# Schur-Convexity of the Mean of Convex Functions for Two Variables 

Huan-Nan Shi ${ }^{1}$, Dong-Sheng Wang ${ }^{2(1)}$ and Chun-Ru Fu ${ }^{3, *}$<br>1 Department of Electronic Information, Teacher's College, Beijing Union University, Beijing 100011, China<br>2 Basic Courses Department, Beijing Polytechnic, Beijing 100176, China<br>3 Applied College of Science and Technology, Beijing Union University, Beijing 102200, China<br>* Correspondence: fuchunru2008@163.com


#### Abstract

The results of Schur convexity established by Elezovic and Pecaric for the average of convex functions are generalized relative to the case of the means for two-variable convex functions. As an application, some binary mean inequalities are given.


Keywords: inequality; Schur-convex function; Hadamard's inequality; convex functions of two variables; mean

MSC: 26A51; 26D15; B25

## 1. Introduction

Let $\mathbb{R}$ be a set of real numbers, $g$ be a convex function defined on the interval $I \subseteq \mathbb{R} \rightarrow$ $\mathbb{R}$ and $c, d \in I, c<d$. Then

$$
\begin{equation*}
g\left(\frac{d+c}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} g(t) \mathrm{d} t \leq \frac{g(d)+g(c)}{2} \tag{1}
\end{equation*}
$$

This is the famous Hadamard's inequality for convex functions.
In 2000, utilizing Hadamard's inequality, Elezovic and Pecaric [1] researched Schurconvexity on the lower and upper limit of the integral for the mean of the convex functions and obtained the following important and profound theorem.

Theorem 1 ([1]). Let I be an interval with nonempty interior on $\mathbb{R}$ and $g$ be a continuous function on I. Then,

$$
\Phi(c, d)=\left\{\begin{array}{l}
\frac{1}{d-c} \int_{c}^{d} g(s) d s, c, d \in I, d \neq c \\
g(c), d=c
\end{array}\right.
$$

is Schur convex (Schur concave, resp.) on $I \times I$ iff $g$ is convex (concave, resp.) on $I$.
In recent years, this result attracted the attention of many scholars (see references [2-12] and Chapter II of the monograph [13] and its references).

In this paper, the result of theorem 1 is generalized to the case of bivariate convex functions, and some bivariate mean inequalities are established.

Theorem 2. Let I be an interval with non-empty interior on $\mathbb{R}$ and $g(s, t)$ be a continuous function on $I \times I$. If $g$ is convex (or concave resp.) on $I \times I$, then

$$
G(u, v)= \begin{cases}\frac{1}{(v-u)^{2}} \int_{u}^{v} \int_{u}^{v} g(s, t) \mathrm{d} s \mathrm{~d} t, & (u, v) \in I \times I, u \neq v  \tag{2}\\ g(u, u), & (u, v) \in I \times I, u=v\end{cases}
$$

is Schur convex (or Schur concave, resp.) on $I \times I$.

## 2. Definitions and Lemmas

To prove Theorem 2, we provide the following lemmas and definitions.
Definition 1. Let $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right) \in \mathbb{R} \times \mathbb{R}$.
(1) $A$ set $\Omega \subset \mathbb{R} \times \mathbb{R}$ is said to be convex if $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \Omega$ and $0 \leq \beta \leq 1$ implies

$$
\left(\beta x_{1}+(1-\beta) y_{1}, \beta x_{2}+(1-\beta) y_{2}\right) \in \Omega .
$$

(2) Let $\Omega \subset \mathbb{R} \times \mathbb{R}$ be convex set. A function $\psi: \Omega \rightarrow \mathbb{R}$ is said to be a convex function on $\Omega$ if, for all $\beta \in[0,1]$ and all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \Omega$, inequality

$$
\begin{equation*}
\psi\left(\beta x_{1}+(1-\beta) y_{1}, \beta x_{2}+(1-\beta) y_{2}\right) \leq \beta \psi\left(x_{1}, x_{2}\right)+(1-\beta) \psi\left(y_{1}, y_{2}\right) \tag{3}
\end{equation*}
$$

holds. If, for all $\beta \in[0,1]$ and all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \Omega$, the strict inequality in (3) holds, then $\psi$ is said to be strictly convex. $\psi$ is called concave ( or strictly concave, resp.) iff $-\psi$ is convex ( or strictly convex, resp.)

Definition 2 ([14,15]). Let $\Omega \subseteq \mathbb{R} \times \mathbb{R},\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right) \in \Omega$, and let $\varphi: \Omega \rightarrow \mathbb{R}$ :
(1) $\quad\left(x_{1}, x_{2}\right)$ is said to be majorized by $\left(y_{1}, y_{2}\right)$ (in symbols $\left(x_{1}, x_{2}\right) \prec\left(y_{1}, y_{2}\right)$ ) if $\max \left\{x_{1}, x_{2}\right\}$ $\leq \max \left\{y_{1}, y_{2}\right\}$ and $x_{1}+x_{2}=y_{1}+y_{2}$.
(2) $\psi$ is said to be a Schur-convex function on $\Omega$ if $\left(x_{1}, x_{2}\right) \prec\left(y_{1}, y_{2}\right)$ on $\Omega$ implies $\psi\left(x_{1}, x_{2}\right) \prec$ $\psi\left(y_{1}, y_{2}\right)$, and $\psi$ is said to be a Schur-concave function on $\Omega$ iff $-\psi$ is a Schur-convex function.

Lemma $1\left([14]\right.$ (p. 5)). Let $\left(x_{1}, x_{2}\right) \in \mathbb{R} \times \mathbb{R}$. Then

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{x_{1}+x_{2}}{2}\right) \prec\left(x_{1}, x_{2}\right) .
$$

Lemma 2 ([14] (p. 5)). Let $\Omega \subseteq \mathbb{R} \times \mathbb{R}$ be symmetric set with a nonempty interior $\Omega^{\circ} . \psi: \Omega \rightarrow$ $\mathbb{R}$ is continuous on $\Omega$ and differentiable in $\Omega^{\circ}$. Then, function $\psi$ is Schur convex (or Schur concave, resp.) iff $\psi$ is symmetric on $\Omega$ and

$$
\left(x_{1}-x_{2}\right)\left(\frac{\partial \psi}{\partial x_{1}}-\frac{\partial \psi}{\partial x_{2}}\right) \geq 0(o r \leq 0, \text { res } p .)
$$

holds for any $\left(x_{1}, x_{2}\right) \in \Omega^{\circ}$.
Lemma 3 ([16]). Let $\varphi(x, w)$ and $\frac{\partial \varphi(x, w)}{\partial w}$ be continuous on

$$
D=\{(x, w): a \leq x \leq b, c \leq w \leq d\} ; l e t
$$

$a(w), b(w)$ and their derivatives be continuous on $[c, d] ; v \in[c, d]$ implies $a(w), b(w) \in[a, b]$. Then,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} w} \int_{a(w)}^{b(w)} \varphi(x, w) \mathrm{d} x=\int_{a(w)}^{b(w)} \frac{\partial \varphi(x, w)}{\partial w} \mathrm{~d} x+\varphi(b(w), u) b^{\prime}(w)-\varphi(a(w), w) a^{\prime}(w) . \tag{4}
\end{equation*}
$$

Lemma 4. Let $g(s, t)$ be continuous on rectangle $[a, p ; a, q], G(c, d)=\int_{c}^{d} \int_{c}^{d} g(s, t) \mathrm{d} s \mathrm{~d} t$. If $c=c(b)$ and $d=d(b)$ are differentiable with $b, a \leq c(b) \leq p$ and $a \leq d(b) \leq q$, then

$$
\begin{align*}
\frac{\partial G}{\partial b} & =\int_{c}^{d} g(s, d) d^{\prime}(b) \mathrm{d} s-\int_{c}^{d} g(s, c) c^{\prime}(b) \mathrm{d} s \\
& +d^{\prime}(b) \int_{c}^{d} g(d, t) \mathrm{d} t-c^{\prime}(b) \int_{c}^{d} g(c, t) \mathrm{d} t \tag{5}
\end{align*}
$$

Proof. Let $\varphi(s, b)=\int_{c}^{d} g(s, t) \mathrm{d} t$. Then,

$$
\frac{\partial \varphi(s, b)}{\partial b}=g(s, d) d^{\prime}(b)-g(s, c) c^{\prime}(b)
$$

By Lemma 3, we have

$$
\begin{aligned}
\frac{\partial G}{\partial b} & =\frac{\mathrm{d}}{\mathrm{~d} b} \int_{c}^{d} \varphi(s, b) \mathrm{d} s \\
& =\int_{c}^{d} \frac{\partial \varphi(s, b)}{\partial b} \mathrm{~d} s+\varphi(d, b) d^{\prime}(b)-\varphi(c, b) c^{\prime}(b) \\
& =\int_{c}^{d} g(s, d) d^{\prime}(b) \mathrm{d} s-\int_{c}^{d} g(s, c) c^{\prime}(b) \mathrm{d} s \\
& +d^{\prime}(b) \int_{c}^{d} g(d, s) \mathrm{d} s-c^{\prime}(b) \int_{c}^{d} g(c, s) \mathrm{d} s
\end{aligned}
$$

Remark 1. In passing, it is pointed out that (9) in Lemma 5 of reference [2] is incorrect and should be replaced by (4) of this paper.

Lemma 5. Let $I$ be an interval with nonempty interior on $\mathbb{R}$ and $g(s, t)$ be a continuous function on $I \times I$. For $(u, v) \in I \times I, u \neq v$, let $G(u, v)=\int_{u}^{v} \int_{u}^{v} g(s, t) \mathrm{d} s \mathrm{~d} t$. Then,

$$
\begin{gather*}
\frac{\partial G}{\partial v}=\int_{u}^{v} g(s, v) \mathrm{d} s+\int_{u}^{v} g(v, t) \mathrm{d} t  \tag{6}\\
\frac{\partial G}{\partial u}=-\left(\int_{u}^{v} g(s, u) \mathrm{d} s+\int_{u}^{v} g(u, t) \mathrm{d} t\right) . \tag{7}
\end{gather*}
$$

Proof. By taking $c(b)=a$ and $d(b)=b$, we have $c^{\prime}(b)=0$ and $d^{\prime}(b)=1$. By (5) in Lemma 4, we obtain (6).

Notice that $G(u, v)=\int_{v}^{u} \int_{v}^{u} g(s, t) \mathrm{d} s \mathrm{~d} t$; from (5), we have

$$
\frac{\partial G}{\partial u}=\int_{v}^{u} g(s, u) \mathrm{d} s+\int_{v}^{u} g(u, t) \mathrm{d} t=-\left(\int_{u}^{v} g(s, u) \mathrm{d} s+\int_{u}^{v} g(u, t) \mathrm{d} t\right)
$$

Lemma 6 ([14] (p. 38, Proposition 4.3) and [15] (p. 644, B.3.d)). Let $\Omega \subset \mathbb{R} \times \mathbb{R}$ be an open convex set and let $\psi(x, y): \Omega \rightarrow \mathbb{R}$ be twice differentiable. Then, $\psi$ is convex on $\Omega$ iff the Hessian matrix

$$
H(x, y)=\left(\begin{array}{cc}
\frac{\partial^{2} \psi}{\partial x \partial x} & \frac{\partial^{2} \psi}{\partial x \partial y} \\
\frac{\partial^{2} \psi}{\partial y \partial x} & \frac{\partial^{2} \psi}{\partial y \partial y}
\end{array}\right)
$$

is non-negative definite on $\Omega$. If $H(x)$ is positive definite on $\Omega$, then $\psi$ is strictly convex on $\Omega$.

## 3. Proofs of Main Results

Proof of Theorem 2. Let $g(s, t)$ be convex on $I \times I . G(u, v)$ is evidently symmetric. By Lemma 5, we have

$$
\begin{aligned}
& \frac{\partial G(u, v)}{\partial v}=\frac{-2}{(v-u)^{3}} \int_{u}^{v} \int_{u}^{v} g(s, t) \mathrm{d} s \mathrm{~d} t+\frac{1}{(v-u)^{2}}\left(\int_{u}^{v} g(s, v) \mathrm{d} s+\int_{u}^{v} g(v, t) \mathrm{d} t\right) . \\
& \frac{\partial G(u, v)}{\partial u}=\frac{2}{(v-u)^{3}} \int_{u}^{v} \int_{u}^{v} g(s, t) \mathrm{d} s \mathrm{~d} t-\frac{1}{(v-u)^{2}}\left(\int_{u}^{v} g(s, u) \mathrm{d} s+\int_{u}^{v} g(u, t) \mathrm{d} t\right) .
\end{aligned}
$$

$$
\begin{aligned}
\Delta:= & (v-u)\left(\frac{\partial G(u, v)}{\partial v}-\frac{\partial G(u, v)}{\partial u}\right)=-\frac{4}{(v-u)^{2}} \int_{u}^{v} \int_{u}^{v} g(s, t) \mathrm{d} s \mathrm{~d} t \\
& +\frac{1}{v-u} \int_{u}^{v}(g(s, v)+g(s, u)) \mathrm{d} s+\frac{1}{v-u} \int_{u}^{v}(g(u, t)+g(v, t)) \mathrm{d} t
\end{aligned}
$$

By Hadamards inequality, we have

$$
\begin{aligned}
& \frac{2}{(v-u)^{2}} \int_{u}^{v} \int_{u}^{v} g(s, t) \mathrm{d} s \mathrm{~d} t=\frac{2}{v-u} \int_{u}^{v}\left(\frac{1}{v-u} \int_{u}^{v} g(s, t) \mathrm{d} s\right) \mathrm{d} t \\
\leq & \frac{2}{v-u a} \int_{u}^{v} \frac{g(u, t)+g(v, t)}{2} \mathrm{~d} t=\frac{1}{v-u} \int_{u}^{v} a(g(u, t)+g(v, t)) \mathrm{d} t
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{2}{(v-u)^{2}} \int_{u}^{v} \int_{u}^{v} g(s, t) \mathrm{d} s \mathrm{~d} t=\frac{2}{v-u} \int_{u}^{v}\left(\frac{1}{v-u} \int_{u}^{v} g(s, t) \mathrm{d} t\right) \mathrm{d} s \\
\leq & \frac{2}{v-u} \int_{u}^{v} \frac{g(s, u)+g(s, v)}{2} \mathrm{~d} s=\frac{1}{v-u} \int_{u}^{v}(g(s, u)+g(s, v)) \mathrm{d} s .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
& \frac{4}{(v-u)^{2}} \int_{u}^{v} \int_{u}^{v} g(s, t) \mathrm{d} s \mathrm{~d} t \\
\leq & \frac{1}{v-u} \int_{u}^{v}(g(s, v)+g(s, u)) \mathrm{d} s+\frac{1}{v-u} \int_{u}^{v}(g(u, t)+g(v, t)) \mathrm{d} t .
\end{aligned}
$$

Therefore, $\Delta \geq 0$, so $G(u, v)$ is Schur-convex on $I \times I$.
When $g(s, t)$ is a concave function on $I \times I$, it can be proved with similar methods.

## 4. Application on Binary Mean

Theorem 3. Let $c>0$ and $d>0$. If $c \neq d, 0<s<1$, then

$$
\begin{equation*}
A(d, c) \geq S_{s+1}^{s}(d, c) S_{s}^{s-1}(d, c) \geq \frac{(c+d)^{2 s-1}}{s(s+1)} \tag{8}
\end{equation*}
$$

where $A(d, c)=\frac{c+d}{2}$ and $S_{s}(d, c)=\left(\frac{d^{s}-c^{s}}{s(d-c)}\right)^{\frac{1}{s-1}}$ are the arithmetic mean and the s-order Stolarsky mean of positive numbers $c$ and $d$, respectively.

Proof. Let $x>0, y>0$ and $0<s<1$. From Theorem 4 in the reference [17], we know that $g(x, y)=x^{s} y^{1-s}$ is concave on $(0,+\infty) \times(0,+\infty)$. For $c \neq d$, by Theorem 2, from $\left(\frac{d+c}{2}, \frac{d+c}{2}\right) \prec(c, d) \prec(d+c, 0)$, it follows that

$$
\begin{aligned}
G(d+c, 0) & =\frac{1}{(d+c-0)^{2}} \int_{c}^{d} \int_{0}^{d+c} x^{s} y^{1-s} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{1}{(d+c)^{2}} \int_{0}^{d+c} x^{s} \mathrm{~d} x \int_{0}^{d+c} y^{1-s} \mathrm{~d} y \\
& =\frac{1}{(d+c)^{2}} \frac{(c+d)^{s+1}}{s+1} \frac{(c+d)^{s}}{s}=\frac{(c+d)^{2 s-1}}{s(s+1)} \\
& \leq G(c, d)=\frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d} x^{s} y^{1-s} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{1}{(d-c)^{2}} \int_{c}^{d} x^{s} \mathrm{~d} x \int_{c}^{d} y^{1-s} \mathrm{~d} y \\
& =\frac{1}{(d-c)^{2}} \frac{d^{s+1}-c^{s+1}}{s+1} \frac{d^{s}-c^{s}}{s} \\
& \leq G\left(\frac{d+c}{2}, \frac{d+c}{2}\right)=\frac{d+c}{2}
\end{aligned}
$$

That is, we obtain the following.

$$
\frac{(c+d)^{2 s-1}}{s(s+1)} \leq S_{s+1}^{s}(d, c) S_{s}^{s-1}(d, c)=\frac{d^{s+1}-c^{s+1}}{(s+1)(d-c)} \cdot \frac{d^{s}-c^{s}}{s(d-c)} \leq \frac{d+c}{2}=A(d, c) .
$$

Theorem 4. Let $c>0, d>0$. Then,

$$
\begin{equation*}
\log \left(\frac{A(d, c)}{B(d, c)}\right)^{2} \geq\left(\frac{c-d}{d+c}\right)^{2} \tag{9}
\end{equation*}
$$

where $B(d, c)=\sqrt{d c}$ is the geometric mean of of positive numbers $c$ and $d$.
Proof. From reference [17], we know that the function $g(x, y)=\frac{1}{(x+y)^{2}}$ is convex on $(0,+\infty) \times(0,+\infty)$. For $c>0, d>0$ and $d \neq c$, by Theorem 2 , from $\left(\frac{d+c}{2}, \frac{d+c}{2}\right) \prec(d, c)$, it follows that

$$
\begin{aligned}
G(c, d) & =\frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d} \frac{1}{(x+y)^{2}} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{1}{(d-c)^{2}} \int_{c}^{d}\left(\frac{1}{c+y}-\frac{1}{d+y}\right) \mathrm{d} y \\
& =\frac{1}{(d-c)^{2}}[(\log (d+c)-\log (2 c))-(\log (2 d)-\log (d+c))] \\
& \geq G\left(\frac{d+c}{2}, \frac{d+c}{2}\right)=\frac{1}{(d+c)^{2}}
\end{aligned}
$$

That is, we obtain the following.

$$
\log \left(\frac{A(d, c)}{B(d, c)}\right)^{2}=\log \frac{(d+c)^{2}}{4 d c} \geq\left(\frac{c-d}{d+c}\right)^{2}
$$

Theorem 5. Let $c>0, d>0$. Then,

$$
\begin{equation*}
H_{e}\left(c^{2}, d^{2}\right) \geq A^{2}(c, d) \tag{10}
\end{equation*}
$$

where $H_{e}(c, d)=\frac{c+\sqrt{c d}+d}{3}$ is the Heronian mean of positive numbers $c$ and $d$.
Proof. From reference [18], we know that the function of two variables

$$
\psi(x, y)=\frac{x^{2}}{2 r^{2}}+\frac{y^{2}}{2 s^{2}}
$$

is a convex function on $(0,+\infty) \times(0,+\infty)$, where $s>0$ and $r>0$. For $d>0, c>0$, and $c \neq d$, by Theorem 2 , from $\left(\frac{d+c}{2}, \frac{d+c}{2}\right) \prec(d, c)$, it follows that

$$
\begin{aligned}
G(c, d) & =\frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d}\left(\frac{x^{2}}{2 r^{2}}+\frac{y^{2}}{2 s^{2}}\right) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{(d-c)^{2}} \int_{c}^{d}\left(\frac{d^{3}-c^{3}}{6 r^{2}}+\frac{y^{2}(d-c)}{2 s^{2}}\right) \mathrm{d} y \\
& =\frac{1}{(d-c)^{2}}\left(\frac{\left(d^{3}-c^{3}\right)(d-c)}{6 r^{2}}+\frac{\left(d^{3}-c^{3}\right)(d-c)}{6 s^{2}}\right) \\
& =\frac{1}{(d-c)^{2}} \cdot \frac{\left(d^{3}-c^{3}\right)(d-c)}{6}\left(\frac{1}{r^{2}}+\frac{1}{s^{2}}\right) \\
& \geq G\left(\frac{d+c}{2}, \frac{d+c}{2}\right)=\frac{(c+d)^{2}}{8}\left(\frac{1}{r^{2}}+\frac{1}{s^{2}}\right)
\end{aligned}
$$

namely

$$
H_{e}\left(c^{2}, d^{2}\right)=\frac{c^{2}+c d+d^{2}}{3}=\frac{\left(d^{3}-c^{3}\right)}{3(d-c)} \geq \frac{(d+c)^{2}}{4}=A^{2}(d, c)
$$

Theorem 6. Let $c>0, d>0$. We have

$$
\begin{equation*}
H_{e}\left(c^{2}, d^{2}\right) \geq L(d, c) A(d, c) \tag{11}
\end{equation*}
$$

where $L(d, c)=\frac{d-c}{\log d-\log c}$ is the logarithmic mean of positive numbers $c$ and $d$.
Proof. Let $g(x, y)=y^{2} x^{-1}, x>0, y>0$. Then,

$$
g_{x x}=2 x^{-3} y^{2}, \quad g_{x y}=-2 x^{-2} y=g_{y x}, g_{y y}=2 x^{-1}
$$

The Hesse matrix of $g(x, y)$ is

$$
\begin{gathered}
H=\left(\begin{array}{cc}
2 x^{-3} y^{2} & -2 x^{-2} y \\
-2 x^{-2} y & 2 x^{-1}
\end{array}\right) \\
\operatorname{det}(H-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
2 x^{-3} y^{2}-\lambda & -2 x^{-2} y \\
-2 x^{-2} y & 2 x^{-1}-\lambda
\end{array}\right)=0 \\
\Rightarrow \lambda\left(\lambda-2 x^{-3} y^{2}-2 x^{-1}\right)=0 \Rightarrow \lambda_{1}=0, \lambda_{2}=2 x^{-3} y^{2}+2 x^{-1}>0 .
\end{gathered}
$$

Therefore, matrix $H$ is positive semidefinite, so it is known that $g(x, y)$ is a convex function on $(0,+\infty) \times(0,+\infty)$. For $d>0, c>0$ and $d \neq c$, by Theorem 2 , from $\left(\frac{d+c}{2}, \frac{d+c}{2}\right) \prec(d, c)$, it follows that

$$
\begin{aligned}
G(c, d) & =\frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d} y^{2} x^{-1} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{\log d-\log c}{d-c} \cdot \frac{d^{2}+c d+c^{2}}{3} \geq \frac{\left(\frac{d+c}{2}\right)^{2}}{\frac{c+c}{2}}=\frac{d+c}{2}
\end{aligned}
$$

which is

$$
H_{e}\left(c^{2}, d^{2}\right) \geq L(d, c) A(d, c)
$$

Theorem 7. Let $d>0, c>0, d \neq c$. Then

$$
\begin{equation*}
\widetilde{E}(d, c) \leq A(d, c) e^{(d+c)}\left(\frac{d-c}{e^{d}-e^{c}}\right)^{2} \leq A(d, c) \tag{12}
\end{equation*}
$$

where

$$
\widetilde{E}(d, c)=\left\{\begin{array}{l}
\frac{c c^{d}-d e^{c}}{e^{d}-e^{c}}+1, d, c \in I, d \neq c \\
c, c=d
\end{array}\right.
$$

is exponent type mean of positive numbers $c$ and $d(\operatorname{see}[13] ~(p .134))$.
Proof. Let $g(x, y)=x e^{-(x+y)}, y>0, x>0$. From reference [19], we know that function $g(x, y)$ is convex on $\mathbb{R} \times \mathbb{R}$. For $d>0, c>0$, and $d \neq c$ by Theorem 2 from $\left(\frac{d+c}{2}, \frac{d+c}{2}\right) \prec$ $(d, c)$, it follows that

$$
\begin{aligned}
G(c, d) & =\frac{1}{(c-d)^{2}} \int_{c}^{d} \int_{c}^{d} x e^{-x-y} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{1}{(c-d)^{2}} \int_{c}^{d} x e^{-x} \mathrm{~d} x \int_{c}^{d} e^{-y} \mathrm{~d} y \\
& =\frac{1}{(c-d)^{2}}\left(\frac{c+1}{e^{c}}-\frac{d+1}{e^{d}}\right) \cdot\left(\frac{1}{e^{c}}-\frac{1}{e^{d}}\right) \\
& =\frac{1}{(d-c)^{2}} \frac{\left(c e^{d}-d e^{c}\right)+\left(e^{d}-e^{c}\right)}{e^{(c+d)}} \cdot \frac{e^{d}-e^{c}}{e^{(c+d)}} \\
& \leq G\left(\frac{d+c}{2}, \frac{d+c}{2}\right)=\frac{c+d}{2} \frac{1}{e^{(d+c)}},
\end{aligned}
$$

which is

$$
\frac{c e^{d}-d e^{c}}{e^{d}-e^{c}}+1 \leq \frac{d+c}{2} e^{(d+c)}\left(\frac{d-c}{e^{d}-e^{c}}\right)^{2} .
$$

For the rest, we only need to prove that

$$
\begin{equation*}
e^{(c+d)}\left(\frac{d-c}{e^{d}-e^{c}}\right)^{2} \leq 1 \tag{13}
\end{equation*}
$$

We write $e^{d}=u$ and $e^{c}=v$; then, the above inequality is equivalent to the well-known log-geometric mean inequality.

$$
L(v, u)=\frac{v-u}{\log v-\log u} \geq \sqrt{v u}=B(v, u) .
$$

Author Contributions: Conceptualization, H.-N.S., D.-S.W. and C.-R.F.; Methodology, H.-N.S.; Validation, C.-R.F.; Formal analysis, H.-N.S. and D.-S.W.; Investigation, D.-S.W.; Resources, C.-R.F.; Writing-original draft, D.-S.W.; Funding acquisition, C.-R.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors sincerely thanks Chen Dirong and Chen Jihang for their valuable opinions and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

## References

1. Elezovic, N.; Pečarić, J. A note on schur-convex fuctions. Rocky Mt. J. Math. 2000, 30, 853-856. [CrossRef]
2. Shi, H.N. Schur-convex functions relate to Hadamard-type inequalities. J. Math. Inequal. 2007, 1, 127-136. [CrossRef]
3. Čuljak, V.; Franjić, I.; Ghulam, R.; Pečarić, J. Schur-convexity of averages of convex functions. J. Inequal. Appl. 2011, 2011, 581918. [CrossRef]
4. Long, B.-Y.; Jiang, Y.-P.; Chu, Y.-M. Schur convexity properties of the weighted arithmetic integral mean and Chebyshev functional. Rev. Anal. Numr. Thor. Approx. 2013, 42, 72-81.
5. Sun, J.; Sun, Z.-L.; Xi, B.-Y.; Qi, F. Schur-geometric and Schur harmonic convexity of an integral mean for convex functions. Turk. J. Anal. Number Theory 2015, 3, 87-89. [CrossRef]
6. Zhang, X.-M.; Chu, Y.-M. Convexity of the integral arithmetic mean of a convex function. Rocky Mt. J. Math. 2010, 40, 1061-1068. [CrossRef]
7. Chu, Y.-M.; Wang, G.-D.; Zhang, X.-H. Schur convexity and Hadmards inequality. Math. Inequal. Appl. 2010, 13, 725-731.
8. Sun, Y.-J.; Wang, D.; Shi, H.-N. Two Schur-convex functions related to the generalized integral quasiarithmetic means. Adv. Inequal. Appl. 2017, 2017, 7.
9. Nozar, S.; Ali, B. Schur-convexity of integral arithmetic means of co-ordinated convex functions in $R^{3}$. Math. Anal. Convex Optim. 2020, 1, 15-24. [CrossRef]
10. Sever, D.S. Inequalities for double integrals of Schur convex functions on symmetric and convex domains. Mat. Vesnik 2021, 73, 63-74.
11. Kovač, S. Schur-geometric and Schur-harmonic convexity of weighted integral mean. Trans. Razmadze Math. Inst. 2021, 175, 225-233.
12. Dragomir, S.S. Operator Schur convexity and some integral inequalities. Linear Multilinear Algebra 2019, 69, 2733-2748. [CrossRef]
13. Shi, H.-N. Schur-Convex Functions and Inequalities: Volume 2: Applications in Inequalities; Harbin Institute of Technology Press Ltd.: Harbin, China, 2019.
14. Wang, B.Y. Foundations of Majorization Inequalities; Beijing Normal University Press: Beijing, China, 1990. (In Chinese)
15. Marshall, A.W.; Olkin, I. Inequalities: Theory of Majorization and Its Application; Academies Press: New York, NY, USA, 1979.
16. Ye, Q.; Shen, Y. Handbook of Practical Mathematics, 2nd ed.; Science Press: Beijing, China, 2019; pp. 246-247.
17. Shi, H.-N.; Wang, P.; Zhang, J.; Du, W.-S. Notes on judgment criteria of convex functions of several variables. Results Nonlinear Anal. 2021, 4, 235-243. [CrossRef]
18. Shi, H.-N. Schur-Convex Functions and Inequalities: Volume 1: Concepts, Properties, and Applications in Symmetric Function Inequalities; Harbin Institute of Technology Press Ltd.: Harbin, China, 2019.
19. You, X. The properties and applications of convex function of many variables. J. Beijing Inst. Petrochem. Technol. 2008, 16, 61-64. (In Chinese)
