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1. Introduction

Let R be a set of real numbers, g be a convex function defined on the interval I ⊆ R→
R and c, d ∈ I, c < d. Then

g
(

d + c
2

)
≤ 1

d− c

∫ d

c
g(t)dt ≤ g(d) + g(c)

2
. (1)

This is the famous Hadamard’s inequality for convex functions.
In 2000, utilizing Hadamard’s inequality, Elezovic and Pecaric [1] researched Schur-

convexity on the lower and upper limit of the integral for the mean of the convex functions
and obtained the following important and profound theorem.

Theorem 1 ([1]). Let I be an interval with nonempty interior on R and g be a continuous function
on I. Then,

Φ(c, d) =

{
1

d−c

∫ d
c g(s)ds, c, d ∈ I, d 6= c

g(c), d = c

is Schur convex (Schur concave, resp.) on I × I iff g is convex (concave, resp.) on I.

In recent years, this result attracted the attention of many scholars (see references [2–12]
and Chapter II of the monograph [13] and its references).

In this paper, the result of theorem 1 is generalized to the case of bivariate convex
functions, and some bivariate mean inequalities are established.

Theorem 2. Let I be an interval with non-empty interior on R and g(s, t) be a continuous function
on I × I. If g is convex (or concave resp.) on I × I, then

G(u, v) =

{
1

(v−u)2

∫ v
u

∫ v
u g(s, t)ds dt, (u, v) ∈ I × I, u 6= v

g(u, u), (u, v) ∈ I × I, u = v
(2)

is Schur convex (or Schur concave, resp.) on I × I.
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2. Definitions and Lemmas

To prove Theorem 2, we provide the following lemmas and definitions.

Definition 1. Let (x1, x2) and (y1, y2) ∈ R×R.

(1) A set Ω ⊂ R×R is said to be convex if (x1, x2), (y1, y2) ∈ Ω and 0 ≤ β ≤ 1 implies

(βx1 + (1− β)y1, βx2 + (1− β)y2) ∈ Ω.

(2) Let Ω ⊂ R×R be convex set. A function ψ: Ω→ R is said to be a convex function on Ω if,
for all β ∈ [0, 1] and all (x1, x2), (y1, y2) ∈ Ω, inequality

ψ(βx1 + (1− β)y1, βx2 + (1− β)y2) ≤ βψ(x1, x2) + (1− β)ψ(y1, y2) (3)

holds. If, for all β ∈ [0, 1] and all (x1, x2), (y1, y2) ∈ Ω, the strict inequality in (3) holds,
then ψ is said to be strictly convex. ψ is called concave ( or strictly concave, resp.) iff −ψ is
convex ( or strictly convex, resp.)

Definition 2 ([14,15]). Let Ω ⊆ R×R, (x1, x2) and (y1, y2) ∈ Ω, and let ϕ : Ω→ R:

(1) (x1, x2) is said to be majorized by (y1, y2) (in symbols (x1, x2) ≺ (y1, y2)) if max{x1, x2}
≤ max{y1, y2} and x1 + x2 = y1 + y2.

(2) ψ is said to be a Schur-convex function on Ω if (x1, x2) ≺ (y1, y2) on Ω implies ψ(x1, x2) ≺
ψ(y1, y2), and ψ is said to be a Schur-concave function on Ω iff −ψ is a Schur-convex
function.

Lemma 1 ([14] (p. 5)). Let (x1, x2) ∈ R×R. Then(
x1 + x2

2
,

x1 + x2

2

)
≺ (x1, x2).

Lemma 2 ([14] (p. 5)). Let Ω ⊆ R×R be symmetric set with a nonempty interior Ω◦. ψ : Ω→
R is continuous on Ω and differentiable in Ω◦. Then, function ψ is Schur convex (or Schur concave,
resp.) iff ψ is symmetric on Ω and

(x1 − x2)

(
∂ψ

∂x1
− ∂ψ

∂x2

)
≥ 0(or ≤ 0, resp.)

holds for any (x1, x2) ∈ Ω◦.

Lemma 3 ([16]). Let ϕ(x, w) and ∂ϕ(x,w)
∂w be continuous on

D = {(x, w) : a ≤ x ≤ b, c ≤ w ≤ d}; let

a(w), b(w) and their derivatives be continuous on [c, d]; v ∈ [c, d] implies a(w), b(w) ∈ [a, b].
Then,

d
dw

∫ b(w)

a(w)
ϕ(x, w)dx =

∫ b(w)

a(w)

∂ϕ(x, w)

∂w
dx + ϕ(b(w), u)b′(w)− ϕ(a(w), w)a′(w). (4)

Lemma 4. Let g(s, t) be continuous on rectangle [a, p; a, q], G(c, d) =
∫ d

c

∫ d
c g(s, t)ds dt. If

c = c(b) and d = d(b) are differentiable with b, a ≤ c(b) ≤ p and a ≤ d(b) ≤ q, then

∂G
∂b

=
∫ d

c
g(s, d)d′(b)ds−

∫ d

c
g(s, c)c′(b)ds

+d′(b)
∫ d

c
g(d, t)dt− c′(b)

∫ d

c
g(c, t)dt. (5)
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Proof. Let ϕ(s, b) =
∫ d

c g(s, t)dt. Then,

∂ϕ(s, b)
∂b

= g(s, d)d′(b)− g(s, c)c′(b).

By Lemma 3, we have

∂G
∂b

=
d

db

∫ d

c
ϕ(s, b)ds

=
∫ d

c

∂ϕ(s, b)
∂b

ds + ϕ(d, b)d′(b)− ϕ(c, b)c′(b)

=
∫ d

c
g(s, d)d′(b)ds−

∫ d

c
g(s, c)c′(b)ds

+ d′(b)
∫ d

c
g(d, s)ds− c′(b)

∫ d

c
g(c, s)ds.

Remark 1. In passing, it is pointed out that (9) in Lemma 5 of reference [2] is incorrect and should
be replaced by (4) of this paper.

Lemma 5. Let I be an interval with nonempty interior on R and g(s, t) be a continuous function
on I × I. For (u, v) ∈ I × I, u 6= v, let G(u, v) =

∫ v
u

∫ v
u g(s, t)ds dt. Then,

∂G
∂v

=
∫ v

u
g(s, v)ds +

∫ v

u
g(v, t)dt, (6)

∂G
∂u

= −
(∫ v

u
g(s, u)ds +

∫ v

u
g(u, t)dt

)
. (7)

Proof. By taking c(b) = a and d(b) = b, we have c′(b) = 0 and d′(b) = 1. By (5) in
Lemma 4, we obtain (6).

Notice that G(u, v) =
∫ u

v

∫ u
v g(s, t)ds dt; from (5), we have

∂G
∂u

=
∫ u

v
g(s, u)ds +

∫ u

v
g(u, t)dt = −

(∫ v

u
g(s, u)ds +

∫ v

u
g(u, t)dt

)
.

Lemma 6 ([14] (p. 38, Proposition 4.3) and [15] (p. 644, B.3.d)). Let Ω ⊂ R×R be an open
convex set and let ψ(x, y) : Ω→ R be twice differentiable. Then, ψ is convex on Ω iff the Hessian
matrix

H(x, y) =

 ∂2ψ
∂x∂x

∂2ψ
∂x∂y

∂2ψ
∂y∂x

∂2ψ
∂y∂y


is non-negative definite on Ω. If H(x) is positive definite on Ω, then ψ is strictly convex on Ω.

3. Proofs of Main Results

Proof of Theorem 2. Let g(s, t)be convex on I × I. G(u, v) is evidently symmetric.
By Lemma 5, we have

∂G(u, v)
∂v

=
−2

(v− u)3

∫ v

u

∫ v

u
g(s, t)ds dt +

1
(v− u)2

(∫ v

u
g(s, v)ds +

∫ v

u
g(v, t)dt

)
.

∂G(u, v)
∂u

=
2

(v− u)3

∫ v

u

∫ v

u
g(s, t)ds dt− 1

(v− u)2

(∫ v

u
g(s, u)ds +

∫ v

u
g(u, t)dt

)
.
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∆ :=(v− u)
(

∂G(u, v)
∂v

− ∂G(u, v)
∂u

)
= − 4

(v− u)2

∫ v

u

∫ v

u
g(s, t)ds dt

+
1

v− u

∫ v

u
(g(s, v) + g(s, u))ds +

1
v− u

∫ v

u
(g(u, t) + g(v, t))dt

By Hadamards inequality, we have

2
(v− u)2

∫ v

u

∫ v

u
g(s, t)ds dt =

2
v− u

∫ v

u

(
1

v− u

∫ v

u
g(s, t)ds

)
dt

≤ 2
v− ua

∫ v

u

g(u, t) + g(v, t)
2

dt =
1

v− u

∫ v

u
a(g(u, t) + g(v, t))dt

and

2
(v− u)2

∫ v

u

∫ v

u
g(s, t)ds dt =

2
v− u

∫ v

u

(
1

v− u

∫ v

u
g(s, t)dt

)
ds

≤ 2
v− u

∫ v

u

g(s, u) + g(s, v)
2

ds =
1

v− u

∫ v

u
(g(s, u) + g(s, v))ds.

Moreover, we have

4
(v− u)2

∫ v

u

∫ v

u
g(s, t)ds dt

≤ 1
v− u

∫ v

u
(g(s, v) + g(s, u))ds +

1
v− u

∫ v

u
(g(u, t) + g(v, t))dt.

Therefore, ∆ ≥ 0, so G(u, v) is Schur-convex on I × I.
When g(s, t) is a concave function on I × I, it can be proved with similar methods.

4. Application on Binary Mean

Theorem 3. Let c > 0 and d > 0. If c 6= d, 0 < s < 1, then

A(d, c) ≥ Ss
s+1(d, c)Ss−1

s (d, c) ≥ (c + d)2s−1

s(s + 1)
, (8)

where A(d, c) = c+d
2 and Ss(d, c) =

(
ds−cs

s(d−c)

) 1
s−1 are the arithmetic mean and the s-order Stolarsky

mean of positive numbers c and d, respectively.

Proof. Let x > 0, y > 0 and 0 < s < 1. From Theorem 4 in the reference [17], we know
that g(x, y) = xsy1−s is concave on (0,+∞) × (0,+∞). For c 6= d, by Theorem 2, from
( d+c

2 , d+c
2 ) ≺ (c, d) ≺ (d + c, 0), it follows that

G(d + c, 0) =
1

(d + c− 0)2

∫ d

c

∫ d+c

0
xsy1−s dx dy

=
1

(d + c)2

∫ d+c

0
xs dx

∫ d+c

0
y1−s dy

=
1

(d + c)2
(c + d)s+1

s + 1
(c + d)s

s
=

(c + d)2s−1

s(s + 1)

≤G(c, d) =
1

(d− c)2

∫ d

c

∫ d

c
xsy1−s dx dy

=
1

(d− c)2

∫ d

c
xs dx

∫ d

c
y1−s dy

=
1

(d− c)2
ds+1 − cs+1

s + 1
ds − cs

s

≤G
(

d + c
2

,
d + c

2

)
=

d + c
2

,
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That is, we obtain the following.

(c + d)2s−1

s(s + 1)
≤ Ss

s+1(d, c)Ss−1
s (d, c) =

ds+1 − cs+1

(s + 1)(d− c)
· ds − cs

s(d− c)
≤ d + c

2
= A(d, c).

Theorem 4. Let c > 0, d > 0. Then,

log
(

A(d, c)
B(d, c)

)2

≥
(

c− d
d + c

)2
, (9)

where B(d, c) =
√

dc is the geometric mean of of positive numbers c and d.

Proof. From reference [17], we know that the function g(x, y) = 1
(x+y)2 is convex on

(0,+∞)× (0,+∞). For c > 0, d > 0 and d 6= c, by Theorem 2, from ( d+c
2 , d+c

2 ) ≺ (d, c), it
follows that

G(c, d) =
1

(d− c)2

∫ d

c

∫ d

c

1
(x + y)2 dx dy

=
1

(d− c)2

∫ d

c

(
1

c + y
− 1

d + y

)
dy

=
1

(d− c)2 [(log(d + c)− log(2c))− (log(2d)− log(d + c))]

≥G
(

d + c
2

,
d + c

2

)
=

1
(d + c)2 ,

That is, we obtain the following.

log
(

A(d, c)
B(d, c)

)2

= log
(d + c)2

4dc
≥
(

c− d
d + c

)2
.

Theorem 5. Let c > 0, d > 0. Then,

He(c2, d2) ≥ A2(c, d), (10)

where He(c, d) = c+
√

cd+d
3 is the Heronian mean of positive numbers c and d.

Proof. From reference [18], we know that the function of two variables

ψ(x, y) =
x2

2r2 +
y2

2s2

is a convex function on (0,+∞)× (0,+∞), where s > 0 and r > 0. For d > 0, c > 0, and
c 6= d, by Theorem 2, from ( d+c

2 , d+c
2 ) ≺ (d, c), it follows that
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G(c, d) =
1

(d− c)2

∫ d

c

∫ d

c

(
x2

2r2 +
y2

2s2

)
dx dy

=
1

(d− c)2

∫ d

c

(
d3 − c3

6r2 +
y2(d− c)

2s2

)
dy

=
1

(d− c)2

(
(d3 − c3)(d− c)

6r2 +
(d3 − c3)(d− c)

6s2

)
=

1
(d− c)2 ·

(d3 − c3)(d− c)
6

(
1
r2 +

1
s2

)
≥G

(
d + c

2
,

d + c
2

)
=

(c + d)2

8

(
1
r2 +

1
s2

)
,

namely

He(c2, d2) =
c2 + cd + d2

3
=

(d3 − c3)

3(d− c)
≥ (d + c)2

4
= A2(d, c).

Theorem 6. Let c > 0, d > 0. We have

He(c2, d2) ≥ L(d, c)A(d, c), (11)

where L(d, c) = d−c
log d−log c is the logarithmic mean of positive numbers c and d.

Proof. Let g(x, y) = y2x−1, x > 0, y > 0. Then,

gxx = 2x−3y2, gxy = −2x−2y = gyx, gyy = 2x−1.

The Hesse matrix of g(x, y) is

H =

(
2x−3y2 −2x−2y
−2x−2y 2x−1

)
.

det(H − λI) = det
(

2x−3y2 − λ −2x−2y
−2x−2y 2x−1 − λ

)
= 0

⇒ λ(λ− 2x−3y2 − 2x−1) = 0⇒ λ1 = 0, λ2 = 2x−3y2 + 2x−1 > 0.

Therefore, matrix H is positive semidefinite, so it is known that g(x, y) is a con-
vex function on (0,+∞) × (0,+∞). For d > 0, c > 0 and d 6= c, by Theorem 2, from
( d+c

2 , d+c
2 ) ≺ (d, c), it follows that

G(c, d) =
1

(d− c)2

∫ d

c

∫ d

c
y2x−1 dx dy

=
log d− log c

d− c
· d2 + cd + c2

3
≥

(
d+c

2

)2

c+c
2

=
d + c

2
,

which is

He(c2, d2) ≥ L(d, c)A(d, c).
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Theorem 7. Let d > 0, c > 0, d 6= c. Then

Ẽ(d, c) ≤ A(d, c)e(d+c)
(

d− c
ed − ec

)2
≤ A(d, c), (12)

where

Ẽ(d, c) =

{
ced−dec

ed−ec + 1, d, c ∈ I, d 6= c
c, c = d

is exponent type mean of positive numbers c and d (see [13] (p. 134)).

Proof. Let g(x, y) = xe−(x+y), y > 0, x > 0. From reference [19], we know that function
g(x, y) is convex on R×R. For d > 0, c > 0, and d 6= c by Theorem 2 from ( d+c

2 , d+c
2 ) ≺

(d, c), it follows that

G(c, d) =
1

(c− d)2

∫ d

c

∫ d

c
xe−x−y dx dy

=
1

(c− d)2

∫ d

c
xe−x dx

∫ d

c
e−y dy

=
1

(c− d)2

(
c + 1

ec − d + 1
ed

)
·
(

1
ec −

1
ed

)
=

1
(d− c)2

(ced − dec) + (ed − ec)

e(c+d)
· ed − ec

e(c+d)

≤G
(

d + c
2

,
d + c

2

)
=

c + d
2

1
e(d+c)

,

which is
ced − dec

ed − ec + 1 ≤ d + c
2

e(d+c)
(

d− c
ed − ec

)2
.

For the rest, we only need to prove that

e(c+d)
(

d− c
ed − ec

)2
≤ 1. (13)

We write ed = u and ec = v; then, the above inequality is equivalent to the well-known
log-geometric mean inequality.

L(v, u) =
v− u

log v− log u
≥
√

vu = B(v, u).
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