2 )
′
‖θ‖2

L̃δ(0,∞;Ḃ
s+ 2

q−1
q,r )

.
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Thanks to 1
δ < 1

2α (s− 2 + α), it is easy to check that

( ∫ t

0
τ−

1
α (2−s)( δ

2 )
′
dτ

) 1
( δ

2 )
′
≤ Ct

1
α (s−2+α)− 2

δ ,

which implies that θ(t) ∈ Ḃs
2,r(R2) for all t ≥ 0. Similarly, we observe that θ ∈ C([0, ∞); Ḃs

2,r(R2)).
This completes the proof of Theorem 2.

6. Conclusions

Theorems 1 and 2 show that for any given θ0 ∈ Ḃs
p,r(R2) with prescribed s, p, r, there

exists a positive parameter Ω0, and if |Ω| ≥ Ω0, then problem (1) with α > 1 is globally
well-posed. It is worth mentioning that compared with [18], we obtain the explicit expression
of Ω0:

Ω0 := (C−1‖θ0‖Ḃs
p,r
)

α

s−1− 2
p +α .
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