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1. Introduction

Let R be a set of real numbers, g be a convex function defined on the interval I C R —
Randc,d € I,c < d. Then

g(‘i;C) Sdic/cdg(t)dtgw' o

This is the famous Hadamard’s inequality for convex functions.

In 2000, utilizing Hadamard’s inequality, Elezovic and Pecaric [1] researched Schur-
convexity on the lower and upper limit of the integral for the mean of the convex functions
and obtained the following important and profound theorem.

Theorem 1 ([1]). Let I be an interval with nonempty interior on R and g be a continuous function
on I. Then,

ﬁfcdg(s)dsr c,del, d#c
g(C), d=c

is Schur convex (Schur concave, resp.) on I x 1 iff g is convex (concave, resp.) on I.

D(c,d) =

In recent years, this result attracted the attention of many scholars (see references [2-12]
and Chapter II of the monograph [13] and its references).

In this paper, the result of theorem 1 is generalized to the case of bivariate convex
functions, and some bivariate mean inequalities are established.

Theorem 2. Let I be an interval with non-empty interior on R and g(s,t) be a continuous function
on I x L. If g is convex (or concave resp.) on I x I, then

G(u,v) = {(11—114)2 fuv f;’g(s, fHdsdt, (w,v)€lxI, u#v o

g(u,u), (v)elIxl,u=v

is Schur convex (or Schur concave, resp.) on I x I.
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2. Definitions and Lemmas

To prove Theorem 2, we provide the following lemmas and definitions.

Definition 1. Let (x1,x7) and (y1,y2) € R x R.
(1)  Aset Q) C R x Ris said to be convex if (x1,x2), (y1,y2) € Qand 0 < B < 1 implies

(Bx1+ (1= By, Bxa+ (1= B)y2) € Q.

(2)  Let O C R X R be convex set. A function 1p: (3 — R is said to be a convex function on Q) if,
forall B € [0,1] and all (x1,x2), (y1,y2) € Q, inequality

w(Bx1 + (1= B)y1, Bra + (1 = Bly2) < By(x1,x2) + (1= B)(y1,y2) ®)

holds. If, for all B € [0,1] and all (x1,x2), (y1,y2) € Q, the strict inequality in (3) holds,
then 1 is said to be strictly convex.  is called concave ( or strictly concave, resp.) iff — is
convex ( or strictly convex, resp.)

Definition 2 ([14,15]). Let QO C R X R, (x1,x2) and (y1,y2) € Q, and let ¢ : QO — R:

(1) (x1,x) is said to be majorized by (y1,y2) (in symbols (x1,x2) < (y1,Y2)) if max{xq, x2}
< max{yy, Y2} and x1 + x2 = y1 + Y.

(2) s said to be a Schur-convex function on QY if (x1,x2) < (y1,y2) on Qimplies P(xq,x2) <
Y(y1,y2), and  is said to be a Schur-concave function on Q) iff — is a Schur-convex
function.

Lemma 1 ([14] (p. 5)). Let (x1,x2) € R x R. Then

X1 + X2 X1 + X2
(2/2) < (x1,x2).

Lemma 2 ([14] (p. 5)). Let 3 C R x R be symmetric set with a nonempty interior Q0°. ¢ : 3 —
R is continuous on Q) and differentiable in (2°. Then, function 1 is Schur convex (or Schur concave,
resp.) iff i is symmetric on () and

d d
(x1 —x2) <a;ﬁ - ai) > 0(or < 0,resp.)

holds for any (x1,x3) € Q°.

Lemma 3 ([16]). Let ¢(x, w) and w be continuous on

D={(x,w):a<x<bc<w<d};let

a(w), b(w) and their derivatives be continuous on [c,d]; v € [c,d] implies a(w),b(w) € [a, b].
Then,

d o) b(®) dg(x, / /
o o gty dr = [ 20 ey oo o), b () - ola(w) ' (w). @

Lemma 4. Let g(s, t) be continuous on rectangle [a, p;a,q|, G(c,d) = fcd fcd g(s,t)ydsdt. If
c = c(b) and d = d(b) are differentiable with b, a < c(b) < pand a < d(b) < q, then

oG d d

— :/ g(s,d)d’'(b) ds—/ g(s,c)c’(b)ds
b Je c

d

+d'(b) / " o(d, 1) dt — ¢ (b) / e t) dt. )
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Proof. Let ¢(s,b) f ¢(s,t) dt. Then,

W) o5, ) (5) — g(5,0)¢' (1)

By Lemma 3, we have

oG d
5 :@/C ¢(s,b)ds

- /Cd 2250) 45 1 p(a, ) () ~ 9le, D) ()
d d
= /C ¢(s,d)d’'(b)ds — /C g(s,c)c’(b) ds
+d'(b) /Cdg(d,s) ds —c'(b) /Cd g(c,s)ds.
O

Remark 1. In passing, it is pointed out that (9) in Lemma 5 of reference [2] is incorrect and should
be replaced by (4) of this paper.

Lemma 5. Let I be an interval with nonempty interior on R and g(s, t) be a continuous function
on I x I For (u,0) € I x Lu #v,let G(u,0v) = [ [”g(s,t) dsdt. Then,

?TS = /uvg(s,v) ds+/uvg(v, t)dt, (6)

?)(M;——</uvg(s,u)ds+/uvg(u,f)df)- )

Proof. By taking c(b) = a and d(b) = b, we have ¢/(b) = 0 and d'(b) = 1. By (5) in
Lemma 4, we obtain (6)
Notice that G(u,0) = [ [ (s, t) dsdt; from (5), we have

g(j:/vug(s,u)ds—i—/vug(u,t)dt:—(/uvg(s,u)ds—i-/uvg(u,t)dt)

O

Lemma 6 ([14] (p. 38, Proposition 4.3) and [15] (p. 644, B.3.d)). Let (3 C R x R be an open
convex set and let P(x,y) : Q — R be twice differentiable. Then,  is convex on ) iff the Hessian

matrix
%y Py
Heoy = (8 5

dyox  dydy

is non-negative definite on Q). If H(x) is positive definite on Q), then  is strictly convex on Q.

3. Proofs of Main Results

Proof of Theorem 2. Let g¢(s,t)be convex on I x I. G(u,v) is evidently symmetric.
By Lemma 5, we have

o) 22 [ ot ([ somes (o)
aGg:’U) = (v_zu)s /:/uvg(sff)det— (v_lu)Q(/uvg(sru)dSJr/jg(u,t)dt).
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A ::(v—u)<aGg:)’v) — aGgZ’U)) — _(z;—4u)2/uv /uvg(S,t) dsdt

g0 +gtsm) ds+ —— [*(glun) +g(o,1) o

0O—UuJu

+

By Hadamards inequality, we have

(vzw/uv/uvg(s,t)dsdt: Uzu/uv(viu/;g(&t)ds) dt

o 2 e+t 1 /va(g(u,t)+g(v,t))dt

“v—uay 2 v—U Jy

(0—u)? // Stdet_v_u/(viu/uvg(S,t)dt>ds

v o(s,u) + g(s,v) ds — 1 /u(g(slu)+g(s,v))ds.

U—M 2 v—1u

and

Moreover, we have

(vfu)z/f./:g(s’t) dsdt

< ["(z(5,0) +g5u)

To0—UuJy

v
- / (g(u,t) + g(v,1)) dt.
Therefore, A > 0, so G(u,v) is Schur-convex on I X I.
When (s, t) is a concave function on I x I, it can be proved with similar methods. [

4. Application on Binary Mean
Theorem 3. Let ¢ > 0andd > 0. Ifc #d,0 < s < 1, then

d 2s—1
A(d,c) > S5, 4(d, ) (d,c) > <Csst+)1) 8

1

where A(d,c) = 5% and Sy(d, c) = (:E;:CCS) ) " are the arithmetic mean and the s-order Stolarsky

mean of positive numbers c and d, respectively.

Proof. Let x > 0,y > 0and 0 < s < 1. From Theorem 4 in the reference [17], we know
that ¢(x,y) = x°y!~% is concave on (0, +c0) x (0,+c0). For ¢ # d, by Theorem 2, from
(43¢, d4ey < (¢,d) < (d +c,0), it follows that

G(d +¢,0) = //M Y dxd
d+c— Y

d+c #d d+c 1*5d
(d+c) /0 x/ Y y

1 (e AT (e+d)f (c4d)ETE
~(d+c)? s—l—l s s(s+1)

<Gled) = 7=y // Y= dxdy

1 .
:(d—C)Z/c xsdx/c y *dy

1 ds—l—l _ Cs—l—l 45 — ¢

(d—c)? s+1 s
SG(d—i—c d—f—c) :d+c

272 27
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That is, we obtain the following.

ds+1 _ Cs+l as — s d+c

(c+d)® ! o _
<S (s—l—l)(d—c)'s(d—c)S 2 = Ald,c).

s(s+1) s+1 (drC)Sﬁ_l(d,c) =

O

Theorem 4. Let ¢ > 0,d > 0. Then,

os(5a9) = (50)"

where B(d, c) = \/dc is the geometric mean of of positive numbers c and d.

Proof. From reference [17], we know that the function g(x,y) = is convex on

1
(x+y)?
(0, +00) x (0, +00). For ¢ > 0,d > 0 and d # c, by Theorem 2, from (¢, 71¢) < (d, c), it

follows that
G(c,d) s / / dxdy

:(d—16)2/c <C+y diy>dy

_(d_1c)2 [(log(d + ¢) —log(2c)) — (log(2d) — log(d +¢))]

d+c d+c 1
> =
_G< 2 7 2 ) (d+c)?’

That is, we obtain the following.

1og(g((j:§))>2 = log MZI;CC)Z > (Zli)z

O
Theorem 5. Letc > 0,d > 0. Then,
H,(c?,d*) > A%(c,d), (10)
where He(c,d) = @ is the Heronian mean of positive numbers c and d.

Proof. From reference [18], we know that the function of two variables

2P
p(xy) = 72 T oa

is a convex function on (0, +00) x
¢ # d, by Theorem 2, from (4, -

(0,+o0), wheres > 0and r > 0. Ford > 0,c > 0, and
C
T)

(d, c), it follows that
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G(c,d) = i //(2r2 )dxdy

_ 1 &> — yz(d —c)

~(d—c)? /c ( 61’2 + 252 ) dy

1 (d@®—3)d—c) (B®—c3)(d—oc)
-~ (d—c)? ( 6 2 652 )

:<d1c>2’( (12 )

d+c d+c (c+d 1
> =

_|_

namely , , ., )
Hg(cz,dz)zc +c3d+d _ (3d(d—_cc)) > (ch) _ A%d,c).
O
Theorem 6. Letc > 0,d > 0. We have
H,(c?,d*) > L(d,c)A(d,c), (11)

where L(d, c) = is the logarithmic mean of positive numbers c and d.

W
Proof. Let g(x,y) = y?x~!,x > 0,y > 0. Then,
gux = 2077, 8xy = 2%y = 8yxs8yy = 2x!
The Hesse matrix of ¢(x,y) is

(2732 —2x Yy
H_<—2x_2y 2x71 >

—3 2 -2
= y A =2y
det(H — AI) = det( oy 72]/ oyl _ /\) =0
S AA-2x32 -2 ) =0= A =0, =2x 32 +2x 1 > 0.

Therefore, matrix H is positive semidefinite, so it is known that g(x,y) is a con-
vex function on (0, +c0) x (0,+c0). Ford > 0,c > 0 and d # ¢, by Theorem 2, from
(43¢, 45€) < (d,c), it follows that

G(c,d):(d_ic/ / y?x tdxdy

2
d
_logd—logc.alz—i-cd—i—c2 S ( erc) d+c
- d—c 3 e 27

which is
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Theorem 7. Letd > 0,c > 0,d # c. Then

d—c

ed — e

2
E(d,c) < A(d, c)e(d+c)< > < A(d,c), (12)

where

ed —eC

_ ce? —det
E(d,c):{ C C:;—L dcel d#c

is exponent type mean of positive numbers c and d (see [13] (p. 134)).

Proof. Let g(x,y) = xe’(”y),y > 0,x > 0. From reference [19], we know that function
g(x,y) is convex on R x R. Ford > 0,¢ > 0, and d # ¢ by Theorem 2 from (%3¢, 41¢) <
(d, c), it follows that

1 d  pd
G(c,d):m./c /C xe " Ydxdy
_ v dxe_xdx de_yd
_(C—d)z/c /c Y
1 c+1 d+1 1 1
_(c—d)z( e el )C(ec_ed>

1 (ce? —dec) + (e —ef) of —ef

(d —c)? olc+d) " eletd)
d+c d+c c+d 1
< =
_G< 2 7 2 ) 2 eld+e)’
which is . )
ce® —de° d+c 4p d—c
I s e ”’(edec) |
For the rest, we only need to prove that
2
plc+d) < j CC> <1. (13)
e’ —e

We write e? = u and ¢° = v; then, the above inequality is equivalent to the well-known
log-geometric mean inequality.

v—u

L(v,u) > /ou = B(v,u).

B logv — logu
O
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