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Abstract: In this study, a new class R
µ
Σ(x, γ, α, δ, β) of bi-univalent functions studied by means of

Gegenbauer polynomials (GP) with Rabotnov functions is introduced. The coefficient of the Taylor
coefficients |a2|and |a3| and Fekete-Szegö problems for functions belonging to R

µ
Σ(x, γ, α, δ, β) have

been derived as well. Furthermore, a variety of new results will appear by considering the parameters
in the main results.
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1. Introduction

In 1948, Rabotnov [1] introduced a special function applied to viscoelasticity. This
function, known today as the Rabotnov fractional exponential function or briefly Rabotnov
function, is given by:

Φα,λ(ξ) = ξα
∞

∑
n=0

(λ)nξn(1+α)

Γ((n + 1)(1 + α))
, (α, λ, ξ ∈ C ). (1)

The Rabotnov function is a particular case of the familiar Mittag-Leffler widely used in
the solution of fractional order integral equations or fractional order differential equations.
The relation between the Rabotnov and Mittag-Leffler functions [2] can be written as follows

Φα,λ(ξ) = ξαE1+α,1+α(λξ1+α),

where E is Mittag-Leffler and α, λ, z ∈ C. Various properties of the generalized Mittag-
Leffler function can be found in [3–6].

Let A denote the class of analytic functions f defined in U = {ξ ∈ C : |ξ| < 1} and
normalized by f ′(0)− 1 = 0 = f (0). Thus f ∈ A has a Taylor series expansion

f (ξ) = ξ + a2ξ2 + a3ξ3 + · · · = ξ +
∞

∑
n=2

anξn, (ξ ∈ U). (2)

Let S denote the class of all f ∈ A, which are univalent in U.
Let the function f and function g be analytic in U. We say that f is subordinate to g,

written as f ≺ g, if there exists a Schwarz function ω, which is analytic in U with

|ω(ξ)| < 1 and ω(0) = 0
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such that
g(ω(ξ)) = f (ξ).

Moreover, if g is univalent in U, then the equivalence holds

f (ξ) ≺ g(ξ) iff f (U) ⊂ g(U) and f (0) = g(0).

It is well known that all functions f ∈ S have an inverse f−1, defined by

ξ = f−1( f (ξ)) (ξ ∈ U)

and
w = f−1( f (w)) (|w| < r0( f ); r0( f ) ≥ 1

4
)

where

f−1(w) = g(w) = w− a2w2 + w3(2a2
2 − a3)− w4(5a3

2 − 5a2a3 + a4) + · · · . (3)

f (ξ) is said to be bi-univalent in U if both f (ξ) and f−1(ξ) are univalent in U.
Let Σ denote the class of bi-univalent functions in U given by (2). For interesting

subclasses of functions in Σ, see ([7–16]).
In 1784, Legendre [17] discovered orthogonal polynomials, which have been studied

extensively. The importance of orthogonal polynomials and their applications is manifested
in various disciplines involving contemporary mathematics, physics and engineering.
These polynomials play an essential role in problems of the approximation theory [18,19].

Ala Amourah et al. [20], in 2020, first studied the function of Gegenbauer polynomials
(GP) in the following

Hµ(x, ξ) =
1

(1− 2xξ + ξ2)
µ , (4)

where ξ ∈ U and x ∈ [−1, 1]. For fixed x, the function Hµ is analytic in U, so it can be
expanded in a Taylor series as

Hµ(x, ξ) =
∞

∑
n=0

Cµ
n (x)ξn, (5)

where Cµ
n (x) is the (GP) of degree n.

Obviously, Hµ generates nothing when µ = 0. Therefore, the generating of the (GP) is
set to be

H0(x, ξ) = 1− log
(

1− 2xξ + ξ2
)
=

∞

∑
n=0

C0
n(x)ξn (6)

for µ = 0. Moreover, it is worth mentioning that normalization of µ greater than −1/2 is
desirable [19]. (GP) can be defined

Cµ
n (x) =

1
n

[
2x(n + µ− 1)Cµ

n−1(x)− (n + 2µ− 2)Cµ
n−2(x)

]
, (7)

with the initial values

Cµ
0 (x) = 1, Cµ

1 (x) = 2µx and Cµ
2 (x) = 2µ(1 + µ)x2 − µ. (8)

We note that for µ = 1, we get the Chebyshev polynomials C1
n(x) = Cn(x) and for

µ = 1
2 , we get the Legendre polynomials C0.5

n (x).
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It is clear that the Rabotnov function Φα,λ(ξ) does not belong to A. Thus, it is natural
to consider the normalization of the Rabotnov function for α ≥ 0 and λ > 0 defined by

Rα,λ(ξ) = ξ
1

1+α Γ(1 + α)Φα,λ(ξ
1

1+α )

= ξ +
∞

∑
n=2

λn−1Γ(1 + α)

Γ((1 + α)n)
ξn, ξ ∈ U.

Geometric properties, including convexity, close-to-convexity and starlikeness, for the
normalized Rabotnov function Rα,λ(ξ) were recently investigated by Eker and Ece in [21].

We now consider the linear operator Vα,λ : A → A defined by

Vα,λ f (ξ) = Rα,λ(ξ) ∗ f (ξ) = ξ +
∞

∑
n=2

λn−1Γ(1 + α)

Γ((1 + α)n)
anξn, ξ ∈ U, (9)

where α ≥ 0 and λ > 0.
Numerous scholars have recently been investigating bi-univalent functions related to

orthogonal polynomials [22–26]. As far as we are aware, there are few works papers on
bi-univalent functions for the Gegenbauer polynomial.

Mainly motivated by the work of Ala Amourah [20], a subclass of Σ involving Rabot-
nov function associated with (GP) is introduced, and additionally, the bounds for the Taylor
coefficients |a2| and |a3| and Fekete-Szegö problems are obtained.

2. Coefficient Bounds of the Class R
µ
Σ(x, γ, α, δ, λ)

In this section, we begin defining associated Rabotnov functions, the new subclass
R

µ
Σ(x, γ, α, λ).

Definition 1. Let f ∈ Σ given by (2) be said to be in the class Rµ
Σ(x, γ, α, δ, λ) if the following

subordinations:

(1− γ)
Vα,λ f (ξ)

ξ
+ γ(Vα,λ f (ξ))′ + δξ(Vα,λ f (ξ))′′ ≺ Hµ(x, ξ) (10)

and

(1− γ)
Vα,λg(w)

w
+ γ(Vα,λg(w))′ + δw(Vα,λg(w))′′ ≺ Hµ(x, w), (11)

where µ > 0, α ≥ 0, x ∈ ( 1
2 , 1], λ > 0, γ ≥ 0, , and function g = f−1 is given by (3) and Hµ is

the generating function of the (GP) given by (4).

Example 1. For δ = 0, we have, Rµ
Σ(x, γ, α, 0, λ) = H

µ
Σ(x, γ, α, λ), in which H

µ
Σ(x, γ, α, λ)

denotes the class of f ∈ Σ given by (2) and satisfying the condition

(1− γ)
Vα,λ f (ξ)

ξ
+ γ(Vα,λ f (ξ))′ ≺ Hµ(x, ξ) (12)

and

(1− γ)
Vα,λg(w)

w
+ γ(Vα,λg(w))′ ≺ Hµ(x, ξ), (13)

where µ > 0, x ∈ ( 1
2 , 1], γ ≥ 0, and function g = f−1 are given by (3), and Hµ is the generating

function of the (GP) given by (4).

Example 2. For γ = 1 and δ = 0, we have, Rµ
Σ(x, 1, α, 0, λ) = R

µ
Σ(x, α, λ), in which R

µ
Σ(x, α, λ)

denotes the class of f ∈ Σ given by (2) and satisfying the following condition

(Vα,λ f (ξ))′ ≺ Hµ(x, ξ) (14)
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and
(Vα,λg(w))′ ≺ Hµ(x, ξ), (15)

where x ∈ ( 1
2 , 1], µ > 0, and function g = f−1 is given by (3) and Hµ is the generating function

of the (GP) given by (4).
Unless otherwise mentioned, we shall assume in this paper that λ, µ > 0, γ, α ≥ 0 and

x ∈ ( 1
2 , 1].
First, we give the maximum value for |a2| and |a3| given in Definition 1.

Theorem 1. Let f ∈ Σ given by (2) belong to the class Rµ
Σ(x, γ, α, δ, λ). Then

|a2| ≤
2|µ|Γ(2(1 + α))x

√
2Γ(3(1 + α))x

λ

√∣∣∣(z(µ, γ, α, δ, λ)x2 + (1 + 2γ + 2δ)2Γ(1 + α)Γ(3(1 + α))
)

Γ(1 + α)
∣∣∣ ,

and

|a3| ≤
4µ2x2[Γ(2(1 + α))]2

λ2(1 + γ + 2δ)2[Γ(1 + α)]2
+

2|µ|xΓ(3(1 + α))

(1 + 2γ + 6δ)λ2Γ(1 + α)
,

where

z(µ, γ, α, δ) = 4µ(1 + 2γ + 6δ)[Γ(2(1 + α))]2 − 2(1 + µ)(1 + 2γ + 2δ)2Γ(1 + α)Γ(3(1 + α)).

Proof. From Definition 1 and f ∈ R
µ
Σ(x, γ, α, δ, λ), for some regular functions ϕ, v such

that ϕ(0) = 0 = v(0) and |ϕ(ξ)| < 1, |v(w)| < 1 for all ξ, w ∈ U, then

(1− γ)
Vα,λ f (ξ)

ξ
+ γ(Vα,λ f (ξ))′ + δξ(Vα,λ f (ξ))′′ = Hµ(x, ϕ(ξ)) (16)

and

(1− γ)
Vα,λg(w)

w
+ γ(Vα,λg(w))′ + δw(Vα,λg(w))′′ = Hµ(x, v(w)), (17)

From (16) and (17), we obtain

(1− γ)
Vα,λ f (ξ)

ξ
+ γ(Vα,λ f (ξ))′ + δξ(Vα,λ f (ξ))′′ (18)

= 1 + Cµ
1 (x)c1ξ +

[
Cµ

1 (x)c2 + Cµ
2 (x)c2

1

]
ξ2 + · · ·

and

(1− γ)
Vα,λg(w)

w
+ γ(Vα,λg(w))′ + δw(Vα,λg(w))′′ (19)

= 1 + Cµ
1 (x)d1w +

[
Cµ

1 (x)d2 + Cµ
2 (x)d2

1

]
)w2 + · · · .

It is well known

|ϕ(ξ)| =
∣∣∣c1ξ + c2ξ2 + c3ξ3 + · · ·

∣∣∣ < 1, (ξ ∈ U)

and
|v(w)| =

∣∣∣d1w + d2w2 + d3w3 + · · ·
∣∣∣ < 1, (w ∈ U),

then
|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (20)
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Upon comparing the coefficients in (18) and (19), we have

(1 + γ + 2δ)
λΓ(1 + α)

Γ(2(1 + α))
a2 = Cµ

1 (x)c1, (21)

(1 + 2γ + 6δ)
λ2Γ(1 + α)

Γ(3(1 + α))
a3 = Cµ

1 (x)c2 + Cµ
2 (x)c2

1, (22)

− (1 + γ + 2δ)
λΓ(1 + α)

Γ(2(1 + α))
a2 = Cµ

1 (x)d1, (23)

and

(1 + 2γ + 6δ)
λ2Γ(1 + α)

Γ(3(1 + α))

[
2a2

2 − a3

]
= Cµ

1 (x)d2 + Cµ
2 (x)d2

1. (24)

It follows from (21) and (23) that

c1 = −d1 (25)

and

2(1 + γ + 2δ)2 λ2[Γ(1 + α)]2

[Γ(2(1 + α))]2
a2

2 =
[
Cµ

1 (x)
]2(

c2
1 + d2

1

)
. (26)

If we add (22) and (24), we get

2(1 + 2γ + 6δ)
λ2Γ(1 + α)

Γ(3(1 + α))
a2

2 = Cµ
1 (x)(c2 + d2) + Cµ

2 (x)
(

c2
1 + d2

1

)
. (27)

Substituting the value of
(
c2

1 + d2
1
)

from (26) into (27), we deduce that

2λ2Γ(1 + α)

 (1 + 2γ + 6δ)

Γ(3(1 + α))
− (1 + γ + 2δ)2Γ(1 + α)

[Γ(2(1 + α))]2
Cµ

2 (x)[
Cµ

1 (x)
]2

a2
2

= Cµ
1 (x)(c2 + d2). (28)

Moreover, using computations (19), (20) and (28), we find that

|a2| ≤
2|µ|Γ(2(1 + α))x

√
Γ(3(1 + α))x

λ

√∣∣∣(z(µ, γ, α, δ)x2 + (1 + 2γ + 2δ)2Γ(1 + α)Γ(3(1 + α))
)

Γ(1 + α)
∣∣∣ .

Next, in order to find the bound on |a3|, by subtracting (24) from (22), we obtain

2(1 + 2γ + 6δ)
λ2Γ(1 + α)

Γ(3(1 + α))

(
a3 − a2

2

)
= Cµ

1 (x)(c2 − d2) + Cµ
2 (x)

(
c2

1 − d2
1

)
. (29)

Then, in view of (26) and (29), it becomes

a3 =
[Γ(2(1 + α))]2

[
Cµ

1 (x)
]2

2λ2(1 + γ + 2δ)2[Γ(1 + α)]2

(
c2

1 + d2
1

)
+

Cµ
1 (x)Γ(3(1 + α))

2(1 + 2γ + 6δ)λ2Γ(1 + α)
(c2 − d2).
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Thus applying (8), we conclude that

|a3| ≤
4µ2x2[Γ(2(1 + α))]2

λ2(1 + γ + 2δ)2[Γ(1 + α)]2
+

2|µ|xΓ(3(1 + α))

(1 + 2γ + 6δ)λ2Γ(1 + α)
.

The proof is complete.

3. Fekete–Szegö Inequality

In this section, we prove a sharp bound of the Fekete and Szegö functional ηa2
2− a3 [27],

where function f belongs to the class Rµ
Σ(x, γ, α, δ, λ).

Theorem 2. Let f ∈ Σ given by (2) belong to class Rµ
Σ(x, γ, α, δ, λ). Then

∣∣∣a3 − ηa2
2

∣∣∣ ≤


2Γ(3(1+α))|µ|x
(1+2γ+6δ)λ2Γ(1+α)

, |η − 1| ≤ Q(µ, γ, α, δ)

8µ2x3Γ(3(1+α))[Γ(2(1+α))]2|η−1|
λ2Γ(1+α)|L(µ,γ,α,δ,λ)| , |η − 1| ≥ Q(µ, γ, α, δ),

where

L(µ, γ, α, δ) = 4µx2(1 + 2γ + 6δ)[Γ(2(1 + α))]2

− (1 + γ + 2δ)2Γ(1 + α)Γ(3(1 + α))
(

2(1 + µ)x2 − 1
)

and

Q(µ, γ, α, δ) =

∣∣∣∣∣1− (1 + γ + 2δ)2(2(1 + µ)x2 − 1
)
Γ(3(1 + α))Γ(1 + α)

4µx2(1 + 2γ + 6δ)[Γ(2(1 + α))]2

∣∣∣∣∣.
Proof. From (28) and (29) given by

a3 − ηa2
2

=
(1−η)[Cµ

1 (x)]
3
(c2+d2)Γ(3(1+α))[Γ(2(1+α))]2

2λ2Γ(1+α)
[
(1+2γ+6δ)[Γ(2(1+α))]2[Cµ

1 (x)]
2−(1+γ+2δ)2Γ(1+α)Γ(3(1+α))Cµ

2 (x)
]

+
Cµ

1 (x)Γ(3(1+α))

2(1+2γ+6δ)λ2Γ(1+α)
(c2 − d2)

= Cµ
1 (x)

[
h(η) + Γ(3(1+α))

2(1+2γ+6δ)λ2Γ(1+α)

]
c2 + Cµ

1 (x)
[

h(η)− Γ(3(1+α))
2(1+2γ+6δ)λ2Γ(1+α)

]
d2,

where

h(η) = [Cα
1 (x)]

2
Γ(3(1+α))[Γ(2(1+α))]2(1−η)

2λ2Γ(1+α)
[
(1+2γ+6δ)[Γ(2(1+α))]2[Cµ

1 (x)]
2−(1+γ+2δ)2Γ(1+α)Γ(3(1+α))Cµ

2 (x)
] .

Then, in view of (8), we conclude that

∣∣∣a3 − ηa2
2

∣∣∣ ≤


Γ(3(1+α))|Cα
1 (x)|

(1+2γ+6δ)λ2Γ(1+α)

2
∣∣∣Cµ

1 (x)
∣∣∣|h(η)|

0 ≤ |h(η)| ≤ Γ(3(1+α))
2(1+2γ+6δ)λ2Γ(1+α)

,

|h(η)| ≥ Γ(3(1+α))
2(1+2γ+6δ)λ2Γ(1+α)

,

the proof is complete 2.

4. Corollaries and Consequences

Conformable essentially to Examples 1 and 2, Theorems 1 and 2 yield the follow-
ing corollaries.

Corollary 1. Let f ∈ Σ given by (2) belong to class H
µ
Σ(x, γ, α, λ). Then

|a2| ≤
2|µ|Γ(2(1 + α))x

√
2Γ(3(1 + α))x

λ

√∣∣∣(z(µ, γ, α)x2 + (1 + 2γ)2Γ(1 + α)Γ(3(1 + α))
)

Γ(1 + α)
∣∣∣
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|a3| ≤
4µ2x2[Γ(2(1 + α))]2

λ2(1 + γ)2[Γ(1 + α)]2
+

2|µ|xΓ(3(1 + α))

(1 + 2γ)λ2Γ(1 + α)
,

and ∣∣∣a3 − ηa2
2

∣∣∣ ≤


2Γ(3(1+α))|µ|x
(1+2γ)λ2Γ(1+α)

, |η − 1| ≤ Q(µ, γ, α)

8µ2x3Γ(3(1+α))[Γ(2(1+α))]2|η−1|
λ2Γ(1+α)|L(µ,γ,α,0,λ)| , |η − 1| ≥ Q(µ, γ, α),

where

z(µ, γ, α) = 4µ(1 + 2γ)[Γ(2(1 + α))]2 − 2(1 + µ)(1 + 2γ)2Γ(1 + α)Γ(3(1 + α)),

L(µ, γ, α) = 4µx2(1 + 2γ)[Γ(2(1 + α))]2

− (1 + γ)2Γ(1 + α)Γ(3(1 + α))
(

2(1 + µ)x2 − 1
)

,

and

Q(µ, γ, α) =

∣∣∣∣∣1− (1 + γ)2(2(1 + µ)x2 − 1
)
Γ(3(1 + α))Γ(1 + α)

4µx2(1 + 2γ)[Γ(2(1 + α))]2

∣∣∣∣∣.
Corollary 2. Let f ∈ Σ given by (2) belong to class G

µ
Σ(x, α, λ). Then

|a2| ≤
2|µ|Γ(2(1 + α))x

√
2Γ(3(1 + α))x

λ
√
|(z(µ, 1, α)x2 + 9Γ(1 + α)Γ(3(1 + α)))Γ(1 + α)|

|a3| ≤
µ2x2[Γ(2(1 + α))]2

λ2[Γ(1 + α)]2
+

2|µ|xΓ(3(1 + α))

3λ2Γ(1 + α)
,

and ∣∣∣a3 − ηa2
2

∣∣∣ ≤


2Γ(3(1+α))|µ|x
3λ2Γ(1+α)

, |η − 1| ≤ Q(µ, 1, α)

8µ2x3Γ(3(1+α))[Γ(2(1+α))]2|η−1|
λ2Γ(1+α)|L(µ,1,α,0)| , |η − 1| ≥ Q(µ, 1, α),

where

z(µ, 1, α) = 12µ[Γ(2(1 + α))]2 − 18(1 + µ)Γ(1 + α)Γ(3(1 + α)),

L(µ, 1, α) = 12µx2[Γ(2(1 + α))]2 − 4Γ(1 + α)Γ(3(1 + α))
(

2(1 + µ)x2 − 1
)

,

and

Q(µ, 1, α) =

∣∣∣∣∣1−
(
2(1 + µ)x2 − 1

)
Γ(3(1 + α))Γ(1 + α)

3µx2[Γ(2(1 + α))]2

∣∣∣∣∣.
Remark 1. The results presented in this article would lead to various other new results for the classes
R0.5

Σ (x, γ, α, δ, λ) for Legendre polynomials, and R1
Σ(x, γ, α, δ, λ) for Chebyshev polynomials.

5. Conclusions

In our study, a new class R
µ
Σ(x, γ, α, δ, λ) of normalized analytic functions and bi-

univalent functions associated with the normalized Rabotnov function series was intro-
duced. For functions belonging to this class, the estimates of the Taylor coefficients |a2|
and |a3| and Fekete-Szegö functional problems were derived. This study could inspire
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researchers to introduce new classes of analytic and bi-univalent functions associated with
the normalized Rabotnov function series.
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