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Abstract: The collection of Hamacher t-norms was created by Hamacher in 1970, which played a
critical and significant role in computing aggregation operators. All aggregation operators that are
derived based on Hamacher norms are very powerful and are beneficial because of the parameter
0 ≤ ζ ≤ +∞. Choquet first posited the theory of the Choquet integral (CI) in 1953, which is used for
evaluating awkward and unreliable information to address real-life problems. In this manuscript, we
analyze several aggregation operators based on CI, aggregation operators, the Hamacher t-norm and
t-conorm, and Atanassov intuitionistic fuzzy (A-IF) information. These are called A-IF Hamacher
CI averaging (A-IFHCIA), A-IF Hamacher CI ordered averaging (A-IFHCIOA), A-IF Hamacher CI
geometric (A-IFHCIG), and A-IF Hamacher CI ordered geometric (A-IFHCIOG) operators; herein,
we identify their most beneficial and valuable results according to their main properties. Working
continuously, we developed a multi-attribute decision-making (MADM) procedure for evaluating
awkward and unreliable information, with the help of the TOPSIS technique for order performance
by similarity to the ideal solution, and derive operators to enhance the worth and value of the present
information. Finally, by comparing the pioneering information with some of the existing operators,
we illustrate some examples for evaluating the real-life problems related to enterprises, wherein the
owner of a company appointed four senior board members of the enterprise to decide what was
the best Asian company in which to invest money, to show the supremacy and superiority of the
invented approaches.

Keywords: Hamacher t-norm and t-conorm; aggregation operators; Choquet integral; intuitionistic
fuzzy sets; decision-making problem based on TOPSIS methods

MSC: 03B52; 68T27; 68T37; 94D05; 03E72; 28E10

1. Introduction

A group decision-making procedure is a technique whereby a collection of experts
mutually identifies the best decision in a scenario. Usually, the decision is based on valuable
discussion and after soliciting advice from knowledgeable people. This type of information
is preferable to and more valuable than pattern recognition and is utilized in medical
diagnosis. There are a large variety of collective decision-making techniques that can be
used in the environment of classical information. One of the most valuable and dominant
parts of any decision-making process is to confirm that all the experts in the group are
comfortable with the method chosen and that it is optimal for the decision that is to be
made. Effective and commonly employed methods include the nominal group technique,
the brainstorming method, and the Delphi technique. However, these methods have given
rise to many complications for experts because when they find the solution to any awkward
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and complicated problems using classical information, this method fails or does not take
into account much of the information. For managing such problems, the theory of fuzzy
set (FS) analysis was first reported by Zadeh [1] in 1965. Fuzzy information is one of
the most valuable and realistic modifications of classical information that are used for
addressing awkward and vague information in many real-life problems. Furthermore, a
multi-objective hierarchical genetic algorithm considering fuzzy interpretable rules in the
presence of knowledge extraction was developed by Wang et al. [2], while Chalco-Cano and
Roman-Flores [3] found the solution of complicated differential equations based on fuzzy
logic and its valuable capabilities. Dehghan et al. [4] discovered a computation solution for
some linear systems based on fuzzy information, and finally, the theory of the segmentation
of protein surfaces via fuzzy logic was discovered by Heiden and Brickmann [5].

Classical information and fuzzy information are identical in shape but are very dif-
ferent in practice because the range of the fuzzy set is much better than the range of the
classical set theory. Furthermore, it is also clear that the fuzzy information contains or
deals only with one element, called the membership grade, and ignores the concept of
negative or non-membership grade. The non-membership grade has the same or equal
role in our problem as a membership grade; without a falsity grade, we cannot evaluate
problems in our daily life effectively. Therefore, the theory of FS is not enough or sufficient
for accommodating awkward and unreliable information in genuine problems; for this
purpose, the main theory of the Atanassov-intuitionistic fuzzy (A-IF) set was invented
by Atanassov [6] in 1986. The theory of IF information is one of the most valuable and
realistic modifications of FS and classical information and is used for addressing awkward
and vague information related to many real-life problems. Elsewhere, Liu et al. [7] offered
three different perspectives for evaluating three-way opinions, based on linguistic A-IF
information. Xie et al. [8] invented a modified version of information quality for an A-IF
set and evaluated their main features, while Liu et al. [9] identified the internet public
preference emergency within the context of cubic A-IF values and described it in terms
of decision-making problems. Garg and Rani [10] presented an algorithm for evaluating
the awkward and unreliable decision-making procedure, taking into consideration the
correlation coefficient for A-IF information. Wang et al. [11] proposed a three-way decision
approach with probabilistic dominance relationships, based on A-IF information. Ecer [12]
evaluated a modified form of the MAIRCA “multi-attribute ideal-real comparative analy-
sis” technique for an A-IF set and evaluated several problems in the context of COVID-19;
finally, Panda and Nagwani [13] described the modeling or exploitation of different types
of problems, based on A-IF information and its applications in decision-making.

The TOPSIS technique utilized a combination of valuable and effective information
models, such as the ideal positive solution, the negative ideal solution, discrimination
measures, and closeness measures; we evaluated the ranking values based on the closeness
information from several valuable distance measures. The TOPSIS method was first
presented by various scholars in 1981. The concept behind the TOPSIS technique was
developed by Hwang and Yoon [14]; in 1987, the theory of the TOPSIS method was first
presented by Yoon [15], then, in 1993, the method was evaluated by Hwang et al. [16].
To illustrate the above theory, we consider the example of buying a mobile phone; we
assume that a person wants to buy a new mobile phone and, for this reason, he goes to the
shop and investigates the options based on the following five features, comprising RAM,
memory, display size, battery, and price. At first, the customer is confused, after seeing
so many complicated features, about how to decide which mobile is most suitable. The
TOPSIS technique is the most effective method to evaluate this type of problem because
TOPSIS is the best way to rank results based on the weights and impacts of the considered
features. Later, the fuzzy TOPSIS technique was discovered by Chu and Lin [17]; a TOPSIS
method based on FS was also employed by Wang and Elhag [18] for evaluating bridge
risk assessment problems. Chen and Tsao [19], Sun and Lin [20], Dymoya et al. [21],
Ashtiani et al. [22], and Memari et al. [23] also utilized the TOPSIS method for FS theory.
Moreover, Shen et al. [24] invented a TOPSIS method for A-IF set theory, while Joshi and
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Kumar [25] utilized the TOPSIS technique and entropy measures for A-IF information.
Liu [26] developed a TOPSIS method for evaluating the problems of physical education,
while Zulqarnain and Dayan [27] presented a TOPSIS method for addressing the problems
of automotive enterprises.

Many valuable and dominant norms have been identified by different scholars, but the
collection of Hamacher t-norms that were presented by Hamacher in 1970 played a critical
and much-appreciated role in the area of computing aggregation operators. Elsewhere,
Bellman and Zadeh [28] developed the theory of Hamacher aggregation with the help
of decision-making based on fuzzy information. Huang [29] discovered the Hamacher
aggregation operators for A-IF sets and evaluated their application in decision-making,
while Garg [30] presented the Hamacher aggregation operator and entropy measures for
A-IF information. More recently, Cakir and Ulukan [31] developed the theory of A-IF
Hamacher aggregation operators. All aggregation operators that are derived based on
Hamacher norms are very powerful because of the parameter 0 ≤ ζ ≤ +∞. Choquet [32]
first posited the theory of CI in 1953, used for evaluating awkward and unreliable informa-
tion in real-life problems. Later, Xu [33] invented a theory of CI based on weighted A-IF
information, while Tan and Chen [34] presented CI operators in the context of A-IF sets,
Wu et al. [35] examined CI in terms of A-IF set theory, while Liu et al. [36] evaluated the CI
operators for A-IF information; finally, an exploration of CI operators based on an A-IF set
was performed by Wang et al. [37]. Because of ambiguity and uncertainty, many structures
have been developed for depicting awkward and unreliable problems in real-life scenarios.
Combining any two or three different structures in fuzzy set theory is a very complicated
and challenging task for scholars. The main influence of this theory is to combine the
ideas of the Choquet integral, aggregation operator, and Hamacher t-norm and t-conorm,
based on A-IF information. Many people have explored the theory of CI based on an A-IF
set and Hamacher aggregation operators, also based on an A-IF set, but to date, no one
has explored the theory of Hamacher Choquet integral aggregation operators based on
A-IF sets. Retaining the advantages of the Choquet integral, aggregation operators, and
Hamacher t-norm and t-conorm, we have found a gap in the literature for a new idea. For
this manuscript, we addressed the following aims:

1. To compute the idea of the A-IFHCIA, A-IFHCIOA, A-IFHCIG, and A-IFHCIOG
operators, and benefit from the results accordingly.

2. To examine the TOPSIS method, based on A-IF information.
3. To derive a MADM procedure for evaluating awkward and unreliable information

with the help of the TOPSIS method and derived operators, to enhance the worth and
value of the presented information.

4. To compare our novel technique with existing operators, we needed to illustrate some
examples to show the supremacy and superiority of the invented approaches.

The structure of this paper is as follows. In Section 2, we revise the theory of the IF
set and the Hamacher operational laws with fuzzy measures and the Choquet integral. In
Section 3, we compute the results using the A-IFHCIA, A-IFHCIOA, A-IFHCIG, and A-
IFHCIOG operators. Furthermore, we offer the properties and main results of the proposed
technique. In Section 4, we explore the TOPSIS method based on A-IF information. Then,
we demonstrate a MADM procedure for evaluating awkward and unreliable information
with the help of the TOPSIS method and derived operators, to enhance the worth and value
of the presented information. In Section 5, we compare the novel technique with some of
the existing operators; for this purpose, we offer several examples to show the supremacy
and superiority of the invented approaches. In Section 6, we explain and evaluate our
findings and offer final conclusions and offer helpful remarks.

2. Preliminaries

Here, we mainly aim to revise the theory of the IF set and their Hamacher operational
laws with fuzzy measures and Choquet integral.
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Definition 1 ([6]). Here, we explain the theory of A-IFS ηi f , based on the universal set X and
discovered by:

ηi f = {(Ξs(σ), Λsa(σ)) : σ ∈ X} (1)

Furthermore, we explain the mathematical term in Equation (1) as Ξs(σ), Λsa(σ) : X→ [0, 1],
represented the information for and against each choice, with 0 ≤ Ξs(σ) + Λsa(σ) ≤ 1.
The refusal grade is derived from: °Fr(σ) = 1− (Ξs(σ) + Λsa(σ)) and the mathematical
information η

j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n represents the A-IF number (A-IFN).

Definition 2 ([29]). We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n be the family or collection

of A-IFNs. Then the mathematical information can be given as:

η
j
S−i f = Ξsj(σ)−Λsaj(σ) ∈ [−1, 1] (2)

η
j
H−i f = Ξsj(σ) + Λsaj(σ) ∈ [0, 1] (3)

The score function η
j
S−i f and the η

j
S−i f can be represented as an accuracy function

with the following characteristics:

1. If η1
S−i f > η2

S−i f , then η1
i f > η2

i f .

2. If η1
S−i f < η2

S−i f , then η1
i f < η2

i f .

3. If η1
S−i f = η2

S−i f , then:

(1) If η1
H−i f > η2

H−i f , then η1
i f > η2

i f .

(2) If η1
H−i f < η2

H−i f , then η1
i f < η2

i f .

Definition 3 ([29]). We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n should be the family or

collection of A-IFNs. Then, we can describe certain operational laws, such that:

η1
i f ⊕ η2

i f ⊕ . . .⊕ ηn
i f =


∏n

j=1

(
1+(ζ−1)Ξsj

)
−∏n

j=1

(
1−Ξsj

)
∏n

j=1

(
1+(ζ−1)Ξsj

)
+(ζ−1)∏n

j=1

(
1−Ξsj

) ,

ζ ∏n
j=1

(
1−Ξsj

)
−ζ ∏n

j=1

(
1−Ξsj−Λsaj

)
∏n

j=1

(
1+(ζ−1)Ξsj

)
+(ζ−1)∏n

j=1

(
1−Ξsj

)

 (4)

η1
i f ⊗ η2

i f ⊗ . . .⊗ ηn
i f =


ζ ∏n

j=1

(
1−Λsaj

)
−ζ ∏n

j=1

(
1−Ξsj−Λsaj

)
∏n

j=1

(
1+(ζ−1)Λsaj

)
+(ζ−1)∏n

j=1

(
1−Λsaj

) ,

∏n
j=1

(
1+(ζ−1)Λsaj

)
−∏n

j=1

(
1−Λsaj

)
∏n

j=1

(
1+(ζ−1)Λsaj

)
+(ζ−1)∏n

j=1

(
1−Λsaj

)

 (5)

δη1
i f =

(
(1 + (ζ − 1)Ξs1)

δ − (1− Ξs1)
δ

(1 + (ζ − 1)Ξs1)
δ − (ζ − 1)(1− Ξs1)

δ
,

ζ(1− Ξs1)
δ − ζ(1− Ξs1 −Λsa1)

δ

(1 + (ζ − 1)Ξs1)
δ − (ζ − 1)(1− Ξs1)

δ

)
(6)

η1
i f

δ =

(
ζ(1−Λsa1)

δ − ζ(1− Ξs1 −Λsa1)
δ

(1 + (ζ − 1)Λsa1)
δ − (ζ − 1)(1−Λsa1)

δ
,

(1 + (ζ − 1)Λsa1)
δ − (1−Λsa1)

δ

(1 + (ζ − 1)Λsa1)
δ − (ζ − 1)(1−Λsa1)

δ

)
(7)

Definition 4 ([37]). The mathematical version of the fuzzy measure is stated by:

∫
ψdV =

n

∑
j=1

(
V (

=
η0(j) )−V (

=
η0(j−1) )

)
ψ0(j) (8)
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V (
=
η ) = V

(
n

ä
j=1

σj

)
=


1
δ

[
n
∏
j=1

(
1 + γV

(
σj
))
− 1

]
δ 6= 0

∑
σj∈A

V
(
σj
)

δ = 0
(9)

where 0(j) is used for the permutation of (1, 2, . . . , n) in the context of ψ0(1) ≥ ψ0(2) ≥ . . . ≥
ψ0(n) with

=
η = θ,

=
η0(j) = {η′0(1), η′0(2), . . . , η′0(j) }.

3. Hamacher–Choquet Integral Aggregation Operators for A-IFSs

In this analysis, we considered the theory of A-IFHCIA, A-IFHCIOA, A-IFHCIG, and
A-IFHCIOG operators, and highlighted their most beneficial and valuable results and their
main properties.
Definition 5. We assume η

j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n to be the family or collection of

A-IFNs. The mathematical shape of the A-IFHCIA operator is derived from:∫
ηi f dV = A − IFHCIA (η1

i f , η2
i f , . . . , ηn

i f )

=
(
V (

=
η0(1) )−V (

=
η0(0) )

)
η1

i f ⊕
(
V (

=
η0(2) )−V (

=
η0(1) )

)
η2

i f ⊕ . . .

⊕
(
V (

=
η0(n) )−V (

=
η0(n−1) )

)
ηn

i f =
n
∑

j=1

(
V (

=
η0(j) )−V (

=
η0(j−1) )

)
η

j
i f .

= ⊕n
j=1

(
V (

=
η0(j) )−V (

=
η0(j−1) )

)
η

j
i f

(10)

Theorem 1. We assume η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , nto be the family or collection of A-IFNs.

Then, we assume that the aggregate values of Equation (10) are again in the shape of IFN, such that:

A− IFHCIA
(

η1
i f , η2

i f , . . . , ηn
i f

)

=


∏n

j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−∏n

j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

∏n
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)∏n

j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

ζ ∏n
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ ∏n

j=1

(
1−Ξsj−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

∏n
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)∏n

j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))


(11)

Proof. By considering mathematical induction, we derive the theory in Equation (11). First,
we use n = 2, then we have:

(
V (

=
η0(1) )−V (

=
η0(0) )

)
η1

i f =


(1+(ζ−1)Ξs1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))−(1−Ξs1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))

(1+(ζ−1)Ξs1)
(V(

=
η 0(1))−V(

=
η 0(1−1)))+(ζ−1)(1−Ξs1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))

,

ζ(1−Ξs1)
(V(

=
η 0(1))−V(

=
η 0(1−1)))−ζ(1−Ξs1−Λsa1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))

(1+(ζ−1)Ξs1)
(V(

=
η 0(1))−V(

=
η 0(1−1)))+(ζ−1)(1−Ξs1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))



(
V (

=
η0(2) )−V (

=
η0(1) )

)
η2

i f =


(1+(ζ−1)Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))−(1−Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))

(1+(ζ−1)Ξs2)
(V(

=
η 0(2))−V(

=
η 0(2−1)))+(ζ−1)(1−Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))

,

(1+(ζ−1)Ξs2)
(V(

=
η 0(2))−V(

=
η 0(2−1)))−(1−Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))

(1+(ζ−1)Ξs2)
(V(

=
η 0(2))−V(

=
η 0(2−1)))+(ζ−1)(1−Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))

,


Then,

=
(
V (

=
η0(1) )−V (

=
η0(0) )

)
η1

i f ⊕
(
V (

=
η0(2) )−V (

=
η0(1) )

)
η2

i f
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=


(1+(ζ−1)Ξs1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))−(1−Ξs1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))

(1+(ζ−1)Ξs1)
(V(

=
η 0(1))−V(

=
η 0(1−1)))+(ζ−1)(1−Ξs1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))

,

ζ(1−Ξs1)
(V(

=
η 0(1))−V(

=
η 0(1−1)))−ζ(1−Ξs1−Λsa1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))

(1+(ζ−1)Ξs1)
(V(

=
η 0(1))−V(

=
η 0(1−1)))+(ζ−1)(1−Ξs1)

(V(
=
η 0(1))−V(

=
η 0(1−1)))



⊕


(1+(ζ−1)Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))−(1−Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))

(1+(ζ−1)Ξs2)
(V(

=
η 0(2))−V(

=
η 0(2−1)))+(ζ−1)(1−Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))

,

ζ(1−Ξs2)
(V(

=
η 0(2))−V(

=
η 0(2−1)))−ζ(1−Ξs2−Λsa2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))

(1+(ζ−1)Ξs2)
(V(

=
η 0(2))−V(

=
η 0(2−1)))+(ζ−1)(1−Ξs2)

(V(
=
η 0(2))−V(

=
η 0(2−1)))



=



2
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

2
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

2
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

2
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

ζ
2
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

2
∏
j=1

(
1−Ξsj−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

2
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

2
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))


Moreover, we assume that the information in Equation (11) is also valid for n = k;

then we have:

A− IFHCIA (η1
i f , η2

i f , . . . , ηk
i f )

=



k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

ζ
k

∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

k
∏
j=1

(
1−Ξsj−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))


Then, we assume that the information in Equation (11) is also valid for n = k + 1,

such that:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f )

=
(
V (

=
η0(1) )−V (

=
η0(0) )

)
η1

i f ⊕
(
V (

=
η0(2) )−V (

=
η0(1) )

)
η2

i f ⊕ . . .

⊕
(
V (

=
η0(k) )−V (

=
η0(k−1) )

)
ηk

i f ⊕
(
V (

=
η0(k+1) )−V (

=
η0(k+1−1) )

)
ηk+1

i f

=
k
∑

j=1

(
V (

=
η0(j) )−V (

=
η0(j−1) )

)
η

j
i f ⊕

(
V (

=
η0(k+1) )−V (

=
η0(k+1−1) )

)
ηk+1

i f

= ⊕k
j=1

(
V (

=
η0(j) )−V (

=
η0(j−1) )

)
η

j
i f ⊕

(
V (

=
η0(k+1) )−V (

=
η0(k+1−1) )

)
ηk+1

i f

=



k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

ζ
k

∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

k
∏
j=1

(
1−Ξsj−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))


⊕
(
V (

=
η0(k+1) )−V (

=
η0(k+1−1) )

)
ηk+1

i f
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=



k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

ζ
k

∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

k
∏
j=1

(
1−Ξsj−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

k
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

k
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))



⊕



(
1+(ζ−1)Ξsk+1

)(V(
=
η 0(k+1))−V(

=
η 0(k+1−1)))−

(
1−Ξsk+1

)(V(
=
η 0(k+1))−V(

=
η 0(k+1−1)))

(
1+(ζ−1)Ξsk+1

)(V(
=
η 0(k+1))−V(

=
η 0(k+1−1)))+(ζ−1)

(
1−Ξsk+1

)(V(
=
η 0(k+1))−V(

=
η 0(k+1−1)))

,

ζ
(

1−Ξsk+1

)(V(
=
η 0(k+1))−V(

=
η 0(k+1−1)))−ζ

(
1−Ξsk+1−Λsak+1

)(V(
=
η 0(k+1))−V(

=
η 0(k+1−1)))

(
1+(ζ−1)Ξsk+1

)(V(
=
η 0(k+1))−V(

=
η 0(k+1−1)))+(ζ−1)

(
1−Ξsk+1

)(V(
=
η 0(k+1))−V(

=
η 0(k+1−1)))



=



k+1
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

k+1
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

k+1
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

k+1
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

ζ
k+1
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

k+1
∏
j=1

(
1−Ξsj−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

k+1
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

k+1
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))


Hence, we can assume that the information in Equation (11) is valid for all possible

values of n. �
Moreover, we can derive the idempotency, monotonicity, and boundedness from

consideration of the theory in Equation (11).
Property 1. We assume that η

j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n should be the family or

collection of A-IFNs. Then:

1. Idempotency: When η
j
i f = ηi f = (Ξs, Λsa), j = 1, 2, . . . , n, then:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) = ηi f .

2. Monotonicity: When η
j
i f =

(
Ξsj , Λsaj

)
≤ η∗

j
i f =

(
Ξ∗sj

, Λ∗saj

)
, then:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ A− IFHCIA

(
η∗1

i f , η∗2
i f , . . . , η∗n

i f

)
.

3. Boundedness: When η−i f =

(
min

j
Ξsj , max

j
Λsaj

)
and η+

i f =

(
max

j
Ξsj , min

j
Λsaj

)
, then:

η−i f ≤ A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ η+

i f .

Proof. We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n should be the family or collection

of A-IFNs. Then:

1. When η
j
i f = ηi f = (Ξs, Λsa), j = 1, 2, . . . , n, then:

A− IFHCIA
(

η1
i f , η2

i f , . . . , ηn
i f

)
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=



n
∏
j=1

(1+(ζ−1)Ξs)
(V(

=
η 0(j))−V(

=
η 0(j−1)))−

n
∏
j=1

(1−Ξs)
(V(

=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(1+(ζ−1)Ξs)
(V(

=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(1−Ξs)
(V(

=
η 0(j))−V(

=
η 0(j−1)))

,

ζ
n
∏
j=1

(1−Ξs)
(V(

=
η 0(j))−V(

=
η 0(j−1)))−ζ

n
∏
j=1

(1−Ξs−Λsa)
(V(

=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(1+(ζ−1)Ξs)
(V(

=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(1−Ξs)
(V(

=
η 0(j))−V(

=
η 0(j−1)))



=



(1+(ζ−1)Ξs)

n
∑

j=1
(V(

=
η 0(j))−V(

=
η 0(j−1)))

−(1−Ξs)

n
∑

j=1
(V(

=
η 0(j))−V(

=
η 0(j−1)))

(1+(ζ−1)Ξs)

n
∑

j=1
(V(

=
η 0(j))−V(

=
η 0(j−1)))

+(ζ−1)(1−Ξs)

n
∑

j=1
(V(

=
η 0(j))−V(

=
η 0(j−1)))

,

ζ(1−Ξs)

n
∑

j=1
(V(

=
η 0(j))−V(

=
η 0(j−1)))

−ζ(1−Ξs−Λsa)

n
∑

j=1
(V(

=
η 0(j))−V(

=
η 0(j−1)))

(1+(ζ−1)Ξs)

n
∑

j=1
(V(

=
η 0(j))−V(

=
η 0(j−1)))

+(ζ−1)(1−Ξs)

n
∑

j=1
(V(

=
η 0(j))−V(

=
η 0(j−1)))


=

 (1+(ζ−1)Ξs)−(1−Ξs)
(1+(ζ−1)Ξs)+(ζ−1)(1−Ξs)

,
ζ(1−Ξs)−ζ(1−Ξs−Λsa)

(1+(ζ−1)Ξs)+(ζ−1)(1−Ξs)

,
n

∑
j=1

(
V (

=
η0(j) )−V (

=
η0(j−1) )

)
= 1

=

 1+ζΞs−Ξs−1+Ξs
1+ζΞs−Ξs+ζ−ζΞs−1+Ξs

,
ζ−ζΞs−ζ1+ζΞs+ζΛsa

1+ζΞs−Ξs+ζ−ζΞs−1+Ξs


= (Ξs, Λsa) = ηi f

2. When η
j
i f =

(
Ξsj , Λsaj

)
≤ η∗

j
i f =

(
Ξ∗sj

, Λ∗saj

)
, then we can further explain the consid-

ered information, such that Ξsj ≤ Ξ∗sj
and Λsaj ≥ Λ∗saj

; then:

Ξsj ≤ Ξ∗sj
⇒ 1− Ξsj ≥ 1− Ξ∗sj

⇒
n

∏
j=1

(
1− Ξsj

)(V(
=
η0(j))−V(

=
η0(j−1))) ≥

n

∏
j=1

(
1− Ξ∗sj

)(V(
=
η0(j))−V(

=
η0(j−1)))

⇒
n
∏
j=1

(
1 + (ζ − 1)Ξsj

)(V(
=
η0(j))−V(

=
η0(j−1))) −

n
∏
j=1

(
1− Ξsj

)(V(
=
η0(j))−V(

=
η0(j−1)))

≤
n
∏
j=1

(
1 + (ζ − 1)Ξ∗sj

)(V(
=
η0(j))−V(

=
η0(j−1))) −

n
∏
j=1

(
1− Ξ∗sj

)(V(
=
η0(j))−V(

=
η0(j−1)))

⇒

n
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

n
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

≤

n
∏
j=1

(
1+(ζ−1)Ξ∗sj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

−
n
∏
j=1

(
1−Ξ∗sj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Ξ∗sj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

+(ζ−1)
n
∏
j=1

(
1−Ξ∗sj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

Furthermore,

Λsaj ≥ Λ∗saj
⇒ 1−Λsaj ≤ 1−Λ∗saj

⇒ 1− Ξsj −Λsaj ≥ 1− Ξ∗sj
−Λ∗saj

⇒
n

∏
j=1

(
1− Ξsj −Λsaj

)(V(
=
η0(j))−V(

=
η0(j−1))) ≥

n

∏
j=1

(
1− Ξ∗sj

−Λ∗saj

)(V(
=
η0(j))−V(

=
η0(j−1)))

⇒ −ζ
n

∏
j=1

(
1− Ξsj −Λsaj

)(V(
=
η0(j))−V(

=
η0(j−1))) ≤ −ζ

n

∏
j=1

(
1− Ξ∗sj

−Λ∗saj

)(V(
=
η0(j))−V(

=
η0(j−1)))
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⇒ ζ
n
∏
j=1

(
1− Ξsj

)(V(
=
η0(j))−V(

=
η0(j−1))) − ζ

n
∏
j=1

(
1− Ξsj −Λsaj

)(V(
=
η0(j))−V(

=
η0(j−1)))

≥ ζ
n
∏
j=1

(
1− Ξ∗sj

)(V(
=
η0(j))−V(

=
η0(j−1))) − ζ

n
∏
j=1

(
1− Ξ∗sj

−Λ∗saj

)(V(
=
η0(j))−V(

=
η0(j−1)))

⇒
ζ

n
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

n
∏
j=1

(
1−Ξsj−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(
1−Ξsj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

≥
ζ

n
∏
j=1

(
1−Ξ∗sj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

−ζ
n
∏
j=1

(
1−Ξ∗sj

−Λ∗saj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Ξ∗sj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

+(ζ−1)
n
∏
j=1

(
1−Ξ∗sj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

Then, by using the information in Equations (2) and (3), we can easily derive the
following result, such that:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ A− IFHCIA

(
η∗1

i f , η∗2
i f , . . . , η∗n

i f

)
.

3. When η−i f = (min
j

Ξsj , max
j

Λsaj) and η+
i f = (max

j
Ξsj , min

j
Λsaj), then, using point 1 and

point 2, we have:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ A− IFHCIA

(
η+1

i f , η+2
i f , . . . , η+n

i f

)
= η+

i f

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≥ A− IFHCIA

(
η−1

i f , η−2
i f , . . . , η−n

i f

)
= η−i f

Then, we can derive:

η−i f ≤ A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ η+

i f .�

Definition 6. We assume η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n to be the family or collection of

A-IFNs. The mathematical shape of the A-IFHCIOA operator is derived from:∫
ηi f dV = A− IFHCIOA

(
η1

i f , η2
i f , . . . , ηn

i f

)
=
(
V
(
=
η0(1)

)
−V

(
=
η0(0)

))
η

0(1)
i f ⊕

(
V
(
=
η0(2)

)
−V

(
=
η0(1)

))
η

0(2)
i f ⊕ . . .

⊕
(
V
(
=
η0(n)

)
−V

(
=
η0(n−1)

))
η

0(n)
i f =

n
∑

j=1

(
V
(
=
η0(j)

)
−V

(
=
η0(j−1)

))
η

0(j)
i f

= ⊕n
j=1

(
V
(
=
η0(j)

)
−V

(
=
η0(j−1)

))
η

0(j)
i f

(12)

where 0(j) ≤ 0(j− 1) represents the permutations of j = 1, 2, . . . , n.

Theorem 2. We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n is the family or collection of

A-IFNs. Then, we can see that the aggregate values of Equation (12) are again in the shape of an
IFN, such that:
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A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f )

=



n
∏
j=1

(
1+(ζ−1)Ξs0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

n
∏
j=1

(
1−Ξs0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Ξs0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(
1−Ξs0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

ζ
n
∏
j=1

(
1−Ξs0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

n
∏
j=1

(
1−Ξs0(j)

−Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Ξs0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(
1−Ξs0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))


.

(13)

Moreover, we can derive the idempotency, monotonicity, and boundedness within the
exploration of the theory in Equation (13).

Property 2. We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n represents the family or

collection of A-IFNs. Then:

1. Idempotency: When η
j
i f = ηi f = (Ξs, Λsa), j = 1, 2, . . . , n, then:

A− IFHCIOA (η1
i f , η2

i f , . . . , ηn
i f ) = ηi f .

2. Monotonicity: When η
j
i f =

(
Ξsj , Λsaj

)
≤ η∗

j
i f =

(
Ξ∗sj

, Λ∗saj

)
, then:

A− IFHCIOA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ A− IFHCIOA

(
η∗1

i f , η∗2
i f , . . . , η∗n

i f

)
.

3. Boundedness: When η−i f = (min
j

Ξsj , max
j

Λsaj) and η+
i f = (max

j
Ξsj , min

j
Λsaj), then:

η−i f ≤ A− IFHCIOA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ η+

i f .

Definition 7. We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n will be the family or collection of

A-IFNs. The mathematical shape of the A-IFHCIG operator is derived by:∫
ηi f dV = A− IFHCIG

(
η1

i f , η2
i f , . . . , ηn

i f

)
= η1

i f
(V(

=
η0(1))−V(

=
η0(0))) ⊗ η2

i f
(V(

=
η0(2))−V(

=
η0(1))) ⊗ . . .⊗ ηn

i f
(V(

=
η0(n))−V(

=
η0(n−1)))

=
n
∏
j=1

η
j
i f
(V(

=
η0(j))−V(

=
η0(j−1))) = ⊗n

j=1η
j
i f
(V(

=
η0(j))−V(

=
η0(j−1)))

(14)

Theorem 3. We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n is the family or collection of

A-IFNs. Then we can see that the aggregate values of Equation (14) are again in the shape of IFN,
such that:

A− IFHCIG
(

η1
i f , η2

i f , . . . , ηn
i f

)

=



ζ
n
∏
j=1

(
1−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

n
∏
j=1

(
1−Ξsj−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(
1−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

n
∏
j=1

(
1+(ζ−1)Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

n
∏
j=1

(
1−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(
1−Λsaj

)(V(
=
η 0(j))−V(

=
η 0(j−1)))


(15)

Moreover, we derive the idempotency, monotonicity, and boundedness by considering
the theory offered in Equation (15).

Property 3. We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n is the family or collection

of A-IFNs. Then:
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1. Idempotency: When η
j
i f = ηi f = (Ξs, Λsa), j = 1, 2, . . . , n, then:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) = ηi f .

2. Monotonicity: When η
j
i f =

(
Ξsj , Λsaj

)
≤ η∗

j
i f =

(
Ξ∗sj

, Λ∗saj

)
, then:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ A− IFHCIA

(
η∗1

i f , η∗2
i f , . . . , η∗n

i f

)
.

3. Boundedness: When η−i f = (min
j

Ξsj , max
j

Λsaj) and η+
i f = (max

j
Ξsj , min

j
Λsaj), then:

η−i f ≤ A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ η+

i f .

Definition 8. We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n is the family or collection of

A-IFNs. The mathematical shape of the A-IFHCIOG operator is derived by:∫
ηi f dV = A− IFHCIOG (η1

i f , η2
i f , . . . , ηn

i f )

= η
0(1)
i f

(V(
=
η0(1))−V(

=
η0(0))) ⊗ η

0(2)
i f

(V(
=
η0(2))−V(

=
η0(1))) ⊗ . . .⊗ η

0(n)
i f

(V(
=
η0(n))−V(

=
η0(n−1)))

=
n
∏
j=1

η
0(j)
i f

(V(
=
η0(j))−V(

=
η0(j−1))) = ⊗n

j=1η
0(j)
i f

(V(
=
η0(j))−V(

=
η0(j−1)))

(16)

where 0(j) ≤ 0(j− 1) represents the permutations of j = 1, 2, . . . , n.
Theorem 4. We assume that η

j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n should be the family or collection

of A-IFNs. Then we derive that the aggregate values of Equation (16) are again in the shape of IFN,
such as

A− IFHCIG (η1
i f , η2

i f , . . . , ηn
i f )

=



ζ
n
∏
j=1

(
1−Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−ζ

n
∏
j=1

(
1−Ξs0(j)

−Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(
1−Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

,

n
∏
j=1

(
1+(ζ−1)Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))−

n
∏
j=1

(
1−Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))

n
∏
j=1

(
1+(ζ−1)Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))+(ζ−1)

n
∏
j=1

(
1−Λsa0(j)

)(V(
=
η 0(j))−V(

=
η 0(j−1)))


(17)

Moreover, we derive the idempotency, monotonicity, and boundedness after consider-
ation of the theory in Equation (17).

Property 4. We assume that η
j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n represents the family or

collection of A-IFNs. Then

1. Idempotency: When η
j
i f = ηi f = (Ξs, Λsa), j = 1, 2, . . . , n, then:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) = ηi f .

2. Monotonicity: When η
j
i f =

(
Ξsj , Λsaj

)
≤ η∗

j
i f =

(
Ξ∗sj

, Λ∗saj

)
, then:

A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ A− IFHCIA

(
η∗1

i f , η∗2
i f , . . . , η∗n

i f

)
.

3. Boundedness: When η−i f = (min
j

Ξsj , max
j

Λsaj) and η+
i f = (max

j
Ξsj , min

j
Λsaj), then:

η−i f ≤ A− IFHCIA (η1
i f , η2

i f , . . . , ηn
i f ) ≤ η+

i f .
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4. MADM Technique Based on the TOPSIS Method

In this section, we aim to construct a theory of the TOPSIS procedure under the
Hamacher CI aggregation operators for IFSs. For this, we consider the theory of derived
operators and the most important steps of the TOPSIS method, from which we derive our
novel TOPSIS techniques. Therefore, the main and most valuable points of the TOPSIS
method are described below.

Point 1: First, we arrange the decision matrices using the information from IFNs.
Therefore, here, we considered the collection of alternatives ηAL

i f = {ηa−1
i f , ηa−2

i f , . . . , ηa−m
i f }

and their finite values of attributes ηAT
i f = {ηat−1

i f , ηat−2
i f , . . . , ηat−n

i f }. Then by using this
information, we compute a matrix by including intuitionistic fuzzy information, such
as η

j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n, which represented the A-IF number (A-IFN), where

Ξs(σ), Λsa(σ) : X → [0, 1] represented the information for and against each choice, infor-
mation where 0 ≤ Ξs(σ) + Λsa(σ) ≤ 1. The refusal grade is derived from: °Fr(σ) =
1− (Ξs(σ) + Λsa(σ)). Each decision matrix contained two types of information, such as
benefit or cost types; if the information in the decision matrix is of the cost type, then we
normalize it thus:

F =


(

Ξsj , Λsaj

)
f or bene f it(

Λsaj , Ξsj

)
f or cost

If the information in the decision matrix is of the benefit type, then we do not normalize it.
Point 2: Furthermore, we aggregate the information in decision matrices to aggregate

one matrix, using the theory of an A− IFHCIA operator or A− IFHCIG operator.
Point 3: Moreover, we derive the ideal positive and negative solutions by using the

information in the decision matrix.

η+
i f =

{(
max

j
Ξsj1 , min

j
Λsaj1

)
,
(

max
j

Ξsj2 , min
j

Λsaj2

)
, . . . ,

(
max

j
Ξsjn , min

j
Λsajn

)}

η−i f =

{(
min

j
Ξsj1 , max

j
Λsaj1

)
,
(

min
j

Ξsj2 , max
j

Λsaj2

)
, . . . ,

(
min

j
Ξsjn , max

j
Λsajn

)}
Point 4: Then, we aim to evaluate the discrimination measures, based on the ideal

positive and negative solutions, using the information in the decision matrix.

D+ (η
j
i f , η+

i f ) =
1
n

n

∑
j=1


(

Ξsj Ξ
+
sj
+ Ξsj Ξ

+
sj
+ °Frj °F+

rj

)
√

Ξ2
sj
+ Ξ2

sj
+ °F2

rj
×
√

Ξ+
sj

2 + Ξ+
sj

2 + °F+
rj

2



D− (η j
i f , η−i f ) =

1
n

n

∑
j=1


(

Ξsj Ξ
−
sj
+ Ξsj Ξ

−
sj
+ °Frj °F−rj

)
√

Ξ2
sj
+ Ξ2

sj
+ °F2

rj
×
√

Ξ−sj
2 + Ξ−sj

2 + °F−rj
2


Point 5: Additionally, we derive the closeness measure with the help of the obtained

discrimination measures:

Cj =
D−
(

η
j
i f , η−i f

)
D+
(

η
j
i f , η+

i f

)
+ D−

(
η

j
i f , η−i f

)
where 0 ≤ Cj ≤ 1.

Point 6: We determine or evaluate the ranking values, based on the closeness measures,
and try to discover the best one.

Furthermore, we aim to verify the derivation procedure with the help of some prac-
tical examples, to discover the supremacy and proficiency of the evaluated operators
and method.
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A. Illustrative example

Here, we discuss a MADM technique in the presence of the Hamacher Choquet
integral aggregation operators for IF information. For this, we select a decision-making
dilemma in an investment enterprise where they are planning to create a strategy for the
next few years. Therefore, they appointed four board members of the enterprise to choose
where to invest their money in the following four companies located in Asian markets,
representing alternatives such as:

ηa−1
i f : Southern.

ηa−2
i f : Eastern.

ηa−3
i f : Northern.

ηa−4
i f : Local market.

To evaluate the companies, they used four main predictors, which represent attributes
such as:

ηat−1
i f : Growth.

ηat−2
i f : Social impact.

ηat−3
i f : Political impact.

ηat−4
i f : Environmental impact.

Furthermore, to address the above problem, we created artificial information and tried
to evaluate it with the help of our derived procedure. Therefore, the process used in the
TOPSIS method is described below.

Point 1: Here, we arranged the decision matrices using the information regarding
IFNs. Therefore, we considered the collection of alternatives ηAL

i f = {ηa−1
i f , ηa−2

i f , . . . , ηa−m
i f }

and their finite values for the attributes ηAT
i f = {ηat−1

i f , ηat−2
i f , . . . , ηat−n

i f }. Then, using this
information, we computed a matrix, including intuitionistic fuzzy information, such as
η

j
i f =

(
Ξsj , Λsaj

)
, j = 1, 2, . . . , n represented the A-IF number (A-IFN), where

Ξs(σ), Λsa(σ) : X → [0, 1] represented the information for and against each choice, with
0 ≤ Ξs(σ) + Λsa(σ) ≤ 1. The refusal grade is derived by: °Fr(σ) = 1− (Ξs(σ) + Λsa(σ)).
Each decision matrix contained two types of information, such as benefit or cost types; if
the information in the decision matrix is of the cost type, then we normalize it, such that:

F =


(

Ξsj , Λsaj

)
f or bene f it(

Λsaj , Ξsj

)
f or cost

If the information in the decision matrix is of the benefit type, then we do not normalize
it. However, the information in Tables 1–4 does not need to be normalized. Here, we use
the information on CI given in Ref. [34].

Table 1. Decision matrix 1.

ηat−1
if ηat−2

if ηat−3
if ηat−4

if

ηa−1
i f (0.3, 0.2) (0.5, 0.4) (0.8, 0.1) (0.7, 0.1)

ηa−2
i f (0.4, 0.1) (0.4, 0.4) (0.7, 0.3) (0.3, 0.3)

ηa−3
i f (0.5, 0.4) (0.3, 0.3) (0.6, 0.3) (0.4, 0.3)

ηa−4
i f (0.7, 0.2) (0.5, 0.2) (0.5, 0.4) (0.5, 0.4)
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Table 2. Decision matrix 2.

ηat−1
if ηat−2

if ηat−3
if ηat−4

if

ηa−1
i f (0.3, 0.2) (0.7, 0.1) (0.8, 0.1) (0.1, 0.1)

ηa−2
i f (0.4, 0.4) (0.6, 0.2) (0.7, 0.2) (0.2, 0.1)

ηa−3
i f (0.5, 0.3) (0.5, 0.3) (0.6, 0.3) (0.3, 0.2)

ηa−4
i f (0.6, 0.2) (0.7, 0.1) (0.5, 0.4) (0.4, 0.3)

Table 3. Decision matrix 3.

ηat−1
if ηat−2

if ηat−3
if ηat−4

if

ηa−1
i f (0.6, 0.2) (0.8, 0.1) (0.2, 0.1) (0.5, 0.3)

ηa−2
i f (0.5, 0.3) (0.7, 0.2) (0.6, 0.2) (0.7, 0.1)

ηa−3
i f (0.7, 0.1) (0.5, 0.4) (0.4, 0.3) (0.5, 0.3)

ηa−4
i f (0.3, 0.2) (0.3, 0.2) (0.2, 0.1) (0.7, 0.1)

Table 4. Decision matrix 4.

ηat−1
if ηat−2

if ηat−3
if ηat−4

if

ηa−1
i f (0.6, 0.2) (0.7, 0.2) (0.2, 0.1) (0.7, 0.2)

ηa−2
i f (0.5, 0.3) (0.6, 0.3) (0.3, 0.2) (0.4, 0.1)

ηa−3
i f (0.1, 0.1) (0.6, 0.2) (0.7, 0.2) (0.2, 0.1)

ηa−4
i f (0.3, 0.2) (0.5, 0.3) (0.6, 0.3) (0.3, 0.2)

Point 2: Furthermore, we aggregate the information in the decision matrices to aggre-
gate a single matrix, using the theory of the A− IFHCIA operator, as shown in Table 5.

Table 5. Aggregated matrix.

ηat−1
if ηat−2

if ηat−3
if ηat−4

if

ηa−1
i f (0.1608, 0.1313) (0.2504, 0.3183) (0.3362, 0.1317) (0.3135, 0.1389)

ηa−2
i f (0.1800, 0.1433) (0.1985, 0.2967) (0.2654, 0.7344) (0.1072, 0.1271)

ηa−3
i f (0.1356, 0.3107) (0.1793, 0.1549) (0.3066, 0.2917) (0.1237, 0.1327)

ηa−4
i f (0.2752, 0.2104) (0.2426, 0.1784) (0.2530, 0.3701) (0.1601, 0.3134)

Point 3: Moreover, we derive the ideal positive and negative ideal solutions by using
the information in the decision matrix.

η+
i f = {(0.2752, 0.1313), (0.2504, 0.1549), (0.3362, 0.1317), (0.3135, 0.1271)}

η−i f = {(0.1356, 0.3107), (0.1793, 0.3183), (0.2530, 0.7344), (0.1072, 0.3134)}

Point 4: Then, we aim to evaluate the discrimination measures, based on the ideal
positive and negative solutions, with the information in the decision matrix.

D+ (η1
i f , η+

i f ) = 0.9791, D+ (η2
i f , η+

i f ) = 0.8622.D+ (η3
i f , η+

i f ) = 0.9548, D+ (η4
i f , η+

i f ) = 0.9508
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D− (η1
i f , η−i f

)
= 0.8071, D− (η2

i f , η−i f ) = 0.9696, D− (η3
i f , η−i f ) = 0.8883, D− (η4

i f , η−i f ) = 0.9176

Point 5: Additionally, we derive the closeness measurement with the help of the
obtained discrimination measures:

C1 =
D−
(

η1
i f , η−i f

)
D+
(

η1
i f , η+

i f

)
+ D−

(
η1

i f , η−i f

) =
0.8071

0.8071 + 0.9791
= 0.4518, C2 = 0.5293, C3 = 0.4819, C4 = 0.4911

where 0 ≤ Cj ≤ 1.
Point 6: We determine or evaluate the ranking values, based on the closeness measures,

and try to discover the best one.

C2 ≥ C4 ≥ C3 ≥ C1

Hence, we establish that the best decision is C2. Furthermore, we evaluate the informa-
tion in Table 5 with the help of the A-IFHCIA and A-IFHCIG operators and try to compare
them with the obtained results of the TOPSIS method. Therefore, the final aggregated
results are given in Table 6.

Table 6. Aggregated matrix.

A−IFHCIA A−IFHCIG

ηa−1
i f (0.0843, 0.0813) (0.1037, 0.0913)

ηa−2
i f (0.0581, 0.0106) (0.0397, 0.0363)

ηa−3
i f (0.0459, 0.1072) (0.0540, 0.0915)

ηa−4
i f (0.0940, 0.1144) (0.1177, 0.0671)

Finally, by using the information in Equation (2), we can evaluate the score or net
result (see the information in Table 7).

Table 7. Score matrix.

A−IFHCIA A−IFHCIG

ηa−1
i f 0.0029 0.0124

ηa−2
i f 0.0474 0.0034

ηa−3
i f −0.0612 −0.0374

ηa−4
i f −0.0204 0.0506

Moreover, we can determine or evaluate the ranking values, based on the information
in Table 7, and try to discover the best one.

ηa−2
i f ≥ ηa−1

i f ≥ ηa−4
i f ≥ ηa−3

i f

ηa−4
i f ≥ ηa−1

i f ≥ ηa−2
i f ≥ ηa−3

i f

Hence, we established that the best decision is ηa−2
i f , according to the A-IFHCIA

operator, and the best decision is ηa−4
i f , according to the A-IFHCIG operator, where the final

result obtained from the TOPSIS method and A-IFHCIA operator are the same but the final
result of the A-IFHCIG operator is different. Finally, we derive the comparative analysis of
the presented information with some existing operators, to find the supremacy and real
worth of the mentioned operator and TOPSIS methods.
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5. Comparative Analysis

A-IF information plays a very critical and valuable role in the environment of fuzzy
set theory because it can deal with awkward and vague information far better, compared
with FS and classical information. In this section, we compare the derived operator with
some existing operators that were computed by different scholars. To compare the derived
work with some of the prevailing works in the literature, we used the following data,
such as that of Shen et al. [24], who invented the TOPSIS method for A-IF set theory.
Huang [29] discovered the Hamacher aggregation operators for A-IF sets and evaluated
their applications in decision-making, Tan and Chen [34] presented the CI operators taking
into consideration the A-IF sets, while Wu et al. [35] diagnosed the CI in the presence of
A-IF set theory. Therefore, the comparative analysis for taking the information from Table 5
is illustrated in Table 8.

Table 8. Comparative analysis matrix.

Methods Score Values/Similarity Values Ranking Values

Shen et al. [24] 0.4518, 0.5293, 0.4819, 0.4911 ηa−2
i f ≥ ηa−4

i f ≥ ηa−3
i f ≥ ηa−1

i f

Huang [29]
0.0417, −0.15, −0.068, 0.0017 ηa−1

i f ≥ ηa−4
i f ≥ ηa−3

i f ≥ ηa−2
i f

0.0386, −0.047, −0.054, 0.0226 ηa−1
i f ≥ ηa−4

i f ≥ ηa−2
i f ≥ ηa−3

i f

Tan and Chen [34] −0.378, −0.376, −0.488, −0.448 ηa−1
i f ≥ ηa−2

i f ≥ ηa−4
i f ≥ ηa−3

i f

Wu et al. [35] 0.4569, 0.4283, 0.3316, 0.452 ηa−1
i f ≥ ηa−4

i f ≥ ηa−2
i f ≥ ηa−3

i f

TOPSIS Method 0.4518, 0.5293, 0.4819, 0.4911 ηa−2
i f ≥ ηa−4

i f ≥ ηa−3
i f ≥ ηa−1

i f

A-IFHCIA 0.0029, 0.0474, −0.0612, −0.0204 ηa−2
i f ≥ ηa−1

i f ≥ ηa−4
i f ≥ ηa−3

i f

A-IFHCIG 0.0124, 0.0034, −0.0374, 0.0506 ηa−4
i f ≥ ηa−1

i f ≥ ηa−2
i f ≥ ηa−3

i f

We obtained three different types of ranking results, comprising ηa−1
i f , ηa−2

i f , and ηa−4
i f ,

but most operators were given the best preference as first ηa−1
i f , then ηa−2

i f , and only the

proposed A-IFHCIG operator is given ηa−4
i f as the best decision. To enhance the worth of

the derived information, we took the information from the work of Tan and Chen [34] and
tried to evaluate it using the derived work. Here, we consider the information in Table 1
from Ref. [34], and their final ranking results are stated below.

π1
S−IF = 0.56− 0.23 = 0.33, π2

S−IF = 0.68− 021 = 0.47, π3
S−IF = 0.49− 0.22 = 0.27, π4

S−IF = 0.51− 0.22 = 0.29

The final and ranking results of the existing information in Ref. [34] are stated below:

π2
S−I ≥ π1

S−I ≥ π4
S−I ≥ π3

S−I

They identify the preferred choice as a π2
S−I , further using the information in Table 1;

the ranking results of the proposed work are stated in Table 9.
We have obtained three different types of ranking results, as ηa−2

i f , ηa−3
i f , and ηa−4

i f , but

most operators are given the best preference as ηa−4
i f . Therefore, here, we consider that ηa−4

i f
represented the preferred choice.

Many scholars have derived different types of operators by combining two or three
different structures, based on the IF set, while other scholars have tried to modify or
utilize them based on the generalization of the IF set. The proposed model is massively
modified according to the many aggregation operators, such as the averaging/geometric
aggregation operators.
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Table 9. Comparative analysis matrix.

Methods Score Values/Similarity Values Ranking Values

Shen et al. [24] 0.4274, 0.5146, 0.4889, 0.4532 ηa−2
i f ≥ ηa−3

i f ≥ ηa−4
i f ≥ ηa−1

i f

Huang [29]
0.1977, 0.0114, 0.0104, 0.3014 ηa−4

i f ≥ ηa−1
i f ≥ ηa−2

i f ≥ ηa−3
i f

0.1795, 0.0387, 0.204, 0.2743 ηa−4
i f ≥ ηa−1

i f ≥ ηa−3
i f ≥ ηa−2

i f

Tan and Chen [34] −0.3471, −0.5541, −0.1226, −0.1702 ηa−3
i f ≥ ηa−4

i f ≥ ηa−1
i f ≥ ηa−2

i f

Wu et al. [35] 0.6524, 0.431, 0.7543, 0.6539 ηa−3
i f ≥ ηa−4

i f ≥ ηa−1
i f ≥ ηa−2

i f

TOPSIS Method 0.4274, 0.5146, 0.4889, 0.4532 ηa−2
i f ≥ ηa−3

i f ≥ ηa−4
i f ≥ ηa−1

i f

A-IFHCIA 0.1977, 0.0114, 0.0104, 0.3014 ηa−4
i f ≥ ηa−1

i f ≥ ηa−2
i f ≥ ηa−3

i f

A-IFHCIG 0.1795, 0.0387, 0.204, 0.2743 ηa−4
i f ≥ ηa−1

i f ≥ ηa−3
i f ≥ ηa−2

i f

6. Conclusions

The key findings of this analysis can be summarized below:

1. The derived information uses the theory of A-IFSs to manage vague, unreliable, and
awkward information by selecting the appropriate truth and falsity grades.

2. To aggregate, the collection of a finite number of preferences is a very challenging
task for scholars when considering A-IFS. Therefore, in this analysis, a novel theory
using Hamacher aggregation operators, based on the Choquet integral, for A-IFSs
was evaluated. By combining these theories, we derived a theory of averaging
and geometric aggregation operators by considering A-IFSs, Hamacher aggregation
operators, and Choquet integrals, such as A-IFHCIA, A-IFHCIOA, A-IFHCIG, and
A-IFHCIOG operators.

3. Several valuable properties, such as idempotency, monotonicity, and boundedness
are also derived.

4. By constructing the decision matrix and finding the ideal positive and negative
situations based on derived operators, we computed the theory of the TOPSIS method
for A-IFS, which is very valuable for evaluating the closeness between any number
of attributes.

5. To evaluate the decision-making problem, we computed or derived a new MADM
procedure under the consideration of stated operators for A-IFSs. Furthermore, we
also derived the technique of the TOPSIS method, based on the ideal positive and
ideal negative solution and considering the A-IFSs.

6. Finally, we compared the presented operators with a few existing operators to discuss
the superiority and effectiveness of the derived approaches.

In the future, we will utilize the discovered operators to evaluate various other compli-
cated decision-making problems, such as clustering analysis, as well as artificial intelligence.
The derived analysis can easily be used for evaluating the interrelationship among any
finite number of attributes into a singleton set and can be improved in future work; we
will extend the theory of the fuzzy superior Mandelbrot set [38], spherical fuzzy sets [39],
and m-polar fuzzy Hamacher aggregation operators [40]. Furthermore, we will aim to
utilize the derived information in the field of game theory, decision-making theory, neural
networks, database and data mining, artificial intelligence, road signals, pattern recognition,
medical diagnosis, and clustering analysis, to improve the quality of the presented work.,
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