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Abstract: Rough set (RS) and fuzzy set (FS) theories were developed to account for ambiguity in the
data processing. The most persuasive and modernist abstraction of an FS is the linear Diophantine
FS (LD-FS). This paper introduces a resilient hybrid linear Diophantine fuzzy RS model (LDF-
RS) on paired universes based on a linear Diophantine fuzzy relation (LDF-R). This is a typical
method of fuzzy RS (F-RS) and bipolar FRS (BF-RS) on two universes that are more appropriate
and customizable. By using an LDF-level cut relation, the notions of lower approximation (L-A)
and upper approximation (U-A) are defined. While this is going on, certain fundamental structural
aspects of LD-FAs are thoroughly investigated, with some instances to back them up. This cutting-
edge LDF-RS technique is crucial from both a theoretical and practical perspective in the field of
medical assessment.

Keywords: fuzzy set; linear Diophantine fuzzy sets; linear Diophantine fuzzy relations; level cut
relations; rough approximations on two universes; decision analysis

1. Introduction

As one of the most effective methods for developing a set’s embryonic concept,
Zadeh [1] first proposed the idea of an FS in 1965. According to the attributes, FS permits
grading a set’s features in the range of [0, 1]. Since the conception of the theory, FS has been
developed in a variety of ways, including intuitionistic fuzzy set (IF-S) [2,3], bipolar FS
(B-FS) [4], Pythagorean FS (P-FS) [5,6], q-rung orthopair FS (q-ROF-S) [7], and LD-FS [8].

In 2019, Riaz and Hashmi [8] unveiled LD-FS, one of the most exquisite and significant
generalizations of FS. Using the control parameters, LD-FS eliminates the restrictions con-
nected to the membership degree (MD) and non-membership degree (NMD) of the preva-
lent abstractions of IF-Ss, B-FSs, and q-ROF-S. LD-FS is the most practical mathematical
model for decision making (DM), multi-attribute decision making (MADM), engineering,
artificial intelligence (AI), and medicine, allowing the decision maker to freely choose the
grades [8]. Today, LD-FS is the owner of a huge study (see [9–11]). Ayub et al. [12] advanced
an impressive method of an LDF-R to broaden the concept of IF-R, in which they provide
an in-depth analysis of its essential characteristics, algebraic structures, and application in
decision analysis.

While binary relations play a significant role in several domains for the transmission
of unique things. In 1971, Zadeh [13] proposed the fuzzification of binary relations and
presented the idea of an F-R. Numerous significant applications of FSs and F-Rs may be
found in MCDM, neural networks, databases, pattern recognition, AI, clustering, F-control,
and uncertainty reasoning. A thorough analysis of FSs and F-Rs is offered in [14].
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The necessity to expand F-R was similar to that of FS. In 1984, Atanassov [15] proposed
the concept of IF-R. An IF-R, per Atanassov’s definition [15], is a pair of F-Rs where the
total of the coalition and alienation grades is less than or equal to 1. A soft set [16], being
a parameterized collection of the universe objects, has robust applications in decision
making. m-Polar neutrosophic topology provides a generalized topological structure for
data analysis [17].

Pawlak [18,19] suggested an approach of RS to deal with uncertainty in intelligent
systems as another abstraction of classical set theory. The L-A and U-A, which are used to
define the M of objects in RS theory, are two sharp approximation (A) sets. The fundamental
ideas of the RS theory, which reveals the hidden knowledge in information systems, are
these approximations. AI, machine learning, conflict analysis, and data analysis are just a
few fields where RS theory has been successfully applied.

Due to the equivalence relation (E-R) that underlies the RS theory, its application
in practical situations is constrained. Numerous abstractions have been constructed to
overcome the constraint of an E-R. For instance, RS based on a binary relation [20,21], a set-
valued map [22], a tolerance relation [23], a similarity relation [24], a reflexive relation (R-R)
and transitive relation (T-R) [25], a soft binary relation [26,27], a soft E-R [28], two E-Rs [29], a
normal soft group [30], two soft binary relations, and two normal soft groups, demonstrates
how an E-R may be adjusted with different granule interpretations. Zhan and Alcantud [31]
proposed a new kind of soft rough covering by means of soft neighborhoods. Motivation of
the proposed work is based on some existing methodologies such as attribute analysis [32],
picture fuzzy aggregation [33], interval-valued picture fuzzy Maclaurin symmetric mean
operator [34] complex interval-valued Pythagorean fuzzy aggregation [35], risk priority
evaluation [36], roughness in soft-intersection groups [37], and roughness in modules of
fractions [38]. Karamaşa et al. [39] proposed an extended SVN-AHP and MULTIMOORA
method to for flight training organizations. Osintsev [40] suggested DEMATEL-ANP
method for an evaluation of logistic flows in green supply chains.

1.1. Research Gap and Motivation

From all of the above-mentioned, the sequel summarizes the driving forces behind
our research and the gaps that lie underneath it:

(1) With the conceptualizations of the rough FS (R-FS) and fuzzy RS (F-RS) models
(see [41–44]), Dubios and Prade [45] started the unification of RS and FS. Several
authors have researched this idea (see [46–48]).

(2) Incorporating two universes, Li and Wang [49] created the R-FSA imagination.
(3) Yang [50] provided some of the applications for the notion of the roughness of a crisp

set of two universes.
(4) Yang et al. [51] presented the BF-RS’s idea on dual universe along with some of its

applications.
(5) Less research has been performed on the idea of roughness in dual universes, particu-

larly in P-FS and q-ROF-S.
(6) Ayub et al. [52] carefully thought out a method of applying RS to LD-FS with the aid

of LDF-R and its applications in DM.
(7) To the best of our knowledge, no research has been performed on the idea of LDF-S

roughness using the level cut relation of an LDF-R.
(8) To close this knowledge gap in the investigation of the roughness of LD-FSs, we

introduce an abstraction of LDF-Rs using the level cut relations of an LDF-R on two
different universal sets.

1.2. Major Contributions

This study uses level-cut relations from an LDF-R of dual universes to examine the
roughness of an LD-FS. The fore set and after set of the level cut relations are used to
design the underlying operations of RSs, the L- and U-As. With the use of useful examples,
certain fundamental conclusions about As are demonstrated. We also defined the terms



Axioms 2022, 11, 686 3 of 18

“accuracy measure” (A-M) and “roughness measure” (R-M) for LDF-RS. Finally, an LDF-RSs
application to medical diagnosis is made to demonstrate its viability in real life.

1.3. Organization of the Paper

The remainder of this article is organized as follows to facilitate the study: In Section 2,
some hypothetical early conceptions of RS, LD-FS, and LDF-R are provided. Using an
LDF-R and a thorough examination of the essential characteristics of approximations with
examples, the concept of LDF-RS on two distinct universes is introduced in the third
segment. Section 4 includes the A-M and R-M cues for the LDF-RS. The application of
LDF-RSs is demonstrated with the help of an example in Section 5. Section 6 concludes the
paper by summarizing the final remarks.

2. Preliminaries

This subsection consists of some essential knowledge of LD-FS, LDF-R and RS. Through-
out this research, Ŭ , Ŭ1 and Ŭ2 will denote the initial universes, unless otherwise specified.

Definition 1 ([19]). Let ρ be an E − R on Ŭ . Then, the pair (Ŭ , ρ) is known as an R ap-
proximation space (R-AS). For any subset O of Ŭ , the L-A Oρ and the U-A Oρ are defined as
follows:

Oρ = {v ∈ Ŭ : [v]ρ ⊆ O} and Oρ
= {v ∈ Ŭ : [v]ρ ∩O 6= ∅}

where [v]ρ signifies an E-class of v ∈ Ŭ deduced by ρ. The boundary zone is indicated and described
as follows:

BR(O) = Oρ −Oρ

If BR(O) 6= ∅, then O is known as an RS or otherwise a crisp set or a definable set. Based on these
As, Pawlak characterized a crisp set O ⊆ Ŭ in the sequel:

? Oρ consists of the definite members and is known as the positive region (PR) of O;
? Ŭ −Oρ consists of the definite non-members and is known as the negative region (NR) of O;
? BR(O) contains questionable members that may or may not be contained in O and is known

as the boundary region (BR).

Recently, Riaz and Hashmi [8] introduced an efficient approach to handling uncertainties
that eradicate all the limitations related to affiliation and disassociation grades of the
existing models (FS,B-FS,IF-S and P-FS).

Definition 2 ([8]). An LD-FS on Ŭ is an object defined as follows:

£D = {(v,< ΘM(v), ΘN(v) >,< vM(v), vM(v) >) : v ∈ Ŭ }

where
ΘM, ΘN : Ŭ → [0, 1]

are M and NM functions and vM(v), vN(v) ∈ [0, 1] are the reference parameters of ΘM(v), ΘN(v)
respectively, such that 0 ≤ vM(v)ΘM(v) + vN(v)ΘN(v) ≤ 1 satisfying 0 ≤ vM(v) +
vN(v) ≤ 1 for all u ∈ Ŭ . The hesitation part is defined as Λ(v)Π(v) = 1− (vM(v)ΘM(v) +
vN(v)ΘN(v)), where Π(v) expresses the degree of indeterminacy, and Λ(v) refers to the relevant
reference parameter. We use the notion LD − FS(Ŭ ) to represent the collection of all LD-FSs
on Ŭ .

By using control parameters that correspond to the association and disassociation
grades in Riaz and Hashmi’s [8] motivation, Ayub et al. [12] have expanded the idea of
IF-R [15] to LDF-R.

Definition 3 ([12]). An expression of the following form is an LDF-R ρ̈ from Ŭ1 to Ŭ2:
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ρ̈ = {((v1, v2),< ΘM(v1, v2), ΘN(v1, v2) >,< vM(v1, v2), vN(v1, v2) >) : v1 ∈ Ŭ1, v2 ∈ Ŭ2}

where the mappings
ΘM, ΘN : Ŭ1 × Ŭ2 → [0, 1]

indicate the M and NM F-Rs from Ŭ1 to Ŭ2, respectively, and vM(v1, v2), vN(v1, v2) ∈ [0, 1]
are the relevant reference parameters to ΘM(v1, v2) and ΘN(v1, v2), respectively, fulfilling the
requirement 0 ≤ vM(v1, v2)ΘM(v1, v2) + vN(v1, v2)ΘN(v1, v2) ≤ 1, for all (v1, v2) ∈ Ŭ1 ×
Ŭ2 with 0 ≤ vM(v1, v2) + vN(v1, v2) ≤ 1. The hesitation part is defined as follows:

γ̈(v1, v2)π̈(v1, v2) = 1− (vM(v1, v2)ΘM(v1, v2) + vN(v1, v2)ΘN(v1, v2))

where π̈(v1, v2) is the hesitation index, and γ̈(v1, v2) is the relevant reference parameter. For the
sake of simplicity, we will use ρ̈ = (< ΘM(v1, v2), ΘN(v1, v2) >,< vM(v1, v2), vN(v1, v2) >)
for an LDF-R from Ŭ1 to Ŭ2. The collection of all LDF-Rs from Ŭ1 to Ŭ2 will be designated by
LDF− R(Ŭ1 × Ŭ2).

With respect to finite universes Ŭ1 and Ŭ2, the matrix notation of an LDF-R is given in
the sequel.

Definition 4 ([12]). Let ρ̈ = (< ΘM(ui, vj), ΘN(ui, vj) >,< vM(ui, vj), vN(ui, vj) >) be
an LDF-R from Ŭ1 to Ŭ2, where Ŭ1 = {u1, u2, ..., um} and Ŭ2 = {v1, v2, ..., vn}. Consider
ΘM(ui, vj) = (ΘM

ij )m×n, ΘN(ui, vj) = (ΘN
ij )m×n and vM(ui, vj) = (vM

ij )m×n, vN(ui, vj) =

(vN
ij )m×n, with 0 ≤ vM

ij + vM
ij ≤ 1 fulfilling 0 ≤ vM

ij ΘM
ij + vM

ij ΘN
ij ≤ 1 for all i, j, where

1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, the following four matrices can be used to represent ρ̈:

ΘM = (ΘM
ij )m×n =



ΘM
11 ΘM

12 ... ΘM
1n

ΘM
21 ΘM

22 ... ΘM
2n

. . ... .

. . ... .

. . ... .
ΘM

m1 ΘM
m2 ... ΘM

mn

, ΘN = (ΘN
ij )m×n =



ΘN
11 ΘN

12 ... ΘN
1n

ΘN
21 ΘN

22 ... ΘN
2n

. . ... .

. . ... .

. . ... .
ΘN

m1 ΘN
m2 ... ΘN

mn

,

vM = (vM
ij )m×n =



vM
11 vM

12 ... vM
1n

vM
21 vM

22 ... vM
2n

. . ... .

. . ... .

. . ... .
vM

m1 vM
m2 ... vM

mn

, vN = (vN
ij )m×n =



vN
11 vN

12 ... vN
1n

vN
21 vN

22 ... vN
2n

. . ... .

. . ... .

. . ... .
vN

m1 vN
m2 ... vN

mn


The following definitions describe some basic operations on LDF-Rs.

Definition 5 ([12]). Let ρ̈1 = (< ΘM
1 (v1, v2), ΘN

1 (v1, v2) >,< vM
1 (v1, v2), vN

1 (v1, v2) >)
and ρ̈2 = (< ΘM

2 (v1, v2), ΘN
2 (v1, v2) >,< vM

2 (v1, v2), vN
2 (v1, v2) >) be two LDF-Rs from Ŭ1

to Ŭ2. Then,

(1) ρ̈1 ⊆ ρ̈2 if and only if

ΘM
1 (v1, v2) ≤ ΘM

2 (v1, v2) and ΘN
1 (v1, v2) ≥ ΘN

2 (v1, v2),

vM
1 (v1, v2) ≤ vM

2 (v1, v2) and vN
1 (v1, v2) ≥ vN

2 (v1, v2)

(2) ρ̈1 ∪ ρ̈2 = (< (ΘM
1 ∪ ΘM

2 )(v1, v2), (ΘN
1 ∩ ΘN

2 )(v1, v2) >,< vM
1 (v1, v2) ∨ vM

2 (v1, v2),
vM

1 (v1, v2) ∧vN
2 (v1, v2) >), where

(ΘM
1 ∪ΘM

2 )(v1, v2) = ΘM
1 (v1, v2) ∨ΘM

2 (v1, v2) and

(ΘN
1 ∩ΘN

2 )(v1, v2) = ΘN
1 (v1, v2) ∧ΘN

2 (v1, v2)
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(3) ρ̈1 ∩ ρ̈2 = (< (ΘM
1 ∩ ΘM

2 )(v1, v2), (ΘN
1 ∪ ΘN

2 )(v1, v2) >,< vM
1 (v1, v2) ∧ vM

2 (v1, v2),
vN

1 (v1, v2) ∨vN
2 (v1, v2) >), where

(ΘM
1 ∩ΘM

2 )(v1, v2) = ΘM
1 (v1, v2) ∧ΘM

2 (v1, v2) and

(ΘN
1 ∪ΘN

2 )(v1, v2) = ΘN
1 (v1, v2) ∨ΘN

2 (v1, v2)

(4) ρ̈c
1 = (< ΘN

1 (v1, v2), ΘM
1 (v1, v2) >,< vN

1 (v1, v2), vM
1 (v1, v2) >).

for all (v1, v2) ∈ Ŭ1 × Ŭ2.

Definition 6 ([12]). Let ρ̈1 = (< ΘM
1 (v1, v2), ΘN

1 (v1, v2) >,< vM
1 (v1, v2), vN

1 (v1, v2) >) be
an LDF-R over Ŭ1× Ŭ2 and ρ̈2 = (< ΘM

2 (v1, v2), ΘN
2 (v1, v2) >,< vM

2 (v1, v2), vN
2 (v1, v2) >)

be an LDF-R over Ŭ2 × Ŭ3. Then, their composition is denoted by ◦̂ and is determined accordingly:

ρ̈1◦̂ρ̈2 = (< (ΘM
1 ◦̂ΘM

2 )(v1, v3), (ΘN
1 ◦̂ΘN

2 )(v1, v3) >,< (vM
1 ◦̂vM

2 )(v1, v3), (vN
1 ◦̂vN

2 )(v1, v3) >)

where
(ΘM

1 ◦̂ΘM
2 )(v1, v3) = ∨x2∈Ŭ2

(ΘM
1 (v1, v2) ∧ΘM

2 (v2, v3))

(ΘN
1 ◦̂ΘN

2 )(v1, v3) = ∧x2∈Ŭ2
(ΘN

1 (v1, v2) ∨ΘN
2 (v2, v3))

and
(vM

1 ◦̂vM
2 )(v1, v3) = ∨u2∈Ŭ2

(vM
1 (v1, v2) ∧vM

2 (v2, v3))

(vN
1 ◦̂vN

2 )(v1, v3) = ∧u2∈Ŭ2
(vN

1 (v1, v2) ∨vN
2 (v2, v3))

for all (v1, v3) ∈ Ŭ1 × Ŭ3.

Definition 7 ([12]). Let ρ̈ be an LDF-R on Ŭ . Then, ρ̈ is classified as:

(1) a reflexive LDF-R (R-LDF-R), if:

ΘM(v, v) = 1, ΘN(v, v) = 0 and vM(v, v) = 1, vN(v, v) = 0

for all u ∈ Ŭ .
(2) a symmetric LDF-R (S-LDF-R), if

ΘM(v1, v2) = ΘM(v2, v1), ΘN(v1, v2) = ΘN(v2, v1) and α̈(v1, v2) = α̈(v2, v1), β̈(v1, v2) = β̈(v2, v1)

(3) a transitive LDF-R (T-LDF-R), if

ΘM◦̂ΘM ⊆ ΘM, ΘN ◦̂ΘN ⊇ ΘN and vM◦̂vM ⊆ vM, vN ◦̂vN ⊇ vN

(4) an equivalence LDF-R (E-LDF-R), if ρ̈ is a R-, S-, and T-LDF-R over Ŭ .

If |Ŭ | = n, where |.| indicates the quantity of items in Ŭ , ρ̈ = (< (ΘM
ij )n×n, (ΘN

ij )n×n >

,< (vM
ij )n×n, (vN

ij )n×n >). Let ΘM = (ΘM
ij )n×n, ΘN = (ΘN

ij )n×n and vM = (vM
ij )n×n,

vN = (vN
ij )n×n. Then,

(1) ρ̈ is R, if ΘM
ii = vM

ii = 1, and ΘN
ii = vN

ii = 0, where i, j = 1, 2, ..., n.
(2) ρ̈ is S, if (ΘM)T = ΘM, (ΘN)T = ΘN and (vM)T = vM, (ssvN)T = vN ,
(3) ρ̈ is T, if ΘM◦̂ΘM ⊆ ΘM, ΘN ◦̂ΘN ⊇ ΘN and vM◦̂vM ⊆ vM, vN ◦̂vN ⊇ vN .
(4) ρ̈ is E, if ρ̈ is R, S and T as well,

3. Some Properties of Linear Diophantine Fuzzy Relation

Ayub et al. [12] proposed the idea of LDF-R from Ŭ1 to Ŭ2. The purpose of this section
is to introduce the idea of a level cut relation of an LDF-R. Additionally, we investigate
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a few of its crucial characteristics, including the R-, S-, and T-LDF-R in terms of its level
cut relations.

Definition 8. Let ρ̈ = (< ΘM(v1, v2), ΘN(v1, v2) >,< vM(v1, v2), vN(v1, v2) >) be an
LDF-R from Ŭ1 to Ŭ2. Let s̈, ẗ, ü, v̈ ∈ [0, 1] be such that 0 ≤ s̈ü + ẗv̈ ≤ 1 with 0 ≤ ü + v̈ ≤ 1,
and define the (< s̈, ü >,< ẗ, v̈ >)−level cut relation of ρ̈ as follows:

(ρ̈)<ẗ,v̈>
<s̈,ü> = {(v1, v2) ∈ Ŭ1 × Ŭ2 : ΘM(v1, v2) ≥ s̈, vM(v1, v2) ≥ ü and ΘN(v1, v2) ≤ ẗ, vN(v1, v2) ≤ v̈}

where
(ρ̈)<s̈,ü> = {(v1, v2) ∈ Ŭ1 × Ŭ2 : ΘM(v1, v2) ≥ s̈, vM(v1, v2) ≥ ü}

is said to be < s̈, ü > −level cut relation of ρ̈, and

(ρ̈)<ẗ,v̈> = {(v1, v2) ∈ Ŭ1 × Ŭ2 : ΘN(v1, v2) ≤ ẗ, vN(v1, v2) ≤ v̈}

is called < ẗ, v̈ > −level cut relation of ρ̈.

Theorem 1. ρ̈ is R-LDF-R if and only if (ρ̈)<ẗ,v̈>
<s̈,ü> is R-R on Ŭ , for all s̈, ü, ẗ, v̈ ∈ [0, 1].

Proof. Suppose that ρ̈ is R-LDF-R. By Definition 7 (1), ΘM(v, v) = 1 ≥ s̈, ΘN(v, v) = 0 ≤
ẗ and vM(v, v) = 1 ≥ ü, vN(v, v) = 0 ≤ v̈, for all s̈, ẗ, ü, v̈ ∈ [0, 1] such that 0 ≤ s̈ü + ẗv̈ ≤ 1
with 0 ≤ ü + v̈ ≤ 1. Hence, (x, x) ∈ (ρ̈)<ẗ,v̈>

<s̈,ü> for all u ∈ Ŭ .

Conversely, assume that (ρ̈)<ẗ,v̈>
<s̈,ü> is R-R. If ρ̈ is not R-LDF-R, then for some v ∈ Ŭ

either ΘM(v, v) 6= 1, or ΘN(v, v) 6= 0 or vM(v, v) 6= 1 or vN(v, v) 6= 0, for some s̈, ẗ, ü, v̈ ∈
[0, 1]. If ΘM(v, v) 6= 1. Taking s̈ = 1, we have (x, x) /∈ (ρ̈)<ẗ,v̈>

<s̈,ü>, which is a contradiction.

The other three cases are similar. Hence, (ρ̈)<ẗ,v̈>
<s̈,ü> is a R-R.

Theorem 2. ρ̈ is S-LDF-R if and only if (ρ̈)<ẗ,v̈>
<s̈,ü> is S-R on Ŭ , for all s̈, ü, ẗ, v̈ ∈ [0, 1].

Proof. Suppose that ρ̈ is S-LDF-R. Let (v1, v2) ∈ (ρ̈)<ẗ,v̈>
<s̈,ü>. By Definition 8, ΘM(v1, v2) ≥

s̈, vM(v1, v2) ≥ ü and ΘN(v1, v2) ≤ ẗ, vN(v1, v2) ≤ v̈. Since ρ̈ is symmetric, so we have
ΘM(v2, v1) ≥ s̈, vM(v2, v1) ≥ ü and ΘN(v2, v1) ≤ ẗ, vN(v2, v1) ≤ v̈ (see Definition 7 (2)).
Thus, (v2, v1) ∈ (ρ̈)<ẗ,v̈>

<s̈,ü>.

Conversely, assume that (ρ̈)<ẗ,v̈>
<s̈,ü> is S-R on Ŭ . Letting ΘM(v1, v2) = s̈, vM(v1, v2) =

ü and ΘN(v1, v2) = ẗ, vN(v1, v2) = v̈, for some s̈, ẗ, ü, v̈ ∈ [0, 1] such that 0 ≤ s̈ü + ẗv̈ ≤ 1
with 0 ≤ ü + v̈ ≤ 1. It follows that (v1, v2) ∈ (ρ̈)<ẗ,v̈>

<s̈,ü>. By assumption on (ρ̈)<ẗ,v̈>
<s̈,ü>,

we have (v2, v1) ∈ (ρ̈)<ẗ,v̈>
<s̈,ü>. Thus, ΘM(v2, v1) ≥ s̈ = ΘM(v2, v1), vM(v2, v1) ≥ ü =

vM(v1, v2) and ΘN(v2, v1) ≤ ẗ = ΘN(v1, v2), β(v2, v1) ≤ v̈ = vN(v1, v2). By using similar
arguments, other inequalities can be shown. Thus, ρ̈ is S-LDF-R on Ŭ . This completes the
proof.

Proposition 1. ρ̈ is T-LDF-R if and only if

ΘM(v1, v2) ∧ΘM(v2, v3) ≤ ΘM(v1, v3), ΘN(v1, v2) ∧ΘN(v2, v3) ≥ ΘN(v1, v3)

and vM(v1, v2) ∧vM(v2, v3) ≤ vM(v1, v3), vN(v1, v2) ∧vN(v2, v3) ≥ vN(v1, v3),

for all v1, v2, v3 ∈ Ŭ .

Proof. Suppose that ρ̈ is T-LDF-R on Ŭ . By Definition 7 (3), (ΘM◦̂ΘM)(v1, v3) ⊆ ΘM(v1, v3),
(ΘN ◦̂ΘN)(v1, v3) ⊇ ΘN(v1, v3) and (vM◦̂vM)(v1, v3) ⊆ vM(v1, v3), (vN ◦̂vN)(v1, v3) ⊇
vN(v1, v3), for all v1, v3 ∈ Ŭ . Thus, ΘM(v1, v2) ∧ΘM(v2, v3) ≤ ΘM(v1, v3), ΘN(v1, v2) ∧
ΘN(v2, v3) ≥ ΘN(v1, v3) and vM(v1, v2) ∧ vM(v2, v3) ≤ vM(v1, v3), vN(v1, v2) ∧ vN(v2,
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v3) ≥ vN(v1, v3), for all v1, v2, v3 ∈ Ŭ (see Definition 6). The converse can be proven,
similarly.

Theorem 3. ρ̈ is a T-LDF-R if and only if (ρ̈)<ẗ,v̈>
<s̈,ü> is T-R on Ŭ , for all s̈, ü, ẗ, v̈ ∈ [0, 1].

Proof. Suppose that ρ̈ is T-LDF-R. Let (v1, v2), (v2, v3) ∈ (ρ̈)<ẗ,v̈>
<s̈,ü>. Then, ΘM(v1, v2) ∧

ΘM(v2, v3) ≥ s̈, α(v1, v2) ∧ α(v2, v3) ≥ ü and ΘN(v1, v2) ∨ ΘN(v2, v3) ≤ ẗ, β(v1, v2) ∨
β(v2, v3) ≤ v̈ (see Definition 8 ). Using above Proposition 1, we obtain: ΘM(v1, v3) ≥
s̈, vM(v1, v3) ≥ ü, ΘN(v1, v3) ≤ ẗ, vN(v1, v3) ≤ v̈. Thus, (v1, v3) ∈ (ρ̈)<ẗ,v̈>

<s̈,ü>.

Theorem 4. ρ̈ is an E-LDF-R if and only if (ρ̈)<ẗ,v̈>
<s̈,ü> is an E-R on Ŭ , for all s̈, ẗ, ü, v̈ ∈ [0, 1].

Proof. Theorems 1–3 have a direct impact on the proof.

Now, to measure the ‘resemblance’, ‘comparability’ or ‘closeness’ of the objects in Ŭ ,
we define the following concept.

Definition 9. ρ̈ is said to be a tolerance LDF-R (or compatible LDF-R), if it is R-LDF-R and
S-LDF-R.

To illustrate our above notions, we provide Example 2 below.

Example 1. Let Ŭ = {v1, v2, v3, v4}. Construct an LDF-R ρ̈ on Ŭ in matrix notation form
as follows:

ΘM =


1 0.725 0.862 0.921

0.725 1 0.815 0.132
0.862 0.815 1 0.325
0.921 0.132 0.325 1

, ΘN =


0 0.218 0.125 0.215

0.218 0 0.651 0.334
0.125 0.651 0 0.728
0.215 0.334 0.728 0

,

vM =


1 0.71 0.81 0.89

0.71 1 0.75 0.11
0.81 0.75 1 0.21
0.89 0.11 0.21 1

, vN =


0 0.16 0.10 0.11

0.16 0 0.25 0.34
0.10 0.25 0 0.64
0.11 0.34 0.64 0

.

Using Definition 8 of (< s̈, ü >,< ẗ, v̈ >)-level cut relation, we are able to obtain the following:
For s̈ = ü = 1, ẗ = v̈ = 0,

(ρ̈)<0,0>
<1,1> = {(v1, v1), (v2, v2), (v3, v3), (v4, v4)}

For s̈ = 0.725, ü = 0.71 and ẗ = 0.218, v̈ = 0.16,

(ρ̈)<0.218,0.16>
<0.725,0.71> = {(v1, v1), (v1, v2), (v1, v3), (v2, v1), (v2, v2), (v3, v1), (v3, v3), (v4, v1), (v4, v4)}

For s̈ = 0.862, ü = 0.81 and ẗ = 0.125, v̈ = 0.10,

(ρ̈)<0.125,0.10>
<0.862,0.81> = {(v1, v1), (v1, v3)(v2, v2), (v3, v1), (v3, v3), (v4, v4)}

For s̈ = 0.921, ü = 0.89 and ẗ = 0.215, v̈ = 0.11,

(ρ̈)<0.215,0.11>
<0.921,0.89> = {(v1, v1), (v1, v4), (v2, v2), (v3, v3), (v4, v1), (v4, v4)}

For s̈ = 0.815, ü = 0.75 and ẗ = 0.651, v̈ = 0.25,

(ρ̈)<0.651,0.25>
<0.815,0.75> = {(v1, v1), (v1, v3), (v1, v4), (v2, v2), (v2, v3), (v3, v1), (v3, v2), (v3, v3), (v4, v1), (v4, v4)}

For s̈ = 0.132, ü = 0.11 and ẗ = 0.334, v̈ = 0.34,
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(ρ̈)<0.334,0.34>
<0.132,0.11> = {(v1, v1), (v1, v2), (v1, v3), (v1, v4), (v2, v1), (v2, v2), (v2, v4), (v3, v1), (v3, v3), (v4, v1), (v4, v2), (v4, v4)}

For s̈ = 0.325, ü = 0.21 and ẗ = 0.728, v̈ = 0.64,

(ρ̈)<0.728,0.64>
<0.325,0.21> = (Ŭ × Ŭ ) \ {(v2, v4), (v4, v2)}

It is simple to observe that (ρ̈)<ẗ,v̈>
<s̈,ü> is an E-R on Ŭ , for each s̈, ü, ẗ, v̈. Hence, by using Theorem 4,

ρ̈ is an E-LDF-R on Ŭ .

4. Linear Diophantine Fuzzy Rough Sets on Two Universes

In literature, R-As on two different universes using F-R are initiated by Sun and Ma [48].
Since the NM part is not discussed in F-R, Yang et al. [51] extended the concept of [48] to fuzzy
bipolar relation (FB-R). In this segment, we generalize this concept to LDF-R and introduce a
new concept of roughness called LDF-RS on two universes based on the after sets and fore
sets of the level cut relation of an LDF-R (a crisp relation).

If ρ̈ ∈ LDF − R(Ŭ1 × Ŭ2), then the triplet P̈ = (Ŭ1, Ŭ2, ρ̈) is called an LDF rough
approximation space (LDF-RAS).

Definition 10. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be an LDF-RAS andY ⊆ Ŭ2. Describe the L-A appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y)

of Y and the U-A appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) of Y as follows:

appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) = {v1 ∈ Ŭ1 : ∅ 6= v1ρ̈<ẗ,v̈>
<s̈,ü> ⊆ Y};

appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) = {v1 ∈ Ŭ1 : ∅ 6= v1ρ̈<ẗ,v̈>
<s̈,ü>, v1ρ̈<ẗ,v̈>

<s̈,ü> ∩ Y 6= ∅}

Similarly, we can define the L-A (X )appr
ρ̈<ẗ,v̈>
<s̈,ü>

and U-A (X )appr
ρ̈<ẗ,v̈>
<s̈,ü>

for any subset X ⊆ Ŭ1

as follows:
(X )appr

ρ̈<ẗ,v̈>
<s̈,ü>

= {v2 ∈ Ŭ2 : ∅ 6= ρ̈<ẗ,v̈>
<s̈,ü>v2 ⊆ X}

(X )appr
ρ̈<ẗ,v̈>
<s̈,ü>

= {v2 ∈ Ŭ2 : ∅ 6= ρ̈<ẗ,v̈>
<s̈,ü>v2, ρ̈<ẗ,v̈>

<s̈,ü>v2 ∩ X 6= ∅}

where v2ρ̈<ẗ,v̈>
<s̈,ü> = {v2 ∈ Ŭ2 : (v1, v2) ∈ ρ̈<ẗ,v̈>

<s̈,ü>} and ρ̈<ẗ,v̈>
<s̈,ü>v2 = {v1 ∈ Ŭ1 : (v1, v2) ∈

ρ̈<ẗ,v̈>
<s̈,ü>}.

Remark 1.

(1) If Ŭ1 = Ŭ2, then the L-A and U-A for any X ⊆ Ŭ1 can also be defined as in the above
Definition 10.

(2) All the notions and results for any subset Y of Ŭ2 from Definition 11 to Theorem 5 can be
proved in similar manners for any subset X ⊆ Ŭ1.

Definition 11. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be an LDF-RAS and Y ⊆ Ŭ2. Then, the following sets are
defined as follows:

(1) LDF− POSP̈(Y) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y);

(2) LDF− BNDP̈(Y) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y)− appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y);

(3) LDF− NEGP̈(Y) = Ŭ2 − appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) = (appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y))c.

are called the PR, BR and NR of Y ⊆ Ŭ2, respectively.
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In the sequel of this manuscript, we mean P̈ = (Ŭ1, Ŭ2, ρ̈) as a LDF-RAS and s̈, ü ∈
(0, 1], ẗ, v̈ ∈ [0, 1).

Proposition 2. Let Y1,Y2 ⊆ Ŭ2. Then,

(1) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1);

(2) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(∅) = ∅ = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(∅);

(3) If Y1 ⊆ Y2, then appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(4) Y1 ⊆ Y2, then appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(5) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1 ∩ Y2) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∩ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(6) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1 ∩ Y2) ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∩ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(7) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1 ∪ Y2) ⊇ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∪ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2);

(8) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1 ∪ Y2) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∪ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)

Proof. All the assertions can be easily proved by using Definition 10.

Note that: if xρ̈<ẗ,v̈>
<s̈,ü> 6= ∅, then the assertions (1) and (2) may not hold (see Example 2).

Example 2. Let Ŭ1 = {u1, u2, u3} and Ŭ2 = {v1, v2, v3} be the universal sets. Then, we define
an LDF-R ρ̈ from Ŭ1 to Ŭ2 in the matrix notations given as below:

ΘM =

 0.77 0.57 0.67
0.55 0.48 0.50
0.68 0.45 0.43

, ΘN =

 0.71 0.41 0.56
0.80 0.72 0.46
0.54 0.40 0.22

,

vM =

 0.51 0.50 0.61
0.46 0.40 0.37
0.54 0.39 0.35

, vN =

 0.49 0.46 0.38
0.52 0.58 0.58
0.45 0.56 0.61

.

Using Definition 8 of (< s̈, ü >,< ẗ, v̈ >)-level cut relation, for s̈ = 0.77, ü = 0.51,
ẗ = 0.71, v̈ = 0.49, we can obtain:

u1ρ̈<0.71,0.49>
<0.77,0.51> = {v1}, u2ρ̈<0.71,0.49>

<0.77,0.51> = u3ρ̈<0.71,0.49>
<0.77,0.51> = ∅

Suppose Y = {v1, v2}. Then by Definition 10,

(Y)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= U1, (Y)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= {u1}

(∅)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= {u2, u3}, (∅)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= ∅

(U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= U1, (U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= {u1}

Thus, we obtain that (∅)appr
ρ̈<0.71,0.49>
<0.77,0.51>

6= ∅ and (U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

6= U1. However, if

uρ̈<0.71,0.49>
<0.77,0.51> 6= ∅, then:

(U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= (U2)appr
ρ̈<0.71,0.49>
<0.77,0.51>

= {u1} 6= U1

(see Proposition 3).

Proposition 3. Let ρ̈ be a R-LDF-R on Ŭ1 and s̈, ü ∈ (0, 1], ẗ, v̈ ∈ [0, 1). For any subset Y ⊆ Ü1,
the following properties hold:
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(1) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) ⊆ Y ⊆ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y);

(2) appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Ŭ1) = Ŭ1 = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Ŭ1).

Proof. The proof is straightforward.

Lemma 1. Suppose that s̈1, s̈2, ü1, ü2 ∈ (0, 1] and ẗ1, ẗ2, v̈1, v̈2 ∈ [0, 1) such that s̈1 ≤ s̈2, ü1 ≤ ü2
and ẗ2 ≤ ẗ1, v̈2 ≤ v̈1. Then,

ρ̈<ẗ2,v̈2>
<s̈2,ü2>

⊆ ρ̈<ẗ1,v̈1>
<s̈1,ü1>

.

Proof. Let (v1, v2) ∈ ρ̈<ẗ2,v̈2>
<s̈2,ü2>

. Using Definition 8, ΘM(v1, v2) ≥ s̈2, vM(v1, v2) ≥ ü2 and
ΘN(v1, v2) ≤ ẗ2, vN(v1, v2) ≤ v̈2. Since s̈1 ≤ s̈2, ü1 ≤ ü2 and ẗ2 ≤ ẗ1, v̈2 ≤ v̈1, so

ΘM(v1, v2) ≥ s̈2 ≥ s̈1, vM(v1, v2) ≥ ü2 ≥ ü1 and ΘN(v1, v2) ≤ ẗ2 ≤ ẗ1, vN(v1, v2) ≤ v̈2 ≤ v̈1

Hence, ΘM(v1, v2) ≥ s̈1, vM(v1, v2) ≥ ü1 and ΘN(v1, v2) ≤ ẗ1, vN(v1, v2) ≤ v̈1. Thus
(v1, v2) ∈ ρ̈<ẗ1,v̈1>

<s̈1,ü1>
.

Proposition 4. With the same assumptions as in the above Lemma 1, suppose that Y ⊆ Ŭ2. Then,
the following assertions are true:

(1) appr
ρ̈
<ẗ2,v̈2>
<s̈2,ü2>

(Y) ⊆ appr
ρ̈
<ẗ1,v̈1>
<s̈1,ü1>

(Y),

(2) appr
ρ̈
<ẗ1,v̈1>
<s̈1,ü1>

(Y) ⊆ appr
ρ̈
<ẗ2,v̈2>
<s̈2,ü2>

(Y).

Proof. (1) Let v1 ∈ appr
ρ̈
<ẗ2,v̈2>
<s̈2,ü2>

(Y). From Definition 10, v2 ∈ v1ρ̈<ẗ2,v̈2>
<s̈2,ü2>

∩ Y for some

v2 ∈ U1. Since v1ρ̈<ẗ2,v̈2>
<s̈2,ü2>

⊆ v1ρ̈<ẗ1,v̈1>
<s̈1,ü1>

, therefore v2 ∈ v1ρ̈<ẗ1,v̈1>
<s̈1,ü1>

∩ Y (using Lemma 1).

Hence, v1 ∈ appr
ρ̈
<t1,v1>
< ¨̈s1,ü1>

(Y).

(2) Let v1 ∈ appr
ρ̈
<ẗ1,v̈1>
<s̈1,ü1>

(Y). By Definition 10, v1ρ̈<ẗ1,v̈1>
<s̈1,ü1>

⊆ Y . From Lemma 1,

v1ρ̈<ẗ2,v̈2>
<s̈2,ü2>

⊆ Y . This proves that v1 ∈ appr
ρ̈
<ẗ2,v̈2>
<s̈2,ü2>

(Y).

The inclusions in Proposition 4 may not hold, as is demonstrated in the sequel.

Example 3. Let us revisit Example 2, assume s̈1 = 0.55, ü1 = 0.46, ẗ1 = 0.80, v̈1 = 0.52 and
s̈2 = 0.77, ü2 = 0.51, ẗ2 = 0.71, v̈2 = 0.49. Then by Definition 8,

u1ρ̈<0.80,0.52>
<0.55,0.46> = U2, u2ρ̈<0.80,0.52>

<0.55,0.46> = u3ρ̈<0.80,0.52>
<0.55,0.46> = {v1}

u1ρ̈<0.71,0.49>
<0.77,0.51> = {v1}, u2ρ̈<0.71,0.49>

<0.77,0.51> = u3ρ̈<0.71,0.49>
<0.77,0.51> = ∅

Take Y = {v1}, then by Definition 10, we have:

appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) = appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) = {u1}

appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) = {u2, u3}, appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) = U1

Since s̈1 < s̈2, ü1 < ü2 and ẗ1 > ẗ2, v̈1 > v̈2, but appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) and appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) *

appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y).
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Lemma 2. Let ρ̈1, ρ̈2 ∈ LDF− R(Ŭ1 × Ŭ2) be such that ρ̈1 ⊆ ρ̈2. Then,

ρ̈1
<ẗ,v̈>
<s̈,ü> ⊆ ρ̈2

<ẗ,v̈>
<s̈,ü>

Proof. Let (v1, v2) ∈ ρ̈1
<ẗ,v̈>
<s̈,ü>. By Definition 8, ΘM

1 (v1, v2) ≥ s̈, vM
1 (v1, v2) ≥ ü and

ΘN
1 (v1, v2) ≤ ẗ, vN

1 (v1, v2) ≤ v̈. Since ρ̈1 ⊆ ρ̈2, therefore s̈ ≤ ΘM
1 (v1, v2) ≤ ΘM

2 (v1, v2), ü ≤
vM

1 (v1, v2) ≤ vM
2 (v1, v2) and ẗ ≥ ΘN

1 (v1, v2) ≥ ΘN
2 (v1, v2), v̈ ≥ vN

1 (v1, v2) ≥ vN
2 (v1, v2).

Hence, ΘM
2 (v1, v2) ≥ s̈, vM

2 (v1, v2) ≥ ü and ΘN
2 (v1, v2) ≤ ẗ, vN

2 (v1, v2) ≤ v̈. Thus,
(v1, v2) ∈ ρ̈2

<ẗ,v̈>
<s̈,ü>.

Proposition 5. With the same notations as in Lemma 2, assume that Y ⊆ Ŭ2. Then,

(1) appr
ρ̈2

<ẗ,v̈>
<s̈,ü>

(Y) ⊆ appr
ρ̈1

<ẗ,v̈>
<s̈,ü>

(Y),

(2) appr
ρ̈1

<ẗ,v̈>
<s̈,ü>

(Y) ⊆ appr
ρ̈2

<ẗ,v̈>
<s̈,ü>

(Y).

Proof. (1) Let v ∈ appr
ρ̈2

<ẗ,v̈>
<s̈,ü>

(Y). Then, vρ̈2
<ẗ,v̈>
<s̈,ü> ⊆ Y . By Lemma 2, vρ̈1

<ẗ,v̈>
<s̈,ü> ⊆

vρ̈2
<ẗ,v̈>
<s̈,ü> ⊆ Y . Hence, xρ̈1

<ẗ,v̈>
<s̈,ü> ⊆ Y . This proves that v ∈ appr

ρ̈1
<ẗ,v̈>
<s̈,ü>

(Y). Similar to

the proof of (1), proof of (2).

5. Accuracy Measure and Roughness Measure for LDF-RSs on Two Universes

The concept of A-M and R-M was first invented by Pawlak in 1982 in order to define
the imprecision of R-As. Our perception of the accuracy of the data relating to an E-R for a
given classification is based on these numerical measures. In [51], Yang et al. gave the idea
of A-M and R-M for BF-RSs on dual universes. In this passage, we extend this concept to
LDF-RSs on two universes.

With respect to a Pawlak A-S P = (Ŭ , ρ), where ρ is an E-R on Ŭ . Then the A-M and
R-M of O of Ŭ are defined as follows, respectively:

AM(O) =
ρ(O)
ρ(O)

and RM(O) = 1− AM(O).

We define the subsequent ideas by using the same pattern.

Definition 12. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be an LDF-RAS and Y ⊆ Ŭ2, define the AM of Y with
respect to ρ̈ as follows:

AM(Y) =
|appr

ρ̈<ẗ,v̈>
<s̈,ü>

(Y)|

|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y)|

where |.| indicates the number of elements in the sets. After that, we define the RM of Y ⊆ Ŭ2 with
respect to ρ̈ as follows:

RM(Y) = 1−AM(Y)

Remark 2. The following points can be deduced from definition 12 given above:

(1) AM(Y), RM(Y) ∈ [0, 1].
(2) If s̈ = ü = 1 and ẗ = v̈ = 0, then AM(Y) = 1 and RM(Y) = 0.

In the following, we construct an example for the clarification of the above Definition 12.

Example 4. In Example 3, for s̈1 = 0.55, ü1 = 0.46, ẗ1 = 0.80, v̈1 = 0.52 and Y = {y1},
we have:

appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) = appr
ρ̈<0.71,0.49>
<0.77,0.51>

(Y) = {x1}
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Thus, by Definition 12, MA(Y) = 1 and MR(Y) = 0. Hence, our information related to ρ̈ is
accurate up to grade 1, which means that ρ̈ describes the objects of Y absolutely accurately. On the
other hand, for s̈2 = 0.77, ü2 = 0.51, ẗ2 = 0.71, v̈2 = 0.49 and Y = {y1}, we have:

appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) = {x2, x3}, appr
ρ̈<0.80,0.52>
<0.55,0.46>

(Y) = Ŭ1

Then, MA(Y) = 2
3 and MR(Y) = 1

3 . Hence, our information related to ρ̈ is accurate up to grade
0.6666, which means that ρ̈ describes the items of Ŭ2 accurately up to grade 0.6666.

In the following result, we describe a connection of the A-M AM(Y) and R-M RM(Y)
about the union and intersection of Y1 and Y2 on the universe U2.

Theorem 5. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be a LDF-RAS and Y1,Y2 are any non-empty subsets of Ŭ2.
Then, A-M and R-M of Y1, Y2, Y1 ∪ Y2 and Y1 ∩ Y2 the following relations;

(1) MR(Y1 ∪ Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∪ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)| ≤MR(Y1)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1)|+

MR(Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)| −MR(Y1 ∩ Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∩ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)|;

(2) MA(Y1 ∪ Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∪ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)| ≥MA(Y1)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1)|+

MA(Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)| −MA(Y1 ∩ Y2)|appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y1) ∩ appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y2)|

Proof. The proof resembles that of Theorem 3.3 in [51].

6. An Application of LDF-RSs on Two Different Universes

In the literature, a number of scientists have developed various techniques for medical
diagnosis. Sun and Ma [48] presented an application of the F-RS model on two distinct
domains in clinical diagnosis systems. Since the information is insufficient in the case of
F-RS, Yang et al. [51] expanded the idea of Sun and Ma [48] to BF-RS model on two distinct
cosmologies. LD-FSs are more efficient in decision analysis than the prevailing concepts of
FS, IF-S, B-FS and q-ROF-S. Therefore, we need to extend the existing technique of BF-RS to
a more general and robust model, namely LDF-RS on two contrasting universes and utilize
this notion in clinical diagnosis.

Suppose that Ŭ1 refers to the collection of afflicted people and Ŭ2 indicates the group
of symptoms. Let P̈ = (Ŭ1, Ŭ2, ρ̈) be LDF-RAS. If (v1, v2) ∈ ρ̈<ẗ,v̈>

<s̈,ü>, for all v1 ∈ Ŭ1 and
v2 ∈ Ŭ2, then we say that the sufferer x has the symptom y and the percentage of the
patient who exhibits symptom y is at least s̈ and the degree of its corresponding parameter
is not less than ü, the sufferer’s degree of symptom y non-existence is not greater than ẗ,
and the degree of its corresponding parameter is not greater than v̈.

We are aware that a certain illness has a number of common symptoms. We denote a
certain disease by Y = {yi ∈ Ŭ2 : i ∈ I} for any Y ⊆ Ŭ2 and make the following inferences
using the PR, NR, and BR described in Definition 11:

Let v ∈ Ŭ1 be a given certain sufferer. Then,

(1) If v ∈ LDF − POSP̈(Y) = appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y) and vρ̈<ẗ,v̈>
<s̈,ü> 6= ∅, that is, he must have

illness Y , at which point the patient urgently requires treatment.
(2) If v ∈ LDF − BNDP̈(Y) = appr

ρ̈<ẗ,v̈>
<s̈,ü>

(Y)− appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y), consequently, he will be

the doctor’s second choice because he is not diagnosed based on these symptoms,
even though he may have the disease Y .

(3) If v ∈ LDFNEGP̈(Y), that is, v ∈ (appr
ρ̈<ẗ,v̈>
<s̈,ü>

(Y))c, consequently, he does not have

illness Y and does not require treatment.

Let us use a specific case to demonstrate this.
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Example 5. Let Ŭ1 = {p1, p2, p3, p4} be the group of certain victims and Ŭ2 = {q1, q2, q3} be
the set of some symptoms. Consider an LDF-R ρ̈ from Ŭ1 to Ŭ2. It describes the M and NM grades,
together with the grades of their parameters, for each patient pi in relation to the symptom qj in the
following matrices:

ΘM =


0.80 0.54 0.68
0.71 0.45 0.40
0.57 0.36 0.75
0.85 0.81 0.62

, ΘN =


0.35 0.46 0.38
0.36 0.72 0.43
0.46 0.56 0.47
0.21 0.32 0.25

,

vM =


0.71 0.50 0.62
0.62 0.38 0.30
0.46 0.26 0.60
0.80 0.78 0.59

, β =


0.24 0.48 0.38
0.38 0.52 0.70
0.54 0.66 0.40
0.20 0.18 0.28

.

Let Y = {q1, q2} symbolize a specific sickness, and there are two signs of this condition
in clinic.

Case-1: For s̈ = 0.45, ü = 0.38 and ẗ = 0.72, v̈ = 0.52, we have:

p1ρ̈<0.72,0.52>
<0.45,0.38> = p4ρ̈<0.72,0.52>

<0.45,0.38> = Ŭ2, p2ρ̈<0.72,0.52>
<0.45,0.38> = {q1, q2}, p3ρ̈<0.72,0.52>

<0.45,0.38> = {q3}

(see Definition 8). By simple computations, the L-A and U-A of Y are given below:

appr
ρ̈<0.72,0.52>
<0.45,0.38>

(Y) = {p2}, appr
ρ̈<0.72,0.52>
<0.45,0.38>

(Y) = {p1, p2, p4}

Using Definition 10, LDF − POSP̈(Y) = {p2}, LDF − BNDP̈(Y) = {p1, p4} and LDF −
NEGP̈(Y) = {p3}. Furthermore, by Definition 12, the A-M and R-M are calculated as:

MA(Y) = 1
3

,MR(Y) = 2
3

Thus, we interpret the subsequent results:

(1) Patient p2 must be afflicted with illness Y and requires emergency medical attention.
(2) We cannot guarantee that patients p1 and p4 are suffering from illness Y based on these

symptoms. The doctor will therefore choose the second option.
(3) The sickness Y does not affect patient p3.

Case-2: For s̈ = 0.57, ü = 0.46 and ẗ = 0.46, v̈ = 0.54, we have:

p1ρ̈<0.46,0.54>
<0.57,0.46> = {q1, q3}, p2ρ̈<0.46,0.54>

<0.57,0.46> = {q1} = p3ρ̈<0.46,0.54>
<0.57,0.46>, p4ρ̈<0.46,0.54>

<0.57,0.46> = Ŭ2.

(using Definition 8). By simple calculations, the L- and U-As of Y are as follows:

appr
ρ̈<0.46,0.54>
<0.57,0.46>

(Y) = {p2, p3}, appr
ρ̈<0.46,0.54>
<0.57,0.46>

(Y) = Ŭ2

Using Definition 10, LDFPOSP̈(Y) = {p2, p3}, LDFBNDP̈(Y) = {p1, p4} and LDFNEGP̈
(Y) = ∅. Further, using Definition 12, the A-M and R-M are computed as follows:

MA(Y) = 1
2

, MR(Y) = 1
2

Thus, we conclude that:

(1) Patients p2 and p3 must endure illness Y , and he requires prompt medical attention.
(2) Regarding patients p1 and p4, we cannot guarantee whether or not they are experiencing the

symptoms of illness Y . The doctor will therefore choose the second option.
(3) No one who suffers has a healthy diagnosis.
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Remark 3.

(�) Based on the analysis discussed earlier, we may infer that decision precision rises with ap-
proximation precision, as in [51]. Thus, a precise decision can be made by a doctor using the
proposed method of LDF-RSs.

(�) Furthermore, our proposed technique of LDF-RSs allows reducing the likelihood of a surgical
misconception.

(�) Additionally, the LDF-RS model, and because of the application of control or reference factors
found in LD-FSs, the applied approach may help decision-makers arrive at a precise and
scientific conclusion in circumstances where they frequently encounter one another.

Comparative Analysis

In this section, we contrast our findings with a few of Yang et al. [51], Sun and Ma [48]
and Ayub et al.’s [52] previously used methods.

Example 6. For [48], consider our previous example 5, where Ŭ1 = {p1, p2, p3, p4} and Ŭ2 =
{q1, q2, q3}. The following describes the M grades for each patient pi in connection to the symptom
qj and F-R ΘM on Ŭ1 × Ŭ2:

ΘM =


0.80 0.54 0.68
0.71 0.45 0.40
0.57 0.36 0.75
0.85 0.81 0.62

,

Using Definition 3.3 of [48] for level cuts, we obtain the following for s̈ = 0.45:

p1ΘM
0.45 = p4ΘM

0.45 = Ŭ2, p3ΘM
0.45 = {q1, q3}, p2ΘM

0.45 = {q1, q2}

For Y = {q1, q2}, the L- and U-As are obtained by using Definition 3.3 of [48] below:

apprΘM
0.45

(Y) = {p2}, apprΘM
0.45

(Y) = Ŭ2

Therefore, P− R(Y) = {p2}, B− R(Y) = {p1, p3, p4} and N − R(Y) = ∅. As a result, the
following conclusions may be made from this information:

(1) Patient p2 needs immediate medical care as he must deal with the sickness Y .
(2) We are unable to confirm if patients p1, p3, and p4 are displaying the signs of sickness Y .

Therefore, the doctor will select choice number two.
(3) Nobody who is ill has a clear diagnosis.

For s̈ = 0.57, we have:

p1ΘM
0.57 = p3ΘM

0.57 = {q1, q3}, p2ΘM
0.57 = {q1}, p4ΘM

0.57 = Ŭ2

The L- and U-As for Y are found by applying Definition 3.3 of [48] below:

apprΘM
0.57

(Y) = {p3}, apprΘM
0.57

(Y) = Ŭ2

Therefore, P− R(Y) = {p3}, B− R(Y) = {p1, p2, p4} and N − R(Y) = ∅. Thus, it follows
that:

(1) Patient p3 is suffering from illness Y and needs immediate medical care.
(2) We are unable to confirm if patients p1, p2, and p4 are displaying the signs of sickness Y .

Therefore, the doctor will select choice number two.
(3) There is no healthy diagnosis for someone who is suffering.

Example 7. We use the same Example 5 with BF-R which is expressed in the Table 1 for [51]:
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Table 1. ρB.

U1\U2 q1 q2 q3

p1 < 0.80, 0.20 > < 0.54, 0.46 > < 0.68, 0.30 >
p2 < 0.71, 0.25 > < 0.45, 0.45 > < 0.40, 0.43 >
p3 < 0.57, 0.40 > < 0.36, 0.56 > < 0.75, 0.25 >
p4 < 0.85, 0.12 > < 0.81, 0.15 > < 0.62, 0.25 >

Using Definition 3.1 of [51], the < s̈, ẗ > −level cuts for s̈ = 0.45 and ẗ = 0.54, we have the
sequel:

p1(ρB)
<0.45,0.54> = p4(ρB)

<0.45,0.54> = U2, p2(ρB)
<0.45,0.54> = {q1, q2}, p3(ρB)

<0.45,0.54> = {q3}

From Definition 3.2 of [51], the L-, and U-As of Y are given below:

appr(ρB)<0.45,0.54>(Y) = {p2}, appr(ρB)<0.45,0.54>(Y) = {p1, p2, p4}

Therefore, P− R(Y) = {p2}, B− R(Y) = {p1, p4} and N − R(Y) = {p3}. Thus, based on
these findings, the following inferences can be made:

(1) Patient p2 must suffer from disease Y , so he requires urgent medical attention.
(2) We are uncertain as to whether patients p1 and p4 are exhibiting the signs of sickness Y .

Therefore, the doctor will select choice number two.
(3) Patient p3 was declared to be in good health and does not require any additional care.

Now, for s̈ = 0.57 and ẗ = 0.40, using Definition 3.1 of [51] for < s̈, ẗ > −level cuts, we
obtain the following:

p1(ρB)
<0.45,0.54> = p3(ρB)

<0.45,0.54> = {q1, q3}, p2(ρB)
<0.45,0.54> = {q1}, p4(ρB)

<0.45,0.54> = U2

By using Definition 3.2 of [51] and simple calculations, we obtain the L-A and U-A of Y in the
sequel:

appr(ρB)<0.57,0.40>(Y) = {p2}, appr(ρB)<0.57,0.40>(Y) = U2

Therefore, P− R(Y) = {p2}, B− R(Y) = {p1, p3, p4} and N − R(Y) = ∅. Based on these
results, we conclude that:

(1) Patient p2 has to have illness Y , so he needs to get medical help right away.
(2) We cannot guarantee that patients p1, p3, and p4 are displaying the signs of sickness Y or

not. Therefore, the doctor will select choice number two.
(3) Nobody who is in pain has a good diagnosis.

Example 8. For [52], consider the same LDF-R as in Example 5. By using Definition 9 of [52], we
obtain the L-, and U-As for Y = {q1, q2} and s̈ = 0.45, ü = 0.38 as follows:

ρ̈(Y)
<0.45,0.38>

= {p2}, ρ̈(Y)<0.45,0.38>
= U1

For ẗ = 0.72 and v̈ = 0.52, the L-A and U-A are as follows:

ρ̈(Y)
<0.72,0.52>

= {p1, p2, p4}, ρ̈(Y)<0.72,0.52>
= ∅

Thus, P − R(Y) = ({p2}, ∅), B − R(Y) = ({p1, p3, p4}, {p1, p2, p4}) and N − R(Y) =
(∅, {p3}). These findings allow for the following inferences:

(1) Patient p2 must deal with the ailment Y , necessitating immediate medical attention. Since
there is no other patient in the area, we can declare with certainty that this patient does not
have illness Y .

(2) We cannot ensure that patients p1, p3, and p4 are exhibiting the symptoms of sickness Y .
Consequently, the doctor will pick option number two.
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(3) Nobody who is in pain has a good diagnosis.

Now, for s̈ = 0.57, ü = 0.46 the L-, and U-As are as follows:

ρ̈(Y)
<0.57,0.46>

= {p2}, ρ̈(Y)<0.45,0.38>
= U1

For ẗ = 0.46 and v̈ = 0.54, the L-A and U-As of Y are as follows:

ρ̈(Y)
<0.46,0.54>

= U1, ρ̈(Y)<0.46,0.54>
= ∅

Thus, P− R(Y) = ({p2}, ∅), B− R(Y) = ({p1, p3, p4},U1) and N − R(Y) = (∅, ∅). These
lead us to conclude that:

(1) Patient p2 must deal with ailment Y , necessitating immediate medical attention. Since there
is no other patient in the area, we can declare with certainty that this patient does not have
illness Y .

(2) We cannot confirm whether patients p1, p3, and p4 are exhibiting the signs of sickness Y . As
a result, the doctor will go with option number two.

(3) No one with a diagnosis of illness is healthy.

7. Conclusions

The concept of LD-FS is a very powerful and convenient tool to describe the uncertainties
in many practical problems, which involves decisions. The decision makers can freely
choose the degree of truthness and the degree of falsity by making the use of reference
or control parameters. Thus, LD-FS enhanced the space of truthness degree and falsity
degree and removed the limitations of these degrees as in the existing concepts of FS, IF-S,
B-FS, P-FS and q-ROF-S. In this paper, the existing notions of the F-RS model and BF-RS
model on two universes have been generalized into the LDF-RS model on two universes as
a more convenient and a robust model. The basic notions of lower and upper LDF-RAS
have been defined by employing the after sets and fore sets of the (< s̈, ü >,< ẗ, v̈ >)-level
cut relation of an LDF-Rs. Some important results related to the L- and U-As have been
proved with illustrative examples. Furthermore, to illustrate the application of LDF-RSs,
an example has been employed. Further research on the proposed ideas of this research
paper applied to other practical applications is needed, which may lead to many fruitful
outcomes.
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