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Abstract: The exploration of the dependency structure of the Chinese and EU carbon trading markets
is crucial to the construction of a globally harmonized carbon market. In this paper, we studied the
characteristics of structural interdependency between China’s major carbon markets and the European
Union (EU) carbon market before and after the launch of the national carbon emissions trading scheme
(ETS) and the occurrence of the new coronavirus (COVID-19) by applying the C-vine copula method,
with the carbon trading prices of the EU, Beijing, Shanghai, Guangdong, Shenzhen and Hubei as the
research objects. The study shows that there exists a statistically significant dependence between
the EU and the major carbon markets in China and their extremal dependences and dependence
structures are different at different stages. After the launch of the national carbon ETS, China has
become more independent in terms of interdependency with the EU carbon market, and is more
relevant between domestic carbon markets. Most importantly, we found that the dependence between
the EU and Chinese carbon markets has increased following the outbreak of COVID-19, and tail
dependency structures existed before the launch of the national carbon ETS and during the outbreak
of the COVID-19. The results of this study provide a basis for the understanding of the linkage
characteristics of carbon trading prices between China and the EU at different stages, which in turn
can help market regulators and investors to formulate investment decisions and policies.

Keywords: C-vine copula; dependency structure; ETS; COVID-19

1. Introduction

It now has become a global consensus to reduce greenhouse gas emissions and actively
respond to climate change. As an energy consumption, carbon emissions are closely related
to the economic development of countries [1]. Following the rapid growth of the national
economies and the acceleration of globalization, the huge demand for energy consumption
in the world has led to the emission of large amounts of greenhouse gases and caused
abnormal climate and ecological changes [2]. To combat climate change at low cost, carbon
trading is gradually becoming an effective market instrument to control greenhouse gas
emissions [3–5]. With the entry into force of the “Kyoto Protocol”, carbon emission rights
have become an international commodity, which undoubtedly has a huge driving effect on
the global carbon trading market. The EUA is the first carbon emissions trading market
established worldwide, and as the world’s largest carbon trading market by the end of
2017, it is closely related to global carbon emission reduction. As the world’s largest
developing country and the world’s second largest emitter of greenhouse gases, China has
also actively responded to the call for global greenhouse gas emission reduction. Since the
Kyoto Protocol came into force in 2005, China has actively participated in international
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carbon emissions trading, providing support to the global goal of achieving low-carbon
economic development [6]. Subsequently, China established eight carbon emissions trading
pilots in 2013, including Beijing, Shanghai, Guangdong and Shenzhen, and commenced
the construction of a national carbon emissions trading scheme (ETS) at the end of 2017,
to achieve an effective docking between different carbon trading markets. At the same
time, the launch of the national ETS means that China’s carbon market is becoming the
largest carbon market in the world. Since the launch of the carbon pilots, the carbon
trading scheme in China has been continuously improved and the national carbon market
is actively converging with the international carbon market. However, the carbon price
has experienced large fluctuations in the course of operation and there are still significant
risks in the operation of the market. Meanwhile, the sudden outbreak and spread of the
novel coronavirus (COVID-19) in 2020 had a severe impact on financial markets across the
world, leading to dramatic fluctuations in global financial markets [7,8]. In order to prevent
the spread of COVID-19, many countries have adopted lockdown rules, during which the
greenhouse gases contributing to global warming have continued to decrease [9]. Therefore,
the dependence structure between important international carbon markets may change.

The purpose of this paper is to identify changes in the dependence structure between
the EU and China carbon trading markets during the period from April 2014 to July 2021.
Our aim is to explore whether the dependency structure and extreme dependency between
the China and EU carbon markets will be affected by the launch of a national ETS in China
and the global COVID-19 outbreak. Given the consensus on building a global carbon
market, it is crucial to study the changes in the interdependency of the EU and the major
carbon markets in China. On the one hand, an accurate portrayal of the dependency
structure and extreme dependency between the Chinese and EU carbon markets will help
market regulators and investors in their risk supervision and investment decisions, thus
ensuring the healthy operation of the carbon trading market. On the other hand, the
exploration of the dependency of carbon prices in various markets in the EU and China
before and after the launch of the national ETS will help us to understand the linkage
characteristics of the carbon markets in China with the EU carbon market at different stages
and provide a valuable reference for China to actively converge with the international
carbon market. In addition, the Chinese financial market is the centre of the financial
contagion of COVID-19 [10], and it would be helpful to explore the interdependency of the
EU and Chinese carbon markets before and after the outbreak of COVID-19 to understand
the impact of the shock of COVID-19 on the linkages between the various carbon markets.

With the expansion of the international carbon market and the frequent trading in
recent years, there has been a growing interest in carbon trading, and many developments
have been achieved in related researches. Many scholars have conducted extensive and
in-depth researches on the correlation between carbon trading markets and related asset
markets, as well as on correlation-based risk measurements. As carbon markets continue
to develop and become more closely related to other financial markets [11–13], more
and more attention has been paid and focused on studying the linkages between carbon
trading markets and energy and financial markets. For example, Hanif et al. [14] explored
the non-linear dependency between EU carbon emission allocation (EUA) prices and
clean/renewable energy indices with the help of a copula model. Chang et al. [15] studied
the dynamic correlation between emission allocations and fossil energy markets in China
by using a DCC GARCH model. Meanwhile, there are also studies on the non-linear
correlation and spillover effects between carbon trading markets and oil markets [16],
electricity markets [17], and stock markets [18]. Oestreich and Tsiakas [19] studied the
impact of EUA on stock returns, and conducted a comprehensive empirical evaluation
on whether the enterprises that obtained carbon emission quotas were significantly better
than those that did not. In addition, many scholars have studied the dependency between
carbon markets and the associated asset markets, but mostly focused on the EU market. For
example, Hu et al. [20] explored the dependency characteristics of the EU carbon market
using the R-vine copula model. Zeng et al. [2] investigated the dependency of the EUA
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and certified emissions reduction (CER) markets by applying a modified BEKK-GARCH
model. Arouri et al. [21] examined the dynamic relationship between EUA cash and
futures prices by using a vector auto regression (VAR) model and a switching transition
regression–exponential GARCH model (STR-EGARCH). Other scholars have also studied
the interdependency among Chinese carbon pilot markets and risk measures based on
interdependency. For example, Zhao et al. [22] studied non-linear Granger causality and
time-varying effects in the carbon markets in China and found that there were significant
non-linear interactions between the carbon markets in Guangdong, Hubei and Shenzhen.
Zhu et al. [23] explored the associated risk spillover effects among the pilot carbon markets
in China with the help of the R-Vine Copula-CoES method. Mai et al. [24] examined the
impact of COVID-19 on risk correlations between national and regional carbon markets
using a diagonal BEKK model, and found that the magnitude of volatility spill-over effects
during COVID-19 was very large. However, there have been few studies that focus on
the interdependency between the EU and carbon markets in China. Fang and Cao [25]
modelled the extreme risks of carbon emission allocations (CEA) and EUA in China by
using the value at risk (VaR) and expected returns and losses (ES) methods and found
that the relationship between EUA and CEA varied across time and between VaR and ES.
Sun et al. [6] conducted a comparative study of EU and Chinese carbon emissions permit
trading market fluctuations by applying the extended MFDFA method and found that the
Chinese carbon market is less efficient than the EU carbon market.

Regarding research methods, vector autoregressive (VAR) models, generalized au-
toregressive conditional heteroskedasticity (GARCH) models and other related methods
have been widely used in the studies of interdependencies among financial markets [21,26].
However, these methods suffer from limitations regarding the handling of non-normal
data and the portrayal of non-linear correlations [27]. As research continues, the copula
model has been proposed and has become an important method for the study of non-linear
interdependencies in financial markets. Copula describes the correlation between variables
and is used to connect joint distribution functions to their respective marginal distribution
functions [28,29]. Embrechts et al. [30] first proposed the use of copula as a tool to measure
non-linear correlations between financial time series. However, in the high-dimensional
case, the standard binary and multivariate copula functions do not allow for different
dependency structures between different variables, which makes it difficult to capture
the complex dependencies between variables accurately [31]. To study the dependency
between high-dimensional financial markets, Bedford and Cooke [32,33] proposed a vine
copula-based method that can provide a flexible and dynamic description of the non-linear
dependency structure between multivariate variables. The more commonly used vine
copula decomposition methods are C-vine copula and D-vine copula. The former is more
suitable for modelling economic series where there are key variables or variables in a
certain order of precedences [34], while the latter does not require key variables [31].

While the above studies have analyzed the relationship between different carbon
markets from a range of different perspectives, there is very limited knowledge on the
interdependency of the EU and Chinese carbon markets at different times. In addition, the
vine copula model has been widely used to study the interdependencies between multiple
financial assets [35–37]. However, the existing literature has mostly relied on binary or
multivariate copula to study the interdependency structure between carbon markets, while
vine copula is rarely used, let alone the application research on the interdependence of
different carbon trading markets. Therefore, this study aims to investigate changes in the
interdependency between the EU and carbon markets in China during the period from
April 2014 to July 2021 by using the C-vine copula and tail-dependence measures. We first
examine whether the dependency structure of each pilot carbon market in China and the
EU carbon market changed before and after the launch of the national ETS and the outbreak
of COVID-19 by using the C-vine copula model, and this method enables us to identify a
key market and investigate the interdependencies between this key market and each of the
other markets. Then, we measured the extreme dependency between the carbon markets
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in China and the EU through a tail dependency measure to obtain an understanding of the
co-movement between the markets under extreme risk at different stages.

The main contributions of this paper are threefold. Firstly, compared with previous
studies with a similar research focus, such as Fang and Cao [25] and Sun et al. [6], this
study further measured the interdependency between the five carbon trading markets in
China and the EU carbon trading market on the basis of fluctuations analysis, which filled
the academic gap in the dependence of carbon markets. Secondly, although Hu et al. [20]
and Zhao et al. [22] have discussed the relationship between carbon trading markets, there
is a lack of discussion on the heterogeneity of different important stages. Considering the
possible heterogeneity of the dependence structure at different stages, this paper further
compares and analyzes the changes in the dependence of the carbon trading market
between China and the EU before and after the launch of national ETS and the outbreak of
COVID-19. We find that the launch of a national ETS in China and the global COVID-19
outbreak have significantly changed the interdependent structure and extreme dependency
of the carbon trading markets in China and the EU. After the launch of national ETS,
the correlation between the carbon trading markets of China and the European Union
weakens in general, and the carbon return pairs with tail dependence change from two
to three. However, the outbreak of COVID-19 increased the linkage between China and
the EU carbon trading market, and triggered the tail dependence between the EU and
Shenzhen carbon markets. Finally, in terms of research methods, we applied the C-vine
copula method to the study of the dependence of the carbon trading market, and further
investigated the carbon return relationship between China’s carbon markets with the EU
carbon market as the condition. The study found that, compared with the EU carbon
trading market, the linkage between domestic carbon trading markets may be stronger
after the launch of national ETS.

The rest of the study is as follows: The methods of this study are explained in Section 2;
the data sources and empirical results are shown in Section 3; and the conclusions of this
paper and some policy implications are summarized in Section 4.

2. Methods

In this paper, we used the C-vine copula model to estimate the dependency structure
of the carbon trading markets between China and the EU. The modelling process of the
C-vine copula involves a number of steps, and the inference function on margins (IFM)
is the dominant method for the estimation of copula models, and the estimates under
this method usually provide good efficiency [38]. Therefore, we used IFM to estimate
the copula model. The IFM method involves two steps: firstly, determine the marginal
distribution of the random variables with the marginal model; secondly, bring the estab-
lished marginal distribution into a suitable binary copula to estimate the corresponding
parameters. Based on the characteristics of the model applied, we added the relevant
technical treatment to the two steps above. This section presents the basic theory of the
C-vine copula correlation model.

2.1. GARCH Model

Financial time series generally have the characteristics of autocorrelation and condi-
tional heteroskedasticity, which can be fully described by the GARCH model [39]. The
autoregressive moving average (ARMA) model can eliminate series correlation, but this
model assumes that the variance of interference term is constant, which does not conform
to the fluctuation aggregation characteristics of time series [40]. It needs to further apply
generalized autoregressive conditional heteroskedasticity (GARCH) model to describe
the conditional heteroskedasticity problem [39]. Therefore, GARCH family models are
considered to be the best models to describe the fluctuation of financial time series.

In this paper, the ARMA(p, q)-GARCH(1, 1) model is used to characterize the marginal
distribution of each carbon price return series, and the student t-distribution is used to fit
the residual of the model. Finally, an independent isodistributed residual series without
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sequence autocorrelation and conditional heteroskedasticity is obtained. Let the carbon
return sequence be given by {rt}t = 1, . . . , t. Combined with copula theory, the form of
ARMA(p, q)-GARCH(1, 1)-copula model can be expressed as:

rnt = µn +
pn

∑
i=1

ϕnirn,t−i +
qn

∑
j=1

θnjεn,t−j + εnt n = 1, . . . , 6; t = 1, 2, . . . , T, (1)

εnt = zntσnt, (2)

σ2
nt = ωn + αnε2

n,t−1 + βnσ2
n,t−1, (3)

(z1t, z2t)
∣∣It−1 ∼ C(TV1(z1t), TV2(z2t)), (4)

where n = 1 is the EU carbon price return series, n = 2, . . . , 6 are carbon price return series
of Shenzhen, Shanghai, Beijing, Guangdong and Hubei, respectively; µ > 0,α > 0 and
β > 0, ϕ, θ, µ, α, β are the parameters to be estimated. Equation (1) is a mean equation, rt is
the series of returns of the carbon trading price, εt is the residual, p and q are the orders of
the AR and MA, respectively. zt is the standardized residual, σ2

t is the conditional variances
of the fluctuations. Equation (3) is the variance equation, where the parameters α and β are
the coefficients of ARCH and GARCH. C is any copula function; It−1 is the information set
from the initial time t = 1 to the time t− 1; Tvn(. . .) is the normalized student t-distribution
function with the parameter vn as the degree of freedom. We use the variable (r1, r2, . . . , rt)
to obtain the Rt+1 conditional marginal distribution [41], defined as follows:

P(Rt+1 ≤ r|It) = P(εt+1 ≤ (r− u)|It)

= P
(

zt+1 ≤ (r−µ)√
ω+αε2

t+βσ2
t
|It

)
= td

(
(r−µ)√

ω+αε2
t+βσ2

t
|It

)
, if z ∼ td.

(5)

In addition, a new series with a (0, 1) uniform distribution was obtained by probabilis-
tic integration transformation before performing copula modelling to derive a marginally
distributed series that satisfies copula modelling. Then, a suitable binary copula function
was used to connect the new series to estimate the correlation between the carbon price
returns of China and the EU.

2.2. Copula Model
2.2.1. Basic Copula Theory

The copula describes the dependency between variables and is used to connect the
joint distribution functions with their corresponding marginal distribution functions. To
build a multivariate model, we first use ARMA-GARCH model to model the edge, and
then use copula to model their dependence structure. According to Sklar’s theorem [42],
we assume that X = (X1, X2, · · · , Xn) are n-dimensional random vectors of Fi(i = 1, . . . , n)
with marginal distribution whose joint distribution function is F, then a copula function
can be obtained as follows.

F(x1, x2, · · · , xn) = C(F1(x1), F2(x2), · · · , Fn(xn)), (6)

Assuming that the marginal distribution function Fi(i = 1, . . . , n) is uniformly contin-
uous, the density function of the n-dimensional distribution function F(x1, x2, · · · , xn) can
be expressed as follows.

f (x1, x2, · · · , xn) = c(F1(x1), F2(x2), · · · , Fn(xn))
n

∏
i=1

fi(xi), (7)

where c is the density function of the copula C and fi(i = 1, . . . , n) is the marginal density
function of the marginal distribution Fi(i = 1, . . . , n).
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2.2.2. Copula Families

After the series of marginal distributions of the variables were obtained, the next step
was to insert the marginal distributions into the copula model. The main copula models
covered in this paper include the following seven forms: t [43], Normal [44], Frank [45],
Joe [46], Gumbel [47], Clayton [48] and BB7 [49]. Of these, t, Normal and Frank copula have
symmetry and the latter two have no tail dependency. Joe, Gumbel, Clayton and BB7 copula
have an asymmetric tail dependence, with the former two having upper tail dependency
and the Clayton copula having lower tail dependency. BB7 copula reflects different tail
dependencies between upper and lower tails. For a more detailed description of copula
functions, see Sriboonchitta et al. [50], and we will present several copula forms below.

t copula [51] has the following forms:

C(u, v) =
∫ Tv

−1(u)

−∞
dx
∫ Tv

−1(v)

−∞
dy

1
2π
√

1− ρ2

[
1 +

x2 − 2ρxy + y2

v(1− ρ2)

]− v+2
2

, (8)

Tv(x) =
∫ x

−∞

Γ((v + 1)/2)√
πvΓ(v/2)

(
1 +

z2

v

)− v+1
2

dz, (9)

where T is the student t-distribution, v is the degree of freedom and ρ is the Pearson
correlation coefficient.

The form of Normal copula is defined as:

CNor(u, v; ρ) =
∫ Φ−1(u)
−∞

∫ Φ−1(v)
−∞

1
2π
√

1−ρ2
exp(− x2

1−2ρx1x2+x2
2

2(1−ρ2)
)dx1dx2

= Φρ(Φ−1(u), Φ−1(v); ρ),
(10)

where u and v are cumulative distribution functions of standardized residuals, subjected
to a uniform distribution between 0 and 1; ρ is the Pearson linear correlation coefficient,
−1 < ρ < 1; Φ−1 is the inverse cumulative distribution function of a standard normal
distribution. The Normal copula has no tail dependence, i.e., λup = λlow = 0.

The form of Frank copula can be expressed as follows.

CFr(u, v; θ) = −1
θ

ln(1 +
(exp(−θu)− 1)(exp(−θv)− 1)

exp(−θ)− 1
), (11)

where θ ∈ (−∞,+∞)\{0}. Frank copula has a tailed distribution symmetry; when θ > 0, it
has positive correlation; when θ = 0, it has independency; and when θ < 0, it has negative
correlation. The Kendall rank formula derived by Frank copula is as follows.

τ = 1− 4
θ
+ 4

D1(θ)

θ
, where D1(θ) =

1
θ

∫ θ

0

x
exp(x)− 1

dx (Debye function). (12)

The form of Joe copula [46] can be expressed as follows

Cθ
Joe(u, v) = 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ ]

1/θ
, (13)

where θ ≥ 1. It can be used to capture upper tail dependency, with λup = 2− 21/θ .
The form of Clayton copula can be expressed as follows:

CCl(u, v; θ) = (uθ + vθ − 1)
−1/θ

, (14)

where the Kendall rank of the Clayton copula is θ/(θ + 2); it can be used to capture the
lower tail dependency, with λlow = 2−1/θ .
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The form of Gumbel copula can be expressed as follows:

CGum(u, v; θ) = exp(−((− ln u)1/θ + (− ln v)1/θ)
θ
), (15)

where 1 ≤ θ < +∞. The Kendall rank of Gumbel copula is 1− 1/θ, with the upper tail
dependency being λup = 2− 21/θ , and the lower tail dependency being λlow = 0.

The form of BB7 copula can be expressed as follows:

Cθ,δ
BB7(u, v) = 1− (1− [1− (1− u)θ)

−δ
+ (1− [1− (1− v)θ)

−δ
− 1]

−1/δ

)
1/θ

, (16)

where θ ∈ [1,+∞) and δ ∈ (0,+∞); The upper tail dependence coefficient is λup = 2− 21/θ

and the low tail dependence coefficient is λlow = 2−1/δ.
In addition, different forms of copula will result in different correlation structures, and

in copula modelling we need to select the optimal copula model for each pair of carbon
price return series. The method used in this study was the Akaike Information Criterion
(AIC) [52]. Brechmann et al. [53] found that the AIC was relatively robust in terms of
copula selection.

2.2.3. Canonical Vine (C-Vine) Copulas

Bedford and Cooke [32,33] proposed the Vine copula method, which sets up a n-
dimensional copula through a pair-copula decomposition to construct a dependency struc-
ture between n-dimensional variable distributions, hence the name pair-copula construction
(PCC). Compared with the multivariate copula functions, vine copula allows different de-
pendency structures between different variables and can flexibly depict the nonlinear
dependency structures between multivariate variables, so it is widely used to study the
interdependence between multiple financial assets [31,35]. Common vine copula models
include C-vine copula and D-vine copula. Figure 1 illustrates the four-dimensional struc-
tural decomposition of the C-vine copula. As can be seen from Figure 1, the C-vine tree
is formed by nodes and edges, and a root node in each tree is connected to other nodes
in the tree, indicating that the variables of the root node are more dominant than other
variables [54]. Therefore, the C-vine copula is more suitable for modelling economic series
where there are key variables or variables in a certain order of precedence [55]. In reality,
EUA, as the world’s largest carbon trading market by the end of 2017, plays an important
role in the international carbon market. However, China’s carbon trading market started
late and has relatively little influence in the international carbon market. Therefore, we
hope to explore the role and power of the EU in China’s carbon market, so that we can use
the C-vine copula to study the dependency between the EU and the five carbon markets in
China. In addition, we can further study the carbon return linkages between the Chinese
carbon market conditioned on the EU carbon return. In general, the C-vine copula model is
more suitable for our research.
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n jn n
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1 1 1
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, -
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1 3

2

4

12
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12
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23|1

24|1

23|1 24|1
34|12

  Tree1                                    Tree2                               Tree3

Figure 1. Example of three-dimensional canonical vine (C-vine) trees.
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For a copula density function with an n-dimensional random variable, it can be
factored into the product of n(n− 1)/2 pair copula density functions. In particular, a n-
dimensional vine structure can be represented by n− 1 trees, i.e., tree Ti(i = 1, · · · , n− 1),
tree Ti has n + 1− i nodes and n− i edges, each of which corresponds to a pair copula
function. Figure 1 illustrates the four-dimensional structural decomposition of the C-vine
copula, so based on Equation (7), the C-vine copula density function of Figure 1 can be
factored out as follows.

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)
·c12(F1(X1), F2(X2)) · c13(F1(X1), F3(X3))
·c23|1(F2|1(X2, X1), F3|1(X3, X1)),

(17)

where the copula functions are all in binary forms, c12 is the joint copula density function for
Market 1 and Market 2, and c23|1 is the copula density function for Market 2 and Market 3
under the conditions of Market 1. Two of the parameters are expressed as follows.

Fi|j(xi|xj) =
∂Cij(Fi(xi), Fj(xj))

∂Fj(xj)
=

∂Cij(ui, uj)

∂uj
. (18)

Similarly, the corresponding joint density functional factorization form for a n-dimensional
C-vine copula model can be expressed as follows.

f (x1, x2, · · · xn) =
n

∏
k=1

fk(xk) ·
n−1

∏
j=1

n−j

∏
i=1

cj,j+i|1,··· , j−1(F(xj|x1, · · · , xj−1), F(xj+i|x1, · · · , xj−1)), (19)

where cj,j+i|1,··· , j−1 refers to the density function of the unconditional or conditional copula
function and F(·|·) is the marginal conditional distribution function.

The log likelihood function of Equation (17) is then expressed as follows.

l(θm, θc; x) =
3
∑

i=1

T
∑

t=1
log fi(xit; θm

i )

+
T
∑

t=1
c12(F1(x1t; θm

1 ), F2(x2t; θm
2 ); θc

12) +
T
∑

t=1
c13(F1(x1t; θm

1 ), F3(x3t; θm
3 ); θc

13)

+
T
∑

t=1
c23|1(F2|1(x2t|x1t; θm

1 , θm
2 , θc

12), F3|1(x3t|x1t; θm
1 , θm

3 , θc
13); θc

23|1),

(20)

where θm = ((θm
1 )
′
, (θm

2 )
′
, (θm

3 )
′
)′ denotes a parameter vector estimated from the marginal

models, and θc = ((θc
12)
′
, (θc

13)
′
, (θc

23|1)
′
) is a parameter vector estimated from three bivari-

ate copulas [56]. We estimated the parameters of the marginal model and copula model by
IFM. First, the parameters in the edge model are estimated. Secondly, the normalized resid-
uals after probabilistic integration transformation are used as the copula pseudo sample
observations to estimate the parameters of the unconditional binary copula in the first tree
of the vine copula. In addition, for other trees, we obtain new pseudo-sample observation
values through Equation (18), so as to estimate the parameters of conditional binary copula
in other trees. The choice of binary copula model is determined by AIC criterion.

It is notable that during the construction of the C-vine copula model, there is a problem
with the sequential selection of variables, i.e., the determination of the root node of each tree.
Therefore, we need to determine the order of the variables prior to the construction of the
copula model. In this paper, we selected the EU carbon price return series as the root node
of the first C-vine tree to investigate the dependency between the carbon trading prices
in the EU and China, thereby exploring the role and impact of the EU carbon price in the
carbon market in China. Then, for the sequence of the other five variables, we ranked the
selection based on the sum of the absolute values of the maximized serial rank correlation
coefficients for each pair.
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2.2.4. Non-Linear Correlation and Tail Correlation Metrics

In this paper, we measured the non-linear correlation between the carbon price return
series using the Kendall rank correlation coefficient, which is a common measure of the
overall correlation between variables and can be defined as the probability of consistency
minus the probability of inconsistency [57]. Let (X1, Y1) and (X2, Y2) be independent and
identically distributed random vectors and the Kendall rank can be defined as follows.

τ(X, Y) = P{(X1 − X2)(Y1 −Y2) > 0} − P{(X1 − X2)(Y1 −Y2) < 0}, τ ∈ (0, 1). (21)

By Equation (21) it follows that

τ(X, Y) = 2P{(X1 − X2)(Y1 −Y2) > 0} − 1, τ ∈ (0, 1). (22)

The Kendall rank correlation coefficient can also be expressed by the copula [54]:

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1, (23)

where C(u, v) is a copula function, F(x) and G(y) are edge distribution functions, with
u = F(x), v = G(y).

Tail correlation is a term used to describe the correlation in the tails of a binary joint
distribution, that is, the probability that when one variable is extreme, the other variable will
also be extreme. The upper tail correlation coefficient λu and the lower tail λl correlation
coefficient are as follows.

λu = lim
u→1

P{Y > G−1(u)|X > F−1(u)} = lim
u→1

1− 2u + C(u, u)
1− u

, (24)

λl = lim
u→0

P{Y ≤ G−1(u)|X ≤ F−1(u)} = lim
u→0

C(u, u)
u

, (25)

where u ∈ (0, 1). If λu (or λl) exists and λu ∈ (0, 1) or λl ∈ (0, 1), then the random variable
X is correlated with the upper tail (or lower tail) of Y. If λu = 0 (or λl = 0), then X can be
considered asymptotically independent from Y.

3. Empirical Models and Data

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Data Description

In this paper, we investigated the dependency structure of the EU and carbon trading
markets in China by selecting the daily returns rates of the EUA futures price and the daily
closing prices of the five domestic carbon trading pilot markets in Beijing (BJ), Shanghai
(SH), Guangdong (GD), Shenzhen (SZ) and Hubei (HB) as the study sample, with the
sample time period ranging from 2 April 2014 to 16 July 2021. As different markets have
different trading start times, for comparability of the study, we selected the Hubei carbon
trading market, which has the latest trading start time among the five major markets, as
the starting point, and removed the data where the trading days do not overlap. Data
were sourced from the Wind database. The data scope includes the launch of the national
ETS in China on 19 December 2017, the global COVID-19 outbreak in January 2020 and
the completion of the harmonisation of the national carbon emission market in China on
16 July 2021.

Figure 2 shows the movement of trading prices in the various carbon markets since
2014. It can be seen that the EU carbon trading price reached its lowest point at the end of
2017 and began to show a fluctuate increase, while the carbon prices in the various markets
in China also showed varying degrees of movement after reaching their extreme points
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around the beginning of 2018. After the global shock of COVID-19, the similarity in price
trends across carbon markets became more apparent. In early 2020, carbon prices in China
and the EU experienced a brief decline before returning to an upward or more stable trend.
However, another outbreak of COVID-19 in late 2020 led to another drop in carbon prices.
The sudden outbreak of COVID-19 increased the uncertainty of carbon price movements.
We obtained the return series of carbon trading prices by applying the natural logarithm to
the carbon trading price data of each carbon market. The calculation formula is as follows.

Rt = 100 · (ln Pt − ln Pt−1), (26)

where Rt represents the return at time t and Pt represents the price of carbon trading at
time t.
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Figure 2. Daily closing price of carbon trading market, April 2014 to June 2021. Notes: The dividing
point of the first vertical line is 16 December 2017, the official launch date of the national ETS in China;
The dividing point of the second vertical line is 1 January 2020, the date of the global COVID-19
outbreak; The same below.

The movement of the carbon price return series for each carbon market is shown in
Figure 3. As can be seen from Figure 3, the fluctuations of the log return series increases
when the market is under stress, that is, in the periods of 2018 to 2019 and 2020 to 2021. We
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also find that there are varying degrees of co-movement across carbon markets in extreme
regions. Hence, in this paper, we divided the entire sample into two time periods, namely
using 19 December 2017 as the node to capture the differences before and after the launch
of the National ETS. Then, we explored the correlation between China and EU carbon price
return series before and after the global COVID-19 outbreak, with 2018 as the starting point
and January 2020 as the node.
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Figure 3. Carbon return rate of carbon trading market, April 2014 to June 2021.

3.2. Statistical Characteristics of the Carbon Price Return Series

Tables 1 and 2 list the basic statistical characteristics of the carbon price return series
for the five carbon trading markets in the EU and China. Based on the mean and standard
deviation of returns in the Chinese and EU carbon markets, the EU carbon market features
higher returns and a smaller standard deviation, indicating a higher profitability and lower
market risk. According to the results of the Jarque–Bera test, all return series fail to follow
a normal distribution in the national ETS as well as in the four time periods before and
after the outbreak of the COVID-19, indicating the presence of significant spikes and thick
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tails in the return series. The results of the unit root test suggest that all return series
are smooth at the significance level of 1%. The series were tested for autocorrelation and
the LB-Q statistic indicates that the majority of the market carbon price return series are
autocorrelated. The results of the heteroskedasticity test statistic, ARCH-LM, indicate that
the majority of the return time series are characterized by heteroskedasticity at the level of
1% and that there is an ARCH effect. Therefore, to describe these characteristics, we will fit
the data in this paper by using an ARMA-GARCH model and assuming that the residuals
obey the distribution of the student-t.

Table 1. Basic statistics (before and after the ETS).

Mean Med Max Min SD Skew Kurt ADF LB-Q ARCH-LM J-B

Before the ETS (2 April 2014 to 16 December 2017)

EUA 0.16 0.00 31.61 −33.44 5.06 −0.44 13.76 −6.44 ** 11.71 * 8.83 2304.30 ***
SZ −0.27 −0.24 44.60 −40.48 13.64 0.03 1.12 −8.71 ** 54.75 *** 22.94 * 15.7630 ***
SH −0.04 0.00 46.95 −51.35 9.17 −0.89 11.08 −4.74 ** 24.76 *** 71.62 *** 1527.30 ***
BJ 0.01 0.00 34.56 −28.31 6.67 −0.10 5.88 −9.87 ** 30.49 *** 84.72 *** 421.70 ***

GD −0.55 −0.01 39.01 −77.43 11.63 −0.97 7.38 −7.20 ** 15.20 ** 5.03 706.95 ***
HB −0.14 −0.21 17.57 −13.84 3.67 0.65 5.10 −6.13 ** 10.05 19.56 * 336.79 ***

After the ETS (17 December 2017 to 16 July 2021)

EUA 0.67 0.22 31.65 −41.32 6.07 −0.01 13.92 −6.67 ** 6.95 14.53 2300.80 ***
SZ −0.46 −0.17 196.35 −162.06 42.74 0.07 3.60 −8.35 ** 55.14 *** 79.63 *** 155.73 ***
SH 0.05 0.00 24.09 −23.64 6.06 0.32 3.69 −8.50 ** 18.85 ** 64.09 *** 168.03 ***
BJ 0.04 0.35 62.99 −54.39 12.07 0.05 5.16 −7.65 ** 6.26 39.27 *** 318.21 ***

GD 0.44 0.32 265.63 −244.13 30.20 0.47 37.96 −11.94 ** 74.06 *** 6.00 17,078.00 ***
HB 0.26 0.07 22.68 −22.35 4.27 0.47 7.72 −6.54 ** 16.50 ** 71.74 *** 718.68 ***

Note: Significance at the 0.01, 0.05, and 0.10 levels indicated by ***, **, *.

Table 2. Basic statistics (before and after COVID-19).

Mean Med Max Min SD Skew Kurt ADF LB-Q ARCH-LM J-B

Before COVID-19 (18 December 2017 to 31 December 2019)

EUA 0.65 0.21 31.65 −22.10 5.40 0.87 9.40 −6.04 ** 5.59 7.81 667.34 ***
SZ −1.07 −0.69 196.35 −147.26 37.30 0.41 6.65 −6.45 ** 41.43 *** 63.67 *** 329.43 ***
SH 0.16 0.01 23.77 −23.64 6.16 0.06 3.57 −5.82 ** 13.45 ** 22.32 ** 94.52 ***
BJ 0.15 0.35 62.99 −54.39 11.13 0.46 9.60 −7.76 ** 12.94 ** 14.71 679.97 ***

GD 0.45 0.25 265.63 −244.13 34.95 0.48 32.75 −11.54 ** 43.68 *** 3.91 7802.40 ***
HB 0.31 0.13 22.68 −22.35 5.04 0.36 5.71 −6.07 ** 11.37 ** 39.11 *** 243.18 ***

After COVID-19 (1 January 2020 to 16 July 2021)

EUA 0.70 0.31 30.87 −41.32 7.01 −0.64 14.51 −4.75 ** 9.21 * 5.62 1016.10 ***
SZ 0.50 2.62 157.62 −162.06 50.16 −0.18 1.32 −8.45 ** 29.84 *** 35.32 *** 9.52 ***
SH −0.11 −0.02 24.09 −14.72 5.92 0.77 3.83 −6.46 ** 7.53 49.10 *** 82.85 ***
BJ −0.14 0.35 41.36 −44.64 13.44 −0.31 1.31 −5.07 ** 5.51 30.35 *** 10.67 ***

GD 0.41 0.38 122.95 −118.82 20.99 0.10 19.06 −10.84 ** 36.57 *** 0.17 1736.60 ***
HB 0.18 0.00 12.56 −7.14 2.71 0.87 4.28 −6.09 ** 14.65 ** 6.07 103.81 ***

Note: Significance at the 0.01, 0.05, and 0.10 levels indicated by ***, **, *.

3.3. Estimation Results of the Marginal Distribution

To construct the copula analysis framework, we first fitted the data using an ARMA-
GARCH model and assumed that the residuals obeyed the distribution of the student-t.
Tables 3 and 4 report the parameter estimation results for the ARMA(1, 1)-GARCH(1, 1)
model. The results indicate that most of the parameters in the GARCH model are statisti-
cally significant.
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Table 3. Estimation results for the marginal models of carbon trading price (before and after the ETS).

EUA SZ SH BJ GD HB

Before the ETS

µ
0.136

(1.318)
−0.010

(−0.046)
0.051

(0.259)
−0.031

(−0.818)
−0.576 **
(−1.987)

−0.1207
(−1.5031)

ϕ
0.839 ***
(7.788)

0.117
(1.017)

0.208
(0.559)

0.341 ***
(4.004)

0.866 ***
(14.541)

0.3486 *
(1.7973)

θ
−0.898 ***
(−11.07)

−0.652 ***
(−7.273)

−0.263
(−0.720)

−0.754 ***
(−14.531)

−0.931 ***
(−23.767)

−0.5373 ***
(−3.1335)

ω
2.766 ***
(1.561)

38.327 **
(2.247)

3.005
(0.701)

0.726 *
(1.907)

0.624
(0.564)

2.313 *
(1.710)

α
0.294

(1.717)
0.440 **
(2.471)

0.223
(1.575)

0.452 ***
(5.160)

0.000
(0.000)

0.586 ***
(3.444)

β
0.705 *
(6.539)

0.415 ***
(2.929)

0.776 ***
(3.270)

0.547 ***
(7.657)

0.998 ***
(258.868)

0.4134 ***
(3.103)

t 2.679 ***
(6.614)

4.660 ***
(3.184)

2.571 ***
(6.802)

3.221 ***
(10.192)

3.008 ***
(7.529)

2.982 ***
(7.644)

Log Likelihood −776.840 −1094.306 −910.867 −788.050 −1072.289 −708.530
AIC 5.481 7.701 6.419 5.560 7.548 5.004

After the ETS

µ
0.2927

(1.5831)
−0.3993

(−0.9552)
0.0504

(0.6447)
0.2575

(1.6373)
0.6521 ***
(3.9178)

0.1266
(1.5472)

ϕ
0.5309 *
(1.7602)

0.1290
(1.1770)

−0.0290
(−0.1986)

−0.3787
(−0.9173)

−0.1397
(−1.2428)

0.2444 *
(1.7600)

θ
−0.5849 **
(−2.0432)

−0.6901 ***
(−7.9853)

−0.2795 **
(−1.9372)

0.3025
(0.7052)

−0.3655 ***
(−2.4946)

−0.4889 ***
(−4.3270)

ω
0.1325

(0.3122)
67.3125 *
(1.7400)

3.5917 ***
(3.3980)

1.1349
(1.2763)

40.4564 **
(2.5465)

1.4791
(1.0746)

α
0.0020

(0.1802)
0.3641 ***
(3.5845)

0.8556 ***
(5.0966)

0.4171 ***
(5.4491)

0.8010 ***
(3.7382)

0.4970 ***
(3.6056)

β
0.9970 ***
(319.4716)

0.6349 ***
(7.7451)

0.1434 **
(2.1148)

0.5819 ***
(7.9922)

0.1980*
(1.4737)

0.5020 ***
(3.2861)

t 2.3601 ***
(17.4461)

3.8608 ***
(4.9929)

2.8252 ***
(13.2582)

3.2452 ***
(10.8275)

2.4369 ***
(18.6968)

3.1149 ***
(7.9993)

Log Likelihood −812.3930 −1342.6590 −779.2891 −966.5379 −1026.1220 −714.4188
AIC 5.8528 9.6404 5.6164 6.9538 7.3794 5.1530

Note: Significance at the 0.01, 0.05, and 0.10 levels indicated by ***, **, and *; Standard errors in parentheses.

Table 4. Estimation results for the marginal models of carbon trading price (before and after COVID-19).

EUA SZ SH BJ GD HB

Before COVID-19

µ
0.1044

(0.2339)
−0.4071
(0.5098)

0.1134
(0.1244)

0.2981 **
(0.1384)

0.5883 ***
(0.1488)

0.2532
(0.2162)

ϕ
−0.8796 ***

(0.0763)
0.0310

(0.2454)
−0.0468
(0.2233)

−0.5355 **
(0.2121)

0.0797
(0.1140)

−0.7748 ***
(0.1943)

θ
0.9240 ***
(0.0554)

−0.5766 **
(0.2310)

−0.3145
(0.2202)

0.4605 **
(0.2249)

−0.7152 ***
(0.1005)

0.8087 ***
(0.1673)

ω
2.2543

(1.7493)
71.0614 *
(40.2515)

5.3587 **
(2.5041)

1.8210 *
(1.0958)

21.6148
(16.2651)

4.2006
(2.7023)

α
0.1069

(0.0842)
0.4436 ***
(0.1578)

0.7522 ***
(0.2234)

0.5121 ***
(0.1355)

0.4360 ***
(0.1532)

0.573 **
(0.2486)

β
0.8388 ***
(0.0639)

0.5554 ***
(0.1067)

0.2468 **
(0.1240)

0.4869 ***
(0.0933)

0.5630 ***
(0.1956)

0.426 ***
(0.1468)

t 2.5449 ***
(0.3796)

3.2428 ***
(0.5764)

2.8666 ***
(0.3272)

2.555 ***
(0.1716)

2.4728 ***
(0.2043)

3.2133 ***
(0.6917)

Log Likelihood −477.4436 −778.2724 −496.439 −529.1808 −645.2967 −475.2599
AIC 5.6993 9.2385 5.9228 6.3080 7.6741 5.6736
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Table 4. Cont.

EUA SZ SH BJ GD HB

After COVID-19

µ
0.4248

(0.3238)
−0.3455
(1.4400)

−0.1327 ***
(0.0211)

0.0806
(0.6318)

0.6640 ***
(0.2276)

0.0595
(0.0723)

ϕ
0.3740

(0.4237)
0.1234

(0.1677)
0.9633 ***
(0.0082)

−0.7511 ***
(0.1701)

−0.1990
(0.1438)

0.0700
(0.1945)

θ
−0.4497
(0.4060)

−0.6754 ***
(0.1214)

−1.0000 ***
(0.0024)

0.8390 ***
(0.1287)

−0.3729 **
(0.1701)

−0.4258 ***
(0.1477)

ω
0.1183

(2.2655)
152.4128

(245.6283)
1.4005 ***
(0.5300)

5.4548
(4.7713)

29.0942 *
(17.4163)

1.1436
(0.9136)

α
0.0000

(0.0315)
0.2898

(0.1871)
0.9990 ***
(0.2441)

0.3982 **
(0.1556)

0.8014 **
(0.3803)

0.7657 **
(0.3310)

β
0.9990 ***
(0.0428)

0.6598 ***
(0.2154)

0.0000
(0.0088)

0.6008 ***
(0.1358)

0.1976
(0.1239)

0.2333
(0.1947)

t 2.4435 **
(1.0165)

5.6228 ***
(4.6862)

2.8528 ***
(0.2913)

32.3070
(78.3328)

2.3974 ***
(0.2040)

3.1404 ***
(0.5656)

Log Likelihood 6.1231 10.321 5.0838 7.6978 6.9685 4.4099
AIC −329.7686 −560.6668 −272.609 −416.3775 −376.2652 −235.543

Note: Significance at the 0.01, 0.05, and 0.10 levels indicated by ***, **, and *; Standard errors in parentheses.

In the GARCH model, α1 is the effect of the external environment on the carbon price
returns of the market and β1 represents the effect of carbon price return fluctuations on its
own market [58]. For both before and after the launch of the national ETS, the GARCH
coefficient β1 is significant at the significance level of 1%, suggesting that the fluctuations
of carbon returns in the current period in each carbon market is positively influenced by
the fluctuations of the previous period. With the estimation of the ARMA(1, 1)-GARCH(1,
1)-t model, β1 is greater than α1 in most cases before the launch of the national ETS, or the
difference is smaller, suggesting that more internal factors of the carbon market have a
greater impact on the fluctuations of carbon returns than the external environment. After the
launch of the national ETS, α1 is much larger than β1 in Shanghai and Guangdong, where
carbon return fluctuations in this market are more influenced by the external environment,
which is more evident after the onset of COVID-19. It can be observed that β1 is much
larger than α1 in the EU at any stage, reaching a maximum of 0.999, which suggests that
99.9% of the fluctuations in the current period carry over to the next period, respectively,
and that fluctuations have a long-term memory. When there are large fluctuations in the
various carbon markets, it is possible to analyse whether the fluctuations are due to own
factors or the influence of the external environment.

3.4. Estimation Results of C-Vine-Copula

After modelling the edge distribution, we extracted the standardized residuals and
obtained a residual sequence with (0, 1) uniform distribution by probabilistic integration
transformation to obtain an edge distribution sequence satisfying copula modelling. Then,
we determined the choice of variable order to fit the vine structure. In this paper, we took
the EU carbon price return series as the root node of the first C-vine tree, and the other
variables were selected in order based on maximizing the sum of the absolute values of the
rank correlation coefficients for each pair of series.

Figure 4 shows the fitted vine structures before the the launch of national ETS
(row 1 left), after the launch of national ETS (row 1 right), before the outbreak of COVID-19
(row 2 left) and after the outbreak of COVID-19 (row 2 right), with the four matrices con-
taining the entire vine structure for the six indices for the four time periods. Where 1, 2, 3, 4,
5 and 6 correspond to the EU, Shenzhen, Shanghai, Beijing, Guangdong and Hubei carbon
markets, respectively. Tree 1 is an unconditional binary copula function, while Tree 2, 3, 4
and 5 are all conditional binary copulas. Without considering the EU order, according to the
ranking order of market correlations, Guangdong is the most correlated with other carbon
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markets before the launch of the national ETS, followed by Beijing, Shenzhen, Shanghai and
Hubei in descending order. After the launch of the national ETS, the correlation between
Beijing and other carbon markets leaps to the first highest, followed by Hubei, Shanghai,
Guangdong and Shenzhen in descending order. It can be observed that the correlation
between the Shanghai and Hubei carbon markets and other carbon markets has increased
significantly after the launch of the national ETS. This may be due to the fact that the
launch of the national carbon market further established a registration system and a trading
system for the national carbon market led by Hubei and Shanghai, respectively, which
to some extent facilitated the inter-connectivity between that market and other carbon
markets. In addition, the interdependency structure between the carbon markets changed
significantly around the occurrence of COVID-19. Therefore, it is reasonable to analyse the
interdependencies between carbon markets by dividing them into national ETS and before
and after the outbreak of the COVID-19.

Axioms 2022, 11, x FOR PEER REVIEW 16 of 25 
 

markets changed significantly around the occurrence of COVID-19. Therefore, it is rea-

sonable to analyse the interdependencies between carbon markets by dividing them into 

national ETS and before and after the outbreak of the COVID-19. 

36|2451

23|451 26|451

42|51 43|51 46|51

54|1 52|1 53|1 56|1

15 14 12 13 16

0 0 0 0 5

0 0 0 4

0 0 3

0 2

1

C Edges of tree

C C Edges of tree

C C C Edges of tree

C C C C Edges of tree

C C C C C Edges of tree

  
 

 
 
 

 
  

52|3641

35|641 32|641

63|41 65|41 62|41

46|1 43|1 45|1 42|1

14 16 13 15 12

0 0 0 0 5

0 0 0 4

0 0 3

0 2

1

C Edges of tree

C C Edges of tree

C C C Edges of tree

C C C C Edges of tree

C C C C C Edges of tree

  
 

 
 
 

 
  

 
52|1453

35|641 32|641

63|41 65|41 62|41

46|1 43|1 45|1 42|1

14 16 13 15 12

0 0 0 0 5

0 0 0 4

0 0 3

0 2

1

C Edges of tree

C C Edges of tree

C C C Edges of tree

C C C C Edges of tree

C C C C C Edges of tree

  
 

 
 
 

 
  

25|4631

42|631 45|631

64|31 62|31 65|31

36|1 34|1 32|1 35|1

13 16 14 12 15

0 0 0 0 5

0 0 0 4

0 0 3

0 2

1

C Edges of tree

C C Edges of tree

C C C Edges of tree

C C C C Edges of tree

C C C C C Edges of tree

  
 

 
 
 

 
  

 
Figure 4. Fitted vine structure matrix for four periods. 

The estimation results of the static C-vine copula are shown in Tables 5 and 6. The 

results have presented the optimal copula form chosen for each pair of markets in each 

tree according to the AIC, the estimation of the parameters (parameter 1, parameter 2), the 

standard error, Kendall’s rank correlation coefficient T and the tail correlation coefficient 

tail dependence. The degree of dependence between carbon markets can be understood 

more clearly based on the Kendall rank correlation coefficient. Based on the C-vine copula 

property, a conditional copula function was used to inscribe the dependency structure 

between each of the two carbon markets in the Tree 2, 3, 4 and 5 respectively. 

Table 5. Static vine estimation results (before and after the ETS). 

 Paris Copula Parameter 1 (SE) Parameter 2 (SE) Tau Tail Dep 

Before the ETS  

Tree 1 

EUA-HB t 0.01(0.07) 5.46 ***(1.99) 0.00 0.04 

EUA-SH t 0.03(0.06) 5.09 ***(1.60) 0.02 0.05 

EUA-SZ t −0.13 **(0.06) 11.51(9.02) −0.08 0.00 

EUA-BJ N 0.12 **(0.06) - 0.07 - 

EUA-GD t −0.17 ***(0.06) 9.13(5.81) −0.11 0.00 

Tree 2 

GD-HB|EUA t −0.04(0.06) 6.00 ***(2.20) −0.02 0.03 

GD-SH|EUA N 0.08(0.05) - 0.05 - 

GD-SZ|EUA C 0.16 **(0.07) - 0.07 0.01 L 

GD-BJ|EUA C 0.18 **(0.07) - 0.08 0.02 L 

After the ETS 

Tree 1 

EUA-HB t −0.04(0.06) 7.11 ***(2,75) −0.02 0.02 

EUA-SH t −0.07(0.06) 6.41 ***(2.32) −0.04 0.02 

EUA-SZ t −0.02(0.06) 7.45 **(3.36) −0.02 0.02 

EUA-BJ F −0.29(0.43) - −0.03 - 

EUA-GD N 0.04(0.06) - 0.02 - 

Tree 2 

BJ-SZ|EUA F 0.07(0.51) - 0.01 - 

BJ-GD|EUA t −0.09(0.15) 5.11 **(2.56) −0.05 0.04 

BJ-SH|EUA C 0.18 **(0.07) - 0.08 0.02 L 

BJ-HB|EUA N 0.05(0.09) - 0.03 - 

Note: Due to length limitations, we only report the estimate results of the first and second trees of 

the C-vine copulas, the same below; Significance at the 0.01 and 0.05 levels indicated by *** and **; 

Standard errors in parentheses; The symbol “L” represents lower tail dependence. 

  

Figure 4. Fitted vine structure matrix for four periods.

The estimation results of the static C-vine copula are shown in Tables 5 and 6. The
results have presented the optimal copula form chosen for each pair of markets in each
tree according to the AIC, the estimation of the parameters (parameter 1, parameter 2), the
standard error, Kendall’s rank correlation coefficient T and the tail correlation coefficient
tail dependence. The degree of dependence between carbon markets can be understood
more clearly based on the Kendall rank correlation coefficient. Based on the C-vine copula
property, a conditional copula function was used to inscribe the dependency structure
between each of the two carbon markets in the Tree 2, 3, 4 and 5 respectively.

Table 5. Static vine estimation results (before and after the ETS).

Paris Copula Parameter 1 (SE) Parameter 2 (SE) Tau Tail Dep

Before the ETS

Tree 1

EUA-HB t 0.01 (0.07) 5.46 *** (1.99) 0.00 0.04
EUA-SH t 0.03 (0.06) 5.09 *** (1.60) 0.02 0.05
EUA-SZ t −0.13 ** (0.06) 11.51 (9.02) −0.08 0.00
EUA-BJ N 0.12 ** (0.06) - 0.07 -

EUA-GD t −0.17 *** (0.06) 9.13 (5.81) −0.11 0.00

Tree 2

GD-HB|EUA t −0.04 (0.06) 6.00 *** (2.20) −0.02 0.03
GD-SH|EUA N 0.08 (0.05) - 0.05 -
GD-SZ|EUA C 0.16 ** (0.07) - 0.07 0.01 L

GD-BJ|EUA C 0.18 ** (0.07) - 0.08 0.02 L



Axioms 2022, 11, 695 16 of 24

Table 5. Cont.

Paris Copula Parameter 1 (SE) Parameter 2 (SE) Tau Tail Dep

After the ETS

Tree 1

EUA-HB t −0.04 (0.06) 7.11 *** (2,75) −0.02 0.02
EUA-SH t −0.07 (0.06) 6.41 *** (2.32) −0.04 0.02
EUA-SZ t −0.02 (0.06) 7.45 ** (3.36) −0.02 0.02
EUA-BJ F −0.29 (0.43) - −0.03 -

EUA-GD N 0.04 (0.06) - 0.02 -

Tree 2

BJ-SZ|EUA F 0.07 (0.51) - 0.01 -
BJ-GD|EUA t −0.09 (0.15) 5.11 ** (2.56) −0.05 0.04
BJ-SH|EUA C 0.18 ** (0.07) - 0.08 0.02 L

BJ-HB|EUA N 0.05 (0.09) - 0.03 -

Note: Due to length limitations, we only report the estimate results of the first and second trees of the C-vine
copulas, the same below; Significance at the 0.01 and 0.05 levels indicated by *** and **; Standard errors in
parentheses; The symbol “L” represents lower tail dependence.

Table 6. Static vine estimation results (before and after COVID-19).

Paris Copula Parameter 1 (SD) Parameter 2 (SD) Tau Tail dep

Before COVID-19

Tree 1

EUA-SZ C 0.04 (0.07) - 0.02 0.00 L

EUA-GD C 0.07 (0.08) - 0.04 0.00 L

EUA-SH t 0.05 (0.09) 4.00 *** (1.27) 0.03 0.09
EUA-HB t −0.09 (0.08) 4.54 *** (1.68) −0.05 0.05
EUA-BJ G 1.01 *** (0.06) - 0.01 0.01 U

Tree 2

BJ-SZ|EUA F −0.23 (0.66) - −0.03 -
BJ-GD|EUA t 0.05 (0.02) 4.51 * (2.39) 0.03 0.07
BJ-SH|EUA C 0.25 ** (0.01) - 0.11 0.06 L

BJ-HB|EUA F 0.64 (0.62) - 0.07 -

After COVID-19

Tree 1

EUA-SZ t −0.06 (0.10) 5.46 * (3.06) −0.04 0.03
EUA-GD C 0.00 (0.10) - 0.00 -
EUA-SH t −0.20 * (0.10) 10.43 (9.42) −0.13 0.00
EUA-HB t 0.02 (0.11) - 0.01 0.01
EUA-BJ t −0.09 (0.09) - −0.06 0.00

Tree 2

SH-GD|EUA t −0.09 (0.14) - −0.06 0.00
SH-SZ|EUA J 1.26 *** (0.16) - 0.13 0.27
SH-BJ|EUA F 0.81 (0.66) - 0.09 -
SH-HB|EUA F −1.18 (0.75) - −0.13 -

Note: Significance at the 0.01, 0.05, and 0.10 levels indicated by ***, **, and *; Standard errors in parentheses; The
symbol “U” represents upper tail dependence, “L” represents lower tail dependence.

3.4.1. Analysis of the Dependency between the Carbon Markets before and after the
Launch of National ETS

Tree 1 shows the dependency structure of the carbon price return series for the EU
carbon market and the five carbon markets in China before and after the launch of national
ETS. Table 5 suggests that the parameter estimates in Tree 1 are basically significant, which
means that there is a dependency relationship between the EU and China’s major carbon
markets. Before the launch of the national ETS, the Kendall rank correlation coefficients
for the EU and Shenzhen and Guangdong in Tree 1 are negative, while the Kendall rank
coefficients for the EU and Hubei, Beijing and Shanghai are positive. This suggests that
the EU carbon price return was negatively correlated with the Shenzhen and Guangdong
carbon price returns and positively correlated with changes in the Hubei, Beijing and
Shanghai carbon price returns during this period, and provides evidence of co-movement
between the carbon price in China and the EU carbon price. When the Chinese carbon
market was first established, the main source of participation in the international carbon
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market was through the CMD project, and the EU was the main demand side of this
project, which led to the Chinese carbon market being influenced to a certain extent by
the EU carbon market. Compared to other carbon markets, the Hubei carbon market was
established in the middle of 2014. Due to the relatively short period of establishment and
the fact that it was still in the exploratory stage, it was difficult for the Hubei carbon market
to establish strong linkages with the EU carbon market in a relatively short period of time.

Following the launch of the national ETS, the Kendall rank correlation coefficient in
Tree 1 is almost negative, with the exception of the EU and Guangdong. This suggests
an overall negative correlation between the changes in carbon price returns in the carbon
trading markets in China and the EU during this period. The launch of national ETS
has significantly changed the dependency structure between carbon markets. From the
perspective of the interdependence between the EU and China’s five carbon markets,
the volatility of the gap between them has slowed down. Among them, the EU and the
Shanghai carbon market are most closely related. It is notable that the overall Kendall rank
correlation coefficient in Tree 1 is slightly lower after the launch of the national ETS than
before the launch of the national ETS. This suggests that the overall dependency between
the EU and the carbon markets in China decreases after the launch of the national ETS. It is
reasonable to expect this result. At the beginning of the establishment of the various carbon
pilots, the carbon trading market in China was in its infancy and the maturity of the market
was not high, leading to the carbon trading markets in China being more susceptible to
the influence of the important global carbon market, the EU carbon market, to a certain
extent. With the launch of the national carbon emissions trading scheme, however, China’s
carbon trading market has gradually developed and matured into the world’s largest
carbon emission trading market, becoming more independent in its interdependency with
the international carbon market. In 2017, China and the EU further launched a brand
new cooperation project on carbon emission trading based on the project in 2014, which
facilitated the empirical cooperation between the two sides. In January 2018, the cross-
border settlement of carbon emission trading in RMB was officially launched, and this
initiative has promoted the internationalization of the carbon emissions market in China.

Considering the copula forms, the optimal copula functions fitted by Tree 1 include
three forms, namely, t, Frank and Normal. Of these, the Frank, Normal and t-connected
functions are all symmetric, but the Frank and Normal-connected functions have no tail
dependency. This suggests that in Tree 1, there is symmetric tail dependency between all
carbon markets, i.e., the probability of simultaneous extreme returns and simultaneous
extreme losses is equal between the returns of the two carbon markets, i.e., the level of risk
under extreme scenarios (returns/losses) is comparable between the two carbon markets.
From the perspective of tail correlations, the EU and Hubei and the EU and Shanghai are
more connected in extreme scenarios, but the tail correlation coefficient decreases after
the launch of the national ETS, with less connectedness when extreme scenarios occur.
As the construction of the two systems advances, the ability of the Shanghai and Hubei
carbon markets to withstand external extreme risks is significantly strengthened. The EU
and Shenzhen carbon markets, on the other hand, experience tail dependency after the
launch of the national ETS and need to pay close attention to preventive controls in the
event of extreme risks. Furthermore, for the EU–Guangdong and EU–Beijing carbon benefit
pairs, there is no tail dependency before the launch of the national ETS, and no findings are
favoured after the launch of the national ETS, as the copula parameter is not significant. In
summary, although the tail dependence of EU and Hubei, EU and Shanghai has weakened,
the carbon revenue pairs with extreme dependence have changed from two pairs to three
pairs after the national ETS was launched. Therefore, the extreme risk between the China
and EU carbon markets is still of concern.

In Tree 2, the correlation structure changes with the inclusion of a conditional market,
making the correlation level between the two time periods carbon markets incomparable.
However, it can be observed that the Kendall rank correlation coefficient for Tree 2 is
generally larger than that of Tree 1, suggesting that the movement of carbon price returns
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in Beijing is more linked to the domestic context than in the EU, and plays an important
role in the stability of the domestic carbon market. With the inclusion of a conditional
market, asymmetric lower-tail dependence emerges between carbon markets, suggesting
that these pairs of carbon returns with lower-tail dependency are more likely to occur in the
event of simultaneous extreme declines. For example, the lower tail correlation coefficient
between Shanghai and Beijing is 0.02, suggesting that the correlation between these two
carbon price declines is generally higher in Shanghai and Beijing, and that changes between
the two markets are more sensitive to bad news than good news. This may be another
source of systematic risk in regional carbon markets, and there would be some risk in
investing in these binary portfolios at this time. The results of Tree 3, Tree 4 and Tree 5
show that the lower tail correlation coefficients of the conditional dependency structure are
generally lower or the lower tails are progressively independent after the inclusion of more
conditional markets, and even more so after the launch of the national ETS. It is evident
that the inclusion of more conditional markets has a certain degree of risk diversification in
extreme loss scenarios. Investors may consider the inclusion of conditional markets when
making investments for the purpose of risk avoidance. Due to the length of this article, the
results of Tree 3–Tree 5 are not presented for the time being. Please refer to Appendix A
for details.

3.4.2. Analysis of Dependencies between Carbon Markets before and after COVID-19

Tree 1 shows the dependency between the main carbon markets in the EU and China
before and after the outbreak of COVID-19. It is noticeable that the Kendall rank correlation
coefficient becomes generally larger after the outbreak of COVID-19, which suggests that
the outbreak of COVID-19 increased the inter-connectivity between the EU and the carbon
markets in China. The sudden outbreak of COVID-19 during 2020 causes a rapid decline in
global carbon emissions, while changes in the demand for carbon credits lead to changes
in the carbon trading prices, which increase the correlation between the various carbon
markets. So, it is evident that the sudden outbreak of COVID-19 significantly increases
the uncertainty of carbon price movements. In terms of structural features, the COVID-19
outbreak has significantly increased the dependency of the EU and Shanghai, Beijing and
Guangdong, especially the EU and Shanghai. This may be strongly related to Shanghai’s
positioning as an international financial center, where the shock of the global crisis bore
the brunt of intensifying the EU–Shanghai linkage. Furthermore, the value of the Kendall
rank correlation coefficient in Tree 2 is relatively larger than that in Tree 1, both before and
after the outbreak of COVID-19. This suggests that the linkages between domestic carbon
markets are stronger than those between EU carbon markets.

The shock of COVID-19 changed the formal structure of the copula. Before COVID-19
occurred, Tree 1 contains three copula forms, t, Clayton and Gumbel. Clayton and Gumbel
connection functions have a lower tail dependency and upper tail dependency, and the
t connection function has a symmetric dependency structure. After COVID-19 occurred,
the carbon returns changed their dependency on the overall from an asymmetric tail
dependency to a symmetric tail dependency, which may be associated with the similarity of
the recovery cycle. In addition, due to the different timing, degree and length of exposure
to COVID-19 shocks across carbon markets, the linkages between carbon markets are not
greater when extreme scenarios occur. The outbreak of COVID-19 significantly increased
the tail dependence of the EU and Shenzhen carbon markets, and significantly reduced the
tail dependence of the EU and Shanghai and Hubei carbon markets. However, there is an
upward trend in tail dependency between the EU and Shenzhen, and this trend movement
ought to encourage investors and policymakers to remain cautious about the risk of carbon
price return linkages. It is also notable that the inclusion of more conditional markets
has led to an overall increase in the correlation coefficients between markets and greater
linkages between carbon markets after the onset of COVID-19. However, the inclusion of
more conditional markets reduces the tail dependency between carbon return pairs, both
before and after the outbreak of COVID-19.



Axioms 2022, 11, 695 19 of 24

4. Conclusions and Discussion

In this paper, we investigated the structural dependency characteristics between
the main carbon markets in China and the EU carbon market between 2 April 2014 to
16 July 2021 by using the C-vine copula method with the EU, Beijing, Shanghai, Guangdong,
Shenzhen and Hubei carbon trading prices as the research objects, and compared the
correlation degree of the relevant structures between the carbon markets in China and
the EU before and after the launch of the national ETS, and before and after the outbreak
of COVID-19.

Our research results show that there is a dependency relationship between the EU
and China’s major carbon markets, and that the launch of a national ETS in China and the
global COVID-19 outbreak have significantly changed the interdependent structure and
extreme interdependence of the carbon trading markets in China and the EU. Firstly, the
overall correlation between the EU and the carbon markets in China has weakened after
the launch of the national ETS. This shows that with the launch of the national ETS, the
carbon trading market in China is becoming increasingly mature and more independent in
its dependency with the EU carbon market. Specifically, the relationship between the EU
and Shanghai carbon market is closer than that between the EU and the other four carbon
markets. Secondly, after joining a conditional market, it can be found that the movement of
carbon returns in Beijing is more linked to the domestic market than in the EU after the
launch of the national ETS, and plays an important role in the stability of the domestic
carbon market. Therefore, special attention should be paid to the stability of the Beijing
carbon market to avoid creating linkage risks with other domestic markets. Thirdly, after
the launch of the national ETS, the tail dependence between the EU and Hubei, the EU and
Shanghai was weakened, but the tail dependence between the EU and Shenzhen carbon
market was triggered. This means that the carbon revenue pairs with tail dependence
have changed from two pairs to three pairs after the national ETS was launched. However,
whether before or after the launch of national ETS, carbon revenue has a symmetrical
tail dependence. The extreme risk between the EU and the carbon market in China is a
concern. Fourthly, the interdependency between the EU and the main carbon markets
in China has generally increased following the outbreak of COVID-19. Specifically, the
outbreak of COVID-19 has increased the dependence of the EU on Shanghai, Beijing and
Guangdong, especially with Shanghai. The sudden outbreak of COVID-19 led to a rapid
decline in global carbon emissions and changes in demand led to changes in carbon trading
prices, increasing the correlation between the various carbon markets. It can be found
that, whether after the launch of national ETS or the outbreak of COVID-19, the EU has
always had the strongest dependence on Shanghai’s carbon market, which may have a
lot to do with Shanghai’s positioning as an international financial center. Fifthly, from the
perspective of tail dependence structure, although the outbreak of COVID-19 has reduced
the tail dependence of the EU and Shanghai, Hubei carbon markets, the tail dependence
of the EU and Shenzhen is on the rise. This trend change should encourage investors and
policymakers to be cautious about the risk of carbon price return linkages.

Our findings have important implications for investors and policymakers. First of all,
China should further accelerate the construction and improvement of a unified national
carbon trading market, improve the price management system of the carbon trading market,
and enhance the international voice of China’s carbon trading market. Secondly, in order
to prevent and control the risk linkage between China and the EU carbon trading market,
an effective carbon trading market risk early warning system can be established between
China and the EU to prevent the possibility of increasing extreme risks and ensure the
healthy operation of the carbon trading market. The domestic carbon trading market
should introduce a reasonable regulatory mechanism, especially the Shanghai carbon
trading market, which can prevent the risk linkage between domestic and foreign carbon
trading markets to a certain extent. Thirdly, for investors, when investing in the products of
a carbon market, they should comprehensively consider the risks caused by the interaction
between the market and other markets, rather than just focusing on the price of a carbon
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market. Finally, the government should improve the risk management system of carbon
emission trading to enhance the ability of domestic carbon trading market to withstand
unexpected risks. Moreover, in the face of the ongoing impact of COVID-19, it is important
to seek long-term development mechanisms for carbon trading markets.

Our results provide evidence for the understanding of the linkage characteristics of
the carbon market in China with the EU at different stages and the effectiveness of a unified
national carbon market. The results provide a useful reference for risk regulation and
investment decisions by market regulators and investors, to ensure the healthy operation of
the carbon trading market, accurately address the market risks posed by COVID-19, as well
as to promote the active convergence to international carbon markets for China. However,
there are certain limitations to this paper. Firstly, our results are a static linkage analysis of
the correlation between the carbon markets in China and the EU. Future research could
concentrate on examining the dynamic linkage characteristics between carbon markets in
order to capture more clearly the co-movement between markets. Secondly, we have only
investigated the structural characteristics of interdependencies between the carbon markets
in China and the EU, but have not examined the main influencing factors that determine
the interdependencies. In future studies, this could be further investigated by using the
influencing factors as an extension point. From the perspective of methodology, the C-vine
copula model has been widely used, but the scope of application is limited. In the future,
better or improved model methods can be further used to depict the interdependence
between carbon trading markets.
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Appendix A

Table A1. Static vine estimation results (before and after the ETS).

Paris Copula Parameter 1 (SE) Parameter 2 (SE) Tau Tail Dep

Before the ETS

Tree 1

EUA-HB t 0.01 (0.07) 5.46 *** (1.99) 0.00 0.04
EUA-SH t 0.03 (0.06) 5.09 *** (1.60) 0.02 0.05
EUA-SZ t −0.13 ** (0.06) 11.51 (9.02) −0.08 0.00
EUA-BJ N 0.12 ** (0.06) - 0.07 -

EUA-GD t −0.17 *** (0.06) 9.13 (5.81) −0.11 0.00

Tree 2

GD-HB|EUA t −0.04 (0.06) 6.00 *** (2.20) −0.02 0.03
GD-SH|EUA N 0.08 (0.05) - 0.05 -
GD-SZ|EUA C 0.16 ** (0.07) - 0.07 0.01 L

GD-BJ|EUA C 0.18 ** (0.07) - 0.08 0.02 L

Tree 3
BJ-HB|GD, EUA J 1.07 *** (0.05) - 0.04 0.09 U

BJ-SH|GD, EUA BB7 1.00 *** (0.06) 0.11 * (0.06) 0.05 0.00
BJ-SZ|GD, EUA N −0.07 (0.06) - −0.04 -

Tree 4
SZ-HB|BJ, GD, EUA C 0.13 ** (0.06) - 0.06 0.00 L

SZ-SH|BJ, GD, EUA F 0.24 (0.35) - 0.03 -

Tree 5 SH-HB|SZ, BJ, GD, EUA J 1.06 *** (0.04) - 0.04 0.08 U

After the ETS

Tree 1

EUA-HB t −0.04 (0.06) 7.11 *** (2,75) −0.02 0.02
EUA-SH t −0.07 (0.06) 6.41 *** (2.32) −0.04 0.02
EUA-SZ t −0.02 (0.06) 7.45 ** (3.36) −0.02 0.02
EUA-BJ F −0.29 (0.43) - −0.03 -

EUA-GD N 0.04 (0.06) - 0.02 -

Tree 2

BJ-SZ|EUA F 0.07 (0.51) - 0.01 -
BJ-GD|EUA t −0.09 (0.15) 5.11 ** (2.56) −0.05 0.04
BJ-SH|EUA C 0.18 ** (0.07) - 0.08 0.02 L

BJ-HB|EUA N 0.05 (0.09) - 0.03 -

Tree 3
HB-SZ|BJ, EUA F −0.40 (0.08) - −0.04 -
HB-GD|BJ, EUA N −0.05 (0.07) - −0.03 -
HB-SH|BJ, EUA F −0.78 * (0.42) - −0.09 -

Tree 4
SH-SZ|HB, BJ, EUA N −0.03 (0.06) - −0.02 -
SH-GD|HB, BJ, EUA BB7 1.18 *** (0.12) 0.02 (0.05) 0.10 0.20 U

Tree 5 GD-SZ|SH, HB, BJ, EUA C 0.06 (0.05) - 0.03 0.00 L

Note: Significance at the 0.01, 0.05, and 0.10 levels indicated by ***, **, and *; Standard errors in parentheses; The
symbol “U” represents upper tail dependence, “L” represents lower tail dependence.

Table A2. Static vine estimation results (before and after COVID-19).

Paris Copula Parameter 1 (SD) Parameter 2 (SD) Tau Tail Dep

Before COVID-19

Tree 1

EUA-SZ C 0.04 (0.07) - 0.02 0.00 L

EUA-GD C 0.07 (0.08) - 0.04 0.00 L

EUA-SH t 0.05 (0.09) 4.00 *** (1.27) 0.03 0.09
EUA-HB t −0.09 (0.08) 4.54 *** (1.68) −0.05 0.05
EUA-BJ G 1.01 *** (0.06) - 0.01 0.01 U

Tree 2

BJ-SZ|EUA F −0.23 (0.66) - −0.03 -
BJ-GD|EUA t 0.05 (0.02) 4.51 * (2.39) 0.03 0.07
BJ-SH|EUA C 0.25 ** (0.01) - 0.11 0.06 L

BJ-HB|EUA F 0.64 (0.62) - 0.07 -
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Table A2. Cont.

Paris Copula Parameter 1 (SD) Parameter 2 (SD) Tau Tail Dep

Tree 3 HB-SZ|BJ, EUA J 1.03 *** (0.06) - 0.02 0.04 U

HB-GD|BJ, EUA C 0.00 (0.08) - 0.00 -
HB-SH|BJ, EUA N −0.12 (0.08) - −0.08 -

Tree 4 SH-SZ|HB, BJ, EUA N −0.01 (0.08) - −0.01 -
SH-GD|HB, BJ, EUA J 1.25 *** (0.13) - 0.12 0.26 U

Tree 5 GD-SZ|SH, HB, BJ, EUA C 0.11 (0.07) - 0.05 0.00 L

After COVID-19

Tree 1

EUA-SZ t −0.06 (0.10) 5.46 * (3.06) −0.04 0.03
EUA-GD C 0.00 (0.10) - 0.00 -
EUA-SH t −0.20 * (0.10) 10.43 (9.42) −0.13 0.00
EUA-HB t 0.02 (0.11) - 0.01 0.01
EUA-BJ t −0.09 (0.09) - −0.06 0.00

Tree 2

SH-GD|EUA t −0.09 (0.14) - −0.06 0.00
SH-SZ|EUA J 1.26 *** (0.16) - 0.13 0.27
SH-BJ|EUA F 0.81 (0.66) - 0.09 -
SH-HB|EUA F −1.18 (0.75) - −0.13 -

Tree 3 HB-GD|SH, EUA G 1.06 *** (0.10) - 0.06 0.08 U

HB-SZ|SH, EUA F −1.27 (0.61) - −0.14 -
HB-BJ|SH, EUA F −0.21 (0.63) - −0.02 -

Tree 4 BJ-GD|HB, SH, EUA F −0.66 (0.64) - −0.07 -
BJ-SZ|HB, SH, EUA t −0.01 (0.10) - −0.01 0.00 U

Tree 5 SZ-GD|BJ, HB, SH, EUA F 0.63 (0.63) - 0.07 -

Note: Significance at the 0.01, 0.05, and 0.10 levels indicated by ***, **, and *; Standard errors in parentheses; The
symbol “U” represents upper tail dependence, “L” represents lower tail dependence.
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