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Abstract: Complex optimization (CO) problems have been solved using swarm intelligence (SI)
methods. One of the CO problems is the Wireless Sensor Network (WSN) coverage optimization
problem, which plays an important role in Internet of Things (IoT). A novel hybrid algorithm is
proposed, named hybrid particle swarm butterfly algorithm (HPSBA), by combining their strengths
of particle swarm optimization (PSO) and butterfly optimization algorithm (BOA), for solving this
problem. Significantly, the value of individual scent intensity should be non-negative without
consideration of the basic BOA, which is calculated with absolute value of the proposed HPSBA.
Moreover, the performance of the HPSBA is comprehensively compared with the fundamental
BOA, numerous potential BOA variants, and tried-and-true algorithms, for solving the twenty-six
commonly used benchmark functions. The results show that HPSBA has a competitive overall
performance. Finally, when compared to PSO, BOA, and MBOA, HPSBA is used to solve the node
coverage optimization problem in WSN. The experimental results demonstrate that the HPSBA
optimized coverage has a higher coverage rate, which effectively reduces node redundancy and
extends WSN survival time.

Keywords: particle swarm optimization; butterfly optimization algorithm; hybrid algorithm; conver-
gence analysis; Wireless Sensor Network; node coverage

1. Introduction

With the emergence of heuristic intelligent optimization algorithms, new methods
have been provided for solving complex engineering problems. The principle is mostly
to imitate the biological habits of foraging and courtship of the biological community.
According to the theoretical principle of meta-heuristic optimization algorithm, it can be
simply divided into four categories (See Figure 1). Typical swarm intelligence algorithms
(SI-based) are: Particle swarm optimization (PSO) [1], Cuckoo search (CS) [2], Grey wolf
optimizer (GWO) [3], Whale optimization algorithm (WOA) [4], Marine predators algo-
rithm (MPA) [5], Ant colony optimization (ACO) [6], Firefly algorithm (FA) [7], Moth-flame
optimization (MFO) [8], Grasshopper optimization algorithm (GOA) [9], Butterfly opti-
mization algorithm (BOA) [10]. Evolution algorithms (Ev-based) are: Genetic algorithm
(GA) [11], Differential evolution (DE) [12], Biogeography-based optimizer (BBO) [13], Ge-
netic programming (GP) [14]. Algorithms based on physical characteristics (Phy-based) are:
Simulated annealing (SA) [15], Gravitational search algorithm (GSA) [16], Harmony search
(HS) [17], Sine cosine algorithm (SCA) [18], Equilibrium optimizer (EO) [19], Gradient-
based optimizer (GBO) [20]. Algorithms based on human social behavior (Hu-based) are:
Teaching learning based optimization (TLBO) [21], Tabu search (TS) [22], Socio evolution
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and learning optimization (SELO) [23], Political optimizer (PO) [24]. For a more detailed
review, we can refer to the literature [25,26].

Figure 1. Classification of heuristic optimization algorithms.

According to the biological characteristics of natural animals (such as oviparous an-
imals or mammals, and insects) and plants, swarm intelligence optimization algorithms
can be divided into three categories. Imitating animal habits such as: Particle swarm
optimization (PSO) [1], Cuckoo search (CS) [2], Grey wolf optimizer (GWO) [3], Whale
optimization algorithm (WOA) [4], Marine predators algorithm (MPA) [5], etc. Imitating
the habits of insects such as: Ant colony optimization (ACO) [6], Firefly algorithm (FA) [7],
Moth-flame optimization (MFO) [8], Grasshopper optimization algorithm (GOA) [9], But-
terfly optimization algorithm (BOA) [10], etc. Imitating plant characteristics such as: Flower
pollination algorithm (FPA) [27], Tree-seed algorithm (TSA) [28], etc.

PSO is a typical and widely used intelligent optimization algorithm. It has the ad-
vantage of fast convergence. Some of the recent works on hybrid PSO with other SI
algorithms are as follows: hybrid PSO and DE [29], hybrid PSO and GSA [30], hybrid GA
and PSO [31,32], hybrid PSO and SSA [33], etc. Butterfly optimization algorithm [10] is a
novel swarm intelligent algorithm proposed by Arora and Singh, which has been used to
solve the wireless sensor network node localization problem [34], and optimization training
of wavelet neural network [35]. However, BOA is susceptible to local optima and suffers
from premature convergence. There are several recent works on BOA as follows: improved
BOA [36], modified BOA [37], hybrid BOA and PSO [38], etc.

The energy consumption of the wireless sensor network (WSN) is limited by the large
number of sensor nodes [39], which is crucial to the Internet of Things (IoT). It can provide
users with accurate and comprehensive real-time data by processing the detection data
of sensing objects of the mutual cooperation between nodes. WSN has been widely used
in military, transportation, environmental monitoring and other fields [40]. The coverage
problem is one of the key tasks in the research field of the WSN, which reflects the quality
of the service. Coverage ratio is an important indicator for evaluating the performance of
the WSN nodes.

In a working area, sensor nodes are usually arranged at random for the initial stage.
High-density nodes will result from this method, resulting in a low coverage rate that
directly impacts monitoring quality [41,42]. As a result, optimizing sensor node coverage
is critical to increasing WSN coverage ratio in the work area. SI optimization algorithms
have recently made significant contributions to the WSN’s problem of optimizing node
coverage. Wang et al. [43] proposed a resampled PSO to solve the coverage control problem
in IoT. Yang et. al [44] used the improved FA to solve sensor coverage problem, which
considered the target coverage and network connectivity of sensor nodes. Miao et al. [45]
proposed a GWO-EH algorithm to address the WSN node coverage optimization problem.
Wang et al. [46] proposed the topology optimization of coverage-oriented method for a
WSN based on wolf pack algorithm (WPA). Dao et al. [47] proposed a WSN coverage
optimization model based on an improved Archimedes optimization algorithm for the
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working area. Although the above-mentioned SI algorithms have achieved success, they are
still difficult to rid of local optima when optimization problems become more challenging,
which makes it necessary to find new methods.

Because of the advantages of BOA with simple structure and few adjustment pa-
rameters, and PSO with fast convergence, a novel Chaotic hybrid butterfly optimization
algorithm with particle swarm optimization (HPSOBOA) [38] was proposed for solving the
high-dimensional optimization problems. However, both of BOA and PSO can easily fall
into a local optimum and have low convergence accuracy, and HPSOBOA also has poor
results for engineering optimization problems, which makes further research necessary
for them. Significantly, the value of individual scent intensity should be a non-negative in
nature without consideration in the basic BOA and others. Thus, a novel hybrid particle
swarm butterfly algorithm (HPSBA) is proposed on the basis of HPSOBOA. The main
contributions and highlights are as follows:

• A novel hybrid particle swarm butterfly algorithm is proposed. This combination
strikes a balance between exploitation and exploration. We design that the control
strategy of parameter c is based on Logistic map, and the parameter ω is based on
adaptive adjustment strategy of the HPSBA for improving the optimization speed,
convergence accuracy and global search capability. Moreover, the individual scent
intensity value is calculated with absolute value of the proposed HPSBA.

• To ensure that the proposed algorithm works, we compare the optimization results of
twenty-six benchmark functions with ten intelligent optimization algorithms. Accord-
ing to the mean value (Mean), standard deviation (Std), Wilcoxon rank-sum (WRS)
test findings, and convergence curves, the simulation results show that HPSBA has a
competitive overall performance.

• The node optimization coverage problem of the WSN is solved using the proposed
HPSBA. The application and advantages of the HPSBA are also discussed.

The remaining sections of this study are as follows: The mathematical model for the
WSN’s node coverage optimization (NCO) problem is established in Section 2, which goes
over the underlying concepts of the PSO and BOA. The proposed HPSBA is explained in
detail in Section 3. The outcomes of the algorithms’ comparison experiments are presented
in Section 4. In Section 5, HPSBA is applied to solve the WSN’s NCO problem. Section 6
concludes with a discussion of the next steps.

2. Basic Knowledge
2.1. Particle Swarm Optimization

There are two important characteristics of PSO algorithm [1] are the position and velocity
of the particles. The position and velocity of the particles are updated as Equations (1) and (2).

vt+1
i = ω · vt

i + c1 · rand1 × (pbest − xt
i ) + c2 · rand2 × (gbest − xt

i ) (1)

xt+1
i = xt

i + vt+1 (2)

where vt
i and vt+1

i are the velocity of the i-th particle when the iteration number is t and
t + 1, respectively. pbest and gbest represent the initial individual best position and global
best position of the particle. rand1 and rand2 are the random number in (0, 1), and usually
c1 = c2 = 2. ω is the inertia weight coefficient.

2.2. Butterfly Optimization Algorithm

In BOA [10], each butterfly in the group has a unique sense and individual perception
ability. The intensity of fragrance perception is generated between individuals. Figure 2
presents the food foraging of butterflies in the 2-D search space.

The following is an expression of the intensity of scent that other butterflies perceive:

F(x) = cIa (3)
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where F(x) denotes the scent intensity function, c denotes the sensory modality, and I
indicates stimulus intensity, that is, the function fitness value. a denotes the intensity factor,
and the value range of parameter a is [0, 1]. The sensory modality c is calculated as follows:

ct+1 = ct + [0.025/(ct · Tmax)] (4)

where the initial value of c is set to 0.01 in basic BOA [10]. However, the parameter c can be
set to any value within [0, ∞) in theory. Tmax is the maximum number of iterations.

Figure 2. Food foraging of butterflies.

The switching probability SP determines the global search and local search of the BOA.
The position update formula is expressed as follows:

xt+1
i =

{
xt

i + (r2 × g∗ − xt
i )× Fi, SP ≥ rand

xt
i + (r2 × xt

j − xt
k)× Fi, SP < rand

(5)

where xt
i denotes the spatial position of the i-th butterfly in the t-th iteration. g∗ is the best

position of all butterfly individuals in the current iteration. xt
j and xt

k are the position of the
j-th and k-th butterfly individual when the iteration number is t, respectively. r is a random
number in (0, 1), and Fi is the scent intensity value of the i-th butterfly.

2.3. Node Coverage Optimization Problem Model

For the two-dimensional point coverage problem in WSN [39], it is assumed that
there are n detection points to be covered in the two-dimensional coverage area, and the
coverage nodes use homogeneous sensors, that is, the sensors have the same sensing radius.
Supposing the sensing radius is rs, thus rc is regarded as the communication radius, and the
unit of them is meter. The sensing radius is the maximum distance at which the received
signal strength of a node is greater than the inherent noise, that is, the sensing range of the
node. The communication radius is the maximum distance for transmitting data or signals
between nodes, generally.

Assuming that the monitoring area contains n target points, the position coordinates of
the i-th target point to be monitored are (xi, yi), and the sensor nodes s position coordinates
are (xs, ys). Then, the Euclidean distance that the sensor can cover the target to be monitored
can be expressed as:

d(i, s) =
√
(xs − xi)

2 + (ys − yi)
2 (6)

The binary perception model [48,49] is used in this study, and the sensor node s covers
the probability p that the target node i will be monitored, it can be defined as:

p(i, s) =

{
0, d(i, s) ≥ rs

1, d(i, s) < rs
(7)
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We divide the two-dimensional plane area to be deployed along the x and y axes with
the step length q, and then the length of each segment is l = q, and the intersection of the
coverage area is q2. The probability that the monitoring point set T in the coverage area is
interpreted by the node set S. The node coverage rate is defined as:

Cov =
pcov

q2 =

S
∑

i=1
p(i, s)

q2 (8)

Assuming that the coverage area is a square, the side length is L, and rs denotes the
node sensing radius. Theoretically, the number of deployed nodes can be calculated in the
coverage area. The schematic diagram of the nodes full coverage is as Figure 3.

Figure 3. Node coverage diagram.

In Figure 3, O1, O2 and O3 indicate the positions of the three nodes, the triangle
O1O2O3 is an equilateral triangle where O3 A = rs, that is, sensing radius of the sensor,
∠AO3B = π/3, AB = BO3 = O3 A = rs. According to the nature of the circle, AB ⊥ O2O3,
∠AO3C = 1/2∠AO3B = π/6. According to the law of cosines, the length of the line
segment O3C can be expressed as follows:

LO3C = LO3 A × cos(∠AO3C) = rs × cos(π/6) =

√
3

2
rs (9)

Thus, the number of nodes in the coverage area can be calculated by Equation (10) in theory.

M =

(
L√

3/2 · rs + rs
+ 1
)2

(10)

According to the above analysis, the NCO problem can be simplified as a constrained
optimization problem, the expression is as follows:

max f (x) = Cov, s.t



g1 =
S

∑
i=1

p(i, s) ≥ 0,

g2 =
S

∑
i=1

p(i, s)− q2 ≥ 0,

g3 = d(i, s)− rs ≥ 0,

g4 = S−M ≥ 0.

(11)

where rs denotes perception radius of the node, p(i, s) indicates the probability of the target
node i monitored and covered by the sensor node s, and d(i, s) indicates the Euclidean
distance between sensor node s and monitored target node i. M is the theoretical number
of nodes in the coverage area, and S is the set of coverage nodes in the monitoring area.
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3. Method

In this section, a novel HPSBA is proposed to improve the optimization speed, conver-
gence accuracy and global search capability between PSO and BOA. It is possible to strike
a balance between exploitation and exploration and benefits strengths of both algorithms
by combining them. Significantly, the individual scent intensity value is calculated with
absolute value of the proposed HPSBA. Furthermore, HPSBA is used to solve the node
optimization coverage problem of the WSN for Internet of Things (IoT).

3.1. Hybrid Particle Swarm Butterfly Algorithm (HPSBA)
3.1.1. Algorithmic Population Initialization

Supposing the expression of randomly generated initial solution is defined as follow
in the D-dimensional search space.

Xi = Lb + (Ub − Lb) · rand (12)

where Xi presents the spatial position of the i-th butterfly individual (i = 1, 2, 3, · · · , N)
in the butterfly swarm, N denotes the number of initial individual solutions. Lb and Ub
are the upper and lower bounds of the search space, and rand is a random number matrix
between (0, 1).

3.1.2. Algorithmic Exploration

The exploration stage of the proposed HPSBA is expressed as:

Vt
i-1 = ωVt

i-1 + C1r1 × (pb − Xt
i-1) + C2r2 × (gb − Xt

i-1) (13)

Xt
i = Xt

i-1 + Vt
i-1 (14)

where ω is the inertia weight coefficient. C1 and C2 indicate adjustment parameters, respectively.
Xt

i and Xt
i−1 represent the position of the i-th and (i− 1)-th agent at t. Vt

i and Vt
i−1 are the

velocity of the i-th and (i− 1)-th agent when t-th iteration, respectively. pb and gb represent the
initial global best position of the agent. r1 and r2 are the random number in (0, 1).

3.1.3. Algorithmic Exploitation

The exploitation stage of the proposed HPSBA is expressed as:

Xt+1
i =

{
ω · Xt

i + r2 · (gb − Xt
i )× |Fi|, SP ≥ rand

ω · Xt
i + r2 · (Xt

k − Xt
j)× |Fi|, SP < rand

(15)

where ω indicates adaptive adjustment parameter. Xt+1
i and Xt

i represent the position of
the i-th particle at t + 1 and t, respectively. Xt

j and Xt
k are the positions of the j-th and k-th

individuals randomly selected from the solution. Fi is the scent intensity value of the i-th
individual. Most notably, the value of individual scent intensity is a non-negative, thus we
take the absolute value of Fi in the proposed HPSBA.

3.1.4. The Chaotic Adjusting Strategies

Chaos theory has a lot of application research in SI algorithms, such as chaotic popula-
tion initialization [38], chaotic adjusting strategies of the control parameters [50], etc. The
expression of the Logistic map is defined in Ref. [51]. The chaotic sequence of the Logistic
map is (0, 1). When µ = 4, the mapping will produce strong chaotic phenomena. In this
paper, the control parameter c of the proposed HPSBA is expressed as:

c(t) = 4 · c · (1− c) (16)
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The inertial weight coefficient ω has a direct impact on the particle flight speed of the
PSO algorithm, and can modify the algorithm’s global and local search capabilities. We
adopt an adaptive adjustment strategy with chaos, and its expression is as follows:

ω(t) = ωu − (ωu −ωl) · t/Tmax (17)

where ωu = 0.9, ωl = 0.2, Tmax is the maximum iteration number of the algorithm. For
the control parameters c and ω, Tmax = 500 and different c(0) values are taken, and the
corresponding chaotic sequences are shown in Figure 4. For selecting the best initial
value of the control parameters, Schwefel 1.2 and Solomon functions are used to perform
optimization tests. The optimization results are shown in Table 1.

Figure 4. Chaotic sequence with different c(0) values.

Table 1. Optimal value with different c(0) values.

c(0)
Schwefel 1.2 Solomon

Mean Std Time/s Mean Std Time/s

0.15 5.28E-299 0 1.15 3.85E-301 0 0.17
0.25 4.75E-300 0 1.11 1.49E-223 0 0.17
0.35 7.70E-300 0 1.12 5.73E-301 0 0.17
0.45 3.49E-299 0 1.11 1.87E-301 0 0.17
0.55 4.54E-299 0 1.13 2.40E-301 0 0.17
0.65 3.16E-299 0 1.11 8.90E-301 0 0.17
0.75 7.87E-298 0 1.11 9.75E-222 0 0.17
0.85 4.82E-299 0 1.12 4.40E-301 0 0.17
0.95 3.16E-299 0 1.12 1.93E-301 0 0.17

As seen from Figure 4, when c(0) = 0.25 and c(0) = 0.75, according to the property of
Logistic map, the control strategy of parameter c falls into a fixed point. That is, the initial
value of parameter c cannot be set 0.25 or 0.75 in this study.
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According to Figure 4 and Table 1, when c(0) = 0.35, HPSBA can obtain the best value
for the Schwefel 1.2 function (Uni-modal). For the Solomon function (Multi-modal), although
the optimal value is not the best with c(0) = 0.35, its search value is in the same order of
magnitude as the best search value. They take the same time to search the optimal value. In
summary, the initial value of parameter c is set to 0.35 in the following experiments.

Figure 5 shows the optimization process of the proposed algorithm. From Figure 5,
the new fitness value (Fnew) and new agent positions are obtained in the exploration stage,
which is the local optimum. Then, according to the parameters value in exploration, the
proposed HPSBA will get the global optimum in the theory. Finally, the best fitness and
agent position are output.

Figure 5. The optimization process of HPSBA.

3.2. Complexity Analysis of the HPSBA

To better understand computational complexity the proposed HPSBA, the time and
space complexity of HPSBA are given in this section.

3.2.1. Time Complexity

Assuming that the population size is n, the search space dimension is d, and the
maximum iteration is Tmax. The complexity of the HPSBA includes: the population ini-
tialization complexity is O(nd), the fitness value calculation complexity is O(nd), the
global and local search location update complexity is O(n2 log n), the fitness value sorting
complexity is O(n2), and the control parameter update complexity of the algorithm is
O(nd). The HPSBA’s total time complexity can be shown as follows by looking at all of the
aforementioned components:

O(HPSBA) = O(nd) + O(Tmax)O
(

nd + n2 logn +n2 + nd
)

(18)

The time complexity of BOA is:

O(BOA) = O(nd) + O(Tmax) O
(

n2 logn +n + nd
)

(19)

3.2.2. Space Complexity

The space complexity of an algorithm is regarded as the storage space consumed by
the algorithm. The population size is n and the dimension is d. The hybrid algorithm
is used to calculate the space complexity. The total space complexity of the proposed
HPSBA is O(nd). The butterfly optimization algorithm uses n search agents to calculate
the space complexity, and the total space complexity of the BOA is O(nd). Therefore, the
total space complexity of the basic BOA is the same as the total space complexity of the
HPSBA. Therefore, the proposed algorithm has a reliable and effective space efficiency.
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3.3. The Pseudo-Code and Flowchart of the HPSBA

The pseudo-code of the HPSBA is presented in Algorithm 1.

Algorithm 1: Pseudo-code of HPSBA
Input: Set the parameters C1, C2, ωmin and ωmax, define sensory modality c,

power exponent a and switch probability SP, and initialize population of
the agents Xi and Vi (i = 1, 2, · · · , n) randomly.

Output: Best position and optimal value.
1 Calculate the fitness value of each agent and find the best agents pb and gb.
2 while t = 1 : Tmax do
3 Update the parameters ω using Equation (17)
4 for each search agent do
5 Calculate the Fnew and perceived intensity value Fi;
6 if pb > Fnew then
7 Update the position pb of best individual agent;
8 end
9 if gb > Fnew then

10 Update the position gb of best agents;
11 end
12 Obtain the new velocity of the new agent using Equation (13);
13 Update the position of current search agent using Equation (14);
14 Set a random number r in (0,1).
15 if r < SP then
16 Move towards best position by Equation (15);
17 else
18 Move towards best position by Equation (15);
19 end
20 Limit the boundaries of each agent;
21 Calculate the new fitness value of each agent;
22 Update the best position and fitness value of each agent;
23 end
24 Update the parameters c using Equation (16).
25 t = t + 1
26 end

In addition, the flowchart of the proposed HPSBA is shown as Figure 6.

3.4. Convergence Analysis of the HPSBA

Theorem 1. The population position vector sequence {X(t), t ≥ 0} of the proposed hybrid HPSBA
method is a finite homogeneous Markov process.

Proof. The search space of any optimization algorithm is limited, so the population position
vector sequence {X(t), t ≥ 0} of the hybrid particle swarm butterfly algorithm is also
limited. In addition, the position vector of the population in the optimization process
is determined by the odor behavior Fi(t) and the flight speed Vi(t). It can be seen that
X(t + 1) is only related to X(t), namely {X(t), t ≥ 0} is a Markov chain. Individuals
gradually approach the optimal position base on the search space’s fitness value, that is,
when f (xt+1) > f (xt), the movement of the population is adjusted, which only has to
do with time t. In summary, the population position vector sequence {X(t), t ≥ 0} of the
HPSBA is a finite homogeneous Markov process.

The essence of the HPSBA belongs to the category of random search algorithm, so
the convergence criterion of random optimization algorithm [52] is used to prove the
convergence of the hybrid algorithm HPSBA.
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Figure 6. The flowchart of the proposed HPSBA.

3.4.1. Convergence Criterion

For the problem < Y, f >, there is a random optimization algorithm Z [53]. The
result of the k-th iteration is xk, and the result of the next iteration is xk+1 = D(xk, ζ). Y
represents the space of potential solutions, f denotes the fitness function, and ζ is the
solution searched in Z iteration of the algorithm. The search’s lower bound of the Lebesgue
measure space [52] is defined as follows:

σ= inf{t|U(x ∈ Y| f (x) < t) > 0} (20)
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where U(X) denotes the Lebesgue measure on the set X, and the optimum can be defined as:

Rξ,M =

{
{x ∈ Y| f (x) < σ + ξ}, σ limited

{x ∈ Y| f (x) < −ε}, σ=−∞
(21)

where ξ denotes greater than zero, and ε is a sufficiently large positive number. If the
algorithm can find a point in Rξ,M, that is, the algorithm may have reached an acceptable
global optimal point or an approximate global optimal point.

Condition 1: f (Z(x, ζ)) ≤ f (x), and if ζ ∈ Y, f (Z(x, ζ)) ≤ f (ζ).
Condition 2: If ∀B ∈ Y, s.t. U(B) > 0, then

∞

∏
k=0

(1−Uk(B)) = 0 (22)

where Uk(B) denotes the measure of probability of algorithm Z searching solution on set B
at the k-th iteration.

Theorem 2. (Conditions necessary and sufficient for global convergence) Supposing f is mea-
surable, the measurable space Y denotes a measurable subset of Rn, and algorithm Z fulfills both
Conditions 1 and 2, and {xk}∞

k=0 is the algorithm Z used to generate the solution sequence. So there
is a probability measure:

lim
k→∞

P(xk ∈ Rξ,M) = 1 (23)

Thus, the algorithm Z converges globally. P(xk, Rξ,M) is the probability measure of the solution xk
in Rξ,M of the iterative search step of the algorithm.

3.4.2. Convergence Analysis

Lemma 1. Condition 1 is met by HPSBA, which states that the hybrid algorithm’s direction of
population optimization is monotonic.

Lemma 2. The HPSBA population state space’s general state has a transition probability of one to
the optimal state, that is, lim

t→∞
P(t)(ζi → ζ j) = 1.

Proof. Assuming the population state ζ(j) is the optimal solution, if the algorithm con-
verges, after infinite state transitions, the probability of its state space from the general state
to the optimal state should be 1. Due to

lim
t→∞

P(t)(ζi → ζ j) =
N

∑
k=1

P(t)(ζik → ζ jk) (24)

Each iteration of the HPSBA population state is based on the transfer of individual odor
to the optimal state, that is, the position of the worst individual state of the population is
updated. Therefore

lim
t→∞

P(t)(ζi → ζ j) = 1 (25)

Lemma 3. HPSBA satisfies Condition 2.

Theorem 3. HPSBA converges to the global optimum, namely lim
t→∞

P{X(t) ∈ G|X(0) = Φ0} = 1.

Proof. Since HPSBA satisfies Condition 1 and Condition 2, in each iteration of the al-
gorithm, the individual will choose to update the retention mechanism of the optimal
individual. That is, when the iteration has a tendency to be infinite, limn→∞ P(xk, Rξ,M) = 1,
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and {xk}∞
k=0 is the solution sequence generated by HPSBA iteration. It can be concluded

from Theorem 2 that HPSBA is a globally convergent algorithm.

4. Analyses and Results of Numerical Optimization

Twenty-six benchmark functions are used to test the proposed hybrid algorithm
performance, which are listed in Table 2. There are two categories of the benchmark
functions. F1–F15 are unimodal functions, which notes the category as U. F16–F26 are
multimodal functions, which notes the category as M.

4.1. Parameter Setting of Comparison Algorithms

To verify the performance of HPSBA for solving numerical optimization problems,
ten algorithms are employed as competitors for the experiment. The proposed algorithm is
compared with five standard algorithms (they are PSO [1], GWO [3], BOA [10], EO [19],
MPA [5]), and four BOA variants (they are LBOA [34], CBOA [36], HPSOBOA [38], and
IBOA [35]), and SOGWO [54].

The comparison algorithm parameter settings for numerical optimization experiments
are shown in Table 3. All of the experimental series were carried out using MATLAB 2018a
and an Intel(R) Core (TM) i5-10210U CPU @2.11G with 8G RAM in this study. Furthermore,
to better set the number of nodes in the node optimization coverage experiment, the
dimensions of the function are respectively set to 30 and 100 in the numerical optimization
problems, that is, the setting range of the number of nodes in 2-D monitoring area.

4.2. Comparison Results of HPSBA with Others (Dim = 30)

In order to ensure the reasonableness and fairness of the comparison results, the
dimension of the test function in the numerical optimization experiment is set to 30, and
the maximum number of iterations is set to 500. For the same test function, each algorithm
is independently run 30 times. The mean (Mean), standard deviation (Std) are calculated
according to the statistical value. Table 4 shows the comparison results of eleven algorithms
with Dim = 30. Results of Wilcoxon rank-sum test calculated at a significance level of
α = 0.05 are also listed in Tables 4 and 5. The second last row indicates the number of
success (+), failure (–), and approximate (≈) of the compared algorithms with respect to
HPSBA. The last row shows the rank of the compared algorithms.

4.2.1. Analysis of the Numerical Results

As can be seen from Table 4, for the benchmark functions F1, F2, F3, F4, F6, F8, F9, F11,
F14, F20, and F25, the proposed algorithm outperforms all comparative algorithms. For the
F16, F17, F19, F24, and F26, HPSBA achieved the theoretical optimal value. For the F18,
HPSBA, HPSOBOA and CBOA have the superior results over the other algorithms. For the
F5, F21, F22, and F23, MPA have the best results. For the F7, PSO achieved the theoretical
optimal value. For the F10, EO has the best result. For the F12, although the Means of
GWO, EO, SOGWO, and HPSBA are the same, the Std of EO is the smallest. For the F13,
GWO, EO, and SOGWO achieved the theoretical optimal value.

Although the performance of the PSO algorithm is poor, the optimization time is the
shortest, which shows that the optimization speed of the algorithm is relatively strong. The
conclusions that can be drawn from the results presented in Table 4 are that the rankings
of the comparison algorithms are HPSBA > MPA > EO = HPSOBOA = CBOA > LBOA =
SOGWO > IBOA > GWO > PSO > BOA.
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Table 2. Twenty-six benchmark functions.

Name Formula Search Range Dim fmin Category

Sphere F1 =
Dim
∑

i=1
x2

i [−100,100] 30/100 0 U

Schwefel 2.22 F2 =
Dim
∑

i=1
|xi |+

Dim
∏
i=1
|xi | [−10,10] 30/100 0 U

Schwefel 1.2 F3 =
Dim
∑

i=1

(
i

∑
j=1

xj

)2

[−10,10] 30/100 0 U

Schwefel 2.21 F4 = max{|xi |, 1 ≤ i ≤ Dim} [−10,10] 30/100 0 U

Step F5 =
Dim
∑

i=1
(xi + 0.5)2 [−10,10] 30/100 0 U

Quartic F6 =
Dim
∑

i=1
ix4

i + rand(0, 1) [−1.28,1.28] 30/100 0 U

Exponential F7 = exp
(

0.5
Dim
∑

i=1
xi

)
[−10,10] 30/100 0 U

Sum Power F8 =
Dim
∑

i=1
|xi |(i+1) [−1,1] 30/100 0 U

Sum Square F9 =
Dim
∑

i=1
ix2

i [−10,10] 30/100 0 U

Rosenbrock F10 =
Dim
∑

i=1

(
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

)
[−10,10] 30/100 0 U

Zakharov F11 =
Dim
∑

i=1
x2

i +

(
Dim
∑

i=1
0.5ixi

)2

+

(
Dim
∑

i=1
0.5ixi

)4

[−5.12,5.12] 30/100 0 U

Trid F12 = (x1 − 1)2 +
Dim
∑

i=2
i(2x2

i − xi−1)
2 [−5,5] 30/100 0 U

Elliptic F13 =
Dim
∑

i=1
(106)

i−1
D−1 x2

i [−100,100] 30/100 0 U

Cigar F14 = x2
1 + 106

Dim
∑

i=2
x2

i [−100,100] 30/100 0 U

Tablet F15 = 106x2
1 +

Dim
∑

i=2
x6

i [−10,10] 30/100 0 U

Rastrigin F16 =
Dim
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5.12,5.12] 30/100 0 M

NCRastrigin F17 =
Dim
∑

i=1

(
y2

i − 10 cos(2πyi) + 10
)
, yi =

{
xi , |xi | < 0.5,

round(2xi)/2, |xi | < 0.5
[−5.12,5.12] 30/100 0 M

Ackley F18 = −20 exp

(
−0.2

√
1

Dim

Dim
∑

i=1
x2

i

)
− exp

(
1

Dim

Dim
∑

i=1
cos(2πxi)

)
+ 20 + e [−20,20] 30/100 0 M

Griewank F19 = 1
4000

Dim
∑

i=1
x2

i −
Dim
∏
i=1

cos
(

xi√
i

)
+ 1 [−600,600] 30/100 0 M

Alpine F20 =
Dim
∑

i=1
|xi · sin(xi) + 0.1xi | [−10,10] 30/100 0 M

Penalized 1 F21 = π
Dim

{
Dim−1

∑
i=1

(yi − 1)2[1 + 10sin2(πyi+1)] + (yDim−1)
2 + 10sin2(πy1)

}
+

Dim
∑

i=1
u(xi , 10, 100, 4),

yi = 1 + xi+1
4 , uyi ,a,k,m =


k(xi − a)m , xi > a,

0,−a ≤ xi ≤ a,

k(−xi − a)m , xi < a

[−10,10] 30/100 0 M

Penalized 2 F22 = 1
10

{
sin2(πx1) +

Dim−1
∑

i=1
(xi − 1)2[1 + sin2(3πxi+1)

]
+ (xDim−1)

2(1 + sin2(2πxi+1)
)}

+

Dim
∑

i=1
u(xi , 5, 100, 4)

[−5,5] 30/100 0 M

Levy F23 = sin2(3πx1) +
Dim−1

∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)] + |xDim − 1| · [1 + sin2(2πxDim)] [−2,2] 30/100 0 M

Weierstrass F24 =
Dim
∑

i=1

(
kmax
∑

k=0

[
ak cos

(
2πbk(xi + 0.5)

)])
− Dim

kmax
∑

k=0

[
ak cos

(
2πbk · 0.5

)]
, a = 0.5, b = 3, kmax = 20 [−1,1] 30/100 0 M

Solomon F25 = 1− cos(2π

√
Dim
∑

i=1
x2

i ) + 0.1

√
Dim
∑

i=1
x2

i [−20,20] 30/100 0 M

Bohachevsky F26 =
Dim
∑

i=1

[
x2

i + 2x2
i+1 − 0.3 · cos(3πxi)− 0.4 · cos(4πxi+1) + 0.7

]
[−5,5] 30/100 0 M
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Table 3. Parameter settings of the comparison algorithms.

Algorithms Parameter Settings

PSO N = 30, c1 = c2 = 2, vmax = 1, vmin = −1, ω = 0.7
GWO N = 30, a f irst = 2, a f inal = 0
BOA N = 30, a = 0.1, c(0) = 0.01, SP = 0.6
EO N = 25, a1 = 2, a2 = 1, GP = 0.5, λ ∈ (0, 1)
MPA N = 30, p = 0.5, FADs = 0.2
LBOA N = 30, a = 0.1, c(0) = 0.01, p = 0.6, γ = 1.5
CBOA N = 30, a(0) = 0.1, c(0) = 0.01, p = 0.6, r(0) = 0.33, µ = 4
HPSOBOA N = 30, a f irst = 0.1, a f inal = 0.3, c0 = 0.01, p = 0.6, x0 = 0.315, ρ = 0.295, c1 = c2 = 0.5
IBOA N = 30, a = 0.1, c(0) = 0.01, andpisdynamic.
SOGWO N = 50, a f irst = 2, a f inal = 0
HPSBA N = 30, a = 0.1, c(0) = 0.35, SP = 0.6, µ = 4, ωu = 0.9, ωl = 0.2, C1 = C2 = 2

4.2.2. Convergence Behavior Analysis

Figure 7 shows the 2D search space for twenty-six benchmark functions in three
dimensional visualization. Figure 8 shows the convergence curves of the comparison
algorithms for the functions F1 to F4 (unimodal functions), F16 to F19 and F24 (multimodal
functions) when Dim = 30. As can be seen from Figure 8, the comparison curves confirm
the superiority of HPSBA over the PSO, GWO, BOA, EO, MPA and other comparison
algorithms for functions F1 to F4. In addition, for F16, F17, and F19, HPSBA, HPSOBOA,
IBOA, MPA and EO can obtain the best value of the functions in theory. For F24, there are
two comparison algorithms can obtain the optimal value, called HPSBA and EO algorithm
from the Figure 8. From the curves of the proposed HPSBA, the performance of the
algorithm needs to be further improved, especially in terms of convergence speed.

4.3. Comparison Results of HPSBA with Others (Dim = 100)

Table 5 shows the comparison results of eleven algorithms with Dim = 100. Results
of the Wilcoxon rank-sum test calculated at a significance level of α = 0.05 are listed in
Table 5. Where the number of success (+), failure (–), and approximate (≈) of the compared
algorithms with respect to HPSBA are listed in the second last row. The last row shows the
rank of the compared algorithms.

4.3.1. Analysis of the Numerical Results

As can be seen from Table 5, for the benchmark functions F1, F3, F4, F6, F8, F9, F11,
F14, F15, F20, and F25, the proposed algorithm outperforms all comparative algorithms.
For the F16, F17, F19, F24, and F26, HPSBA achieved the theoretical optimal value. For
the F2, CBOA has the best result. For the F18, HPSBA, HPSOBOA and CBOA have the
superior results over the other algorithms. For the F5, F10, F21, and F23, HPSOBOA has
the best results. For the F7 and F12, EO algorithm has the best results. For the F13, GWO,
EO, and SOGWO achieved the theoretical optimal value. For the F22, PSO algorithm has
the best result.

It can be seen from Table 5 that with the increase of the problem dimensions, the
optimization speed of PSO algorithm decreases to be some extent. This shows that the
difficulty of solving a problem increases with its complexity. The conclusion that can
be drawn from the results presented in Table 5 are that the rankings of the comparison
algorithms is HPSBA > HPSOBOA > CBOA > EO = MPA > LBOA > IBOA > PSO = SOGWO
= GWO > BOA.
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Table 4. Comparison results of eleven algorithms: Dim = 30.

Functions PSO GWO BOA EO MPA LBOA CBOA HPSOBOA IBOA SOGWO HPSBA

F1 Mean 1.16E-01 1.87E-27 7.70E-11 3.35E-40 5.72E-23 3.54E-12 2.20E-30 3.59E-152 7.47E-15 3.46E-33 3.29E-252
Std 3.89E-02 3.11E-27 6.78E-12 1.70E-39 5.83E-23 3.57E-12 4.29E-30 7.89E-153 1.72E-15 7.28E-33 0.00E+00

F2 Mean 6.35E-01 9.50E-17 2.35E-08 6.78E-24 2.53E-13 1.24E-09 3.92E-19 5.04E-60 4.97E+12 8.25E-20 2.52E-134
Std 2.05E-01 7.46E-17 6.49E-09 6.18E-24 2.68E-13 2.10E-09 6.67E-19 2.06E-59 1.22E+13 9.41E-20 6.87E-134

F3 Mean 4.16E+00 7.10E-08 5.31E-11 2.38E-11 2.71E-06 2.77E-12 1.11E-30 4.05E-153 9.32E-15 1.97E-09 7.60E-300
Std 9.64E-01 1.69E-07 5.83E-12 1.04E-10 7.11E-06 2.71E-12 3.47E-30 1.13E-153 1.11E-15 8.79E-09 0.00E+00

F4 Mean 3.36E-01 7.05E-08 2.65E-08 2.10E-11 3.39E-10 2.48E-09 1.48E-19 1.05E-77 8.05E-12 1.82E-09 6.02E-152
Std 4.82E-02 4.84E-08 2.94E-09 4.31E-11 2.12E-10 3.13E-09 2.49E-19 7.23E-79 1.06E-12 1.47E-09 1.69E-152

F5 Mean 7.12E-02 5.40E-01 5.23E+00 7.61E-06 3.42E-08 3.40E+00 4.55E+00 4.12E-02 3.36E+00 3.46E-01 5.38E+00
Std 3.20E-02 3.28E-01 6.84E-01 6.22E-06 1.73E-08 6.50E-01 5.83E-01 2.40E-02 7.86E-01 2.66E-01 6.36E-01

F6 Mean 2.60E-01 1.79E-03 1.99E-03 1.36E-03 1.28E-03 1.92E-03 1.17E-04 2.31E-04 3.10E-04 1.20E-03 9.21E-05
Std 8.64E-02 9.30E-04 5.51E-04 9.12E-04 7.43E-04 9.45E-04 1.17E-04 3.77E-04 2.58E-04 5.60E-04 9.73E-05

F7 Mean 0.00E+00 3.19E-58 4.94E-11 7.18E-66 7.18E-66 6.36E-21 3.84E-19 1.53E-62 7.09E-14 8.16E-61 8.51E-16
Std 0.00E+00 1.20E-57 1.34E-10 1.02E-78 1.40E-69 2.34E-20 1.16E-18 6.12E-63 3.06E-13 4.36E-60 4.27E-15

F8 Mean 7.23E-07 1.75E-95 8.88E-14 1.97E-134 1.98E-60 8.27E-16 1.46E-36 1.02E-156 4.45E-19 2.00E-116 1.70E-307
Std 1.17E-06 9.25E-95 5.52E-14 9.42E-134 4.89E-60 9.08E-16 6.48E-36 8.09E-158 2.44E-19 9.70E-116 0.00E+00

F9 Mean 7.51E-01 2.35E-28 6.94E-11 1.36E-41 4.83E-24 3.11E-12 8.60E-31 2.02E-152 9.61E-15 2.03E-34 3.19E-263
Std 2.87E-01 4.02E-28 8.22E-12 3.56E-41 6.23E-24 4.11E-12 1.77E-30 2.89E-153 1.34E-15 2.28E-34 0.00E+00

F10 Mean 5.99E+01 2.72E+01 2.89E+01 2.53E+01 2.51E+01 2.88E+01 2.89E+01 2.71E+01 2.89E+01 2.68E+01 2.89E+01
Std 3.87E+01 8.55E-01 2.70E-02 1.54E-01 3.89E-01 3.25E-02 3.73E-02 6.30E+00 3.53E-02 8.00E-01 3.37E-02

F11 Mean 1.47E+00 3.17E-28 6.67E-11 3.42E-41 1.23E-23 3.52E-12 2.81E-30 6.89E-153 8.32E-15 1.18E-33 1.28E-252
Std 8.03E-01 5.15E-28 7.26E-12 1.26E-40 2.24E-23 3.22E-12 7.66E-30 1.17E-153 1.52E-15 2.59E-33 0.00E+00

F12 Mean 4.22E+00 6.67E-01 9.74E-01 6.67E-01 6.67E-01 9.18E-01 9.76E-01 1.00E+00 9.35E-01 6.67E-01 6.67E-01
Std 1.82E+00 3.76E-05 8.43E-03 3.08E-10 3.87E-08 2.48E-02 9.00E-03 1.25E-05 1.81E-02 4.37E-06 1.86E-04

F13 Mean 6.08E-31 0.00E+00 2.80E-21 0.00E+00 3.55E-174 5.49E-26 1.77E-34 2.30E-148 8.87E-31 0.00E+00 2.44E-302
Std 2.42E-30 0.00E+00 8.91E-21 0.00E+00 0.00E+00 1.14E-25 5.23E-34 1.14E-147 4.33E-30 0.00E+00 0.00E+00

F14 Mean 1.16E-24 2.82E-205 1.92E-17 7.30E-207 1.34E-61 3.31E-18 3.49E-31 1.95E-147 5.73E-23 4.59E-228 6.12E-296
Std 2.26E-24 0.00E+00 2.08E-17 0.00E+00 7.35E-61 4.01E-18 7.94E-31 4.53E-147 1.22E-22 0.00E+00 0.00E+00

F15 Mean 3.02E-30 6.90E-261 4.54E-19 8.38E-255 8.23E-94 1.65E-19 1.09E-34 1.92E-153 3.69E-22 1.06E-313 3.61E-304
Std 1.65E-29 0.00E+00 8.61E-19 0.00E+00 3.33E-93 3.98E-19 5.42E-34 6.79E-153 7.04E-22 0.00E+00 0.00E+00

F16 Mean 2.37E+02 4.02E+00 6.54E+01 1.89E-15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.27E+00 0.00E+00
Std 5.65E+01 3.88E+00 9.09E+01 1.04E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.20E+00 0.00E+00

F17 Mean 2.76E+02 8.31E+00 1.24E+02 2.33E-01 3.96E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.87E+00 0.00E+00
Std 7.80E+01 4.39E+00 7.02E+01 6.26E-01 2.17E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.03E+00 0.00E+00

F18 Mean 2.47E-01 9.05E-14 2.75E-08 8.47E-15 8.53E-13 2.47E-09 8.88E-16 8.88E-16 7.10E-12 4.14E-14 8.88E-16
Std 7.83E-02 1.67E-14 2.47E-09 1.80E-15 5.41E-13 1.38E-09 0.00E+00 0.00E+00 7.10E-13 2.89E-15 0.00E+00

F19 Mean 3.41E+01 3.23E-03 9.73E-12 0.00E+00 0.00E+00 1.79E-13 0.00E+00 0.00E+00 4.18E-16 2.70E-03 0.00E+00
Std 5.57E+00 8.81E-03 1.06E-11 0.00E+00 0.00E+00 3.96E-13 0.00E+00 0.00E+00 1.90E-15 5.90E-03 0.00E+00

F20 Mean 1.53E-01 4.74E-04 3.47E-09 6.29E-09 6.61E-14 6.42E-14 1.00E-19 9.42E-60 6.67E-12 3.52E-04 7.05E-136
Std 9.79E-02 7.66E-04 7.60E-09 3.44E-08 4.58E-14 1.86E-13 1.28E-19 2.99E-59 7.69E-13 5.84E-04 3.83E-135

F21 Mean 7.09E+00 5.03E-02 5.39E-01 3.46E-03 7.59E-05 2.90E-01 4.78E-01 2.47E-03 1.48E+00 3.38E-02 5.49E-01
Std 3.04E+00 2.12E-02 1.58E-01 1.89E-02 4.15E-04 9.21E-02 1.36E-01 2.64E-03 2.31E-01 1.49E-02 1.37E-01

F22 Mean 8.06E-03 7.07E-01 3.40E+00 2.18E-02 3.45E-03 2.37E+00 3.00E+00 4.07E+00 2.63E+00 5.15E-01 3.42E+00
Std 4.77E-03 2.10E-01 4.83E-01 4.72E-02 1.65E-02 6.28E-01 5.74E-01 2.15E+00 5.90E-01 1.88E-01 5.79E-01

F23 Mean 3.88E-01 1.67E+00 1.18E+01 1.52E-01 1.38E-01 9.31E+00 1.01E+01 8.89E-01 1.06E+01 1.25E+00 1.09E+01
Std 2.43E-01 1.02E+00 2.10E+00 3.22E-01 1.89E-01 2.67E+00 2.71E+00 1.18E+00 1.94E+00 8.19E-01 3.23E+00

F24 Mean 5.70E+00 4.93E+00 1.23E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.61E+00 0.00E+00
Std 2.76E+00 2.04E+00 2.35E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.67E+00 0.00E+00

F25 Mean 7.11E-01 2.79E-01 7.66E-01 9.95E-02 9.95E-02 2.99E-02 1.68E-32 6.43E-02 9.95E-02 2.89E-01 4.07E-301
Std 3.41E-01 1.49E-01 2.18E-01 2.08E-12 7.05E-17 4.64E-02 3.64E-32 4.99E-02 1.24E-06 1.46E-01 0.00E+00

F26 Mean 1.24E+00 0.00E+00 8.02E-11 0.00E+00 0.00E+00 4.45E-12 0.00E+00 0.00E+00 9.79E-15 0.00E+00 0.00E+00
Std 5.92E-01 0.00E+00 8.59E-12 0.00E+00 0.00E+00 5.45E-12 0.00E+00 0.00E+00 1.33E-15 0.00E+00 0.00E+00

+/-/≈ 1/25/0 0/24/2 0/26/0 1/20/5 4/18/4 0/23/3 0/20/6 0/20/6 0/23/3 1/22/3 ∼
Rank 7 6 8 3 2 4 3 3 5 4 1
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Figure 7. Search space of twenty-six benchmark functions.
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Figure 8. Convergence curves of comparison algorithms when Dim = 30.

4.3.2. Boxplot Results Analysis

To better explain the stability of the comparison algorithms for solving the high
dimensional optimization problems. Figure 9 presents the boxplot results of the eleven
algorithms on the four test functions (F3, F8, F20, and F25). 30 independent runs of each
algorithm are conducted for the same test function.
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Table 5. Comparison results of eleven algorithms: Dim = 100.

Functions PSO GWO BOA EO MPA LBOA CBOA HPSOBOA IBOA SOGWO HPSBA

F1 Mean 8.45E+00 1.48E-12 8.75E-11 4.14E-29 1.77E-19 6.12E-12 6.86E-30 3.31E-152 9.05E-15 6.44E-15 7.12E-299
Std 7.28E-01 1.83E-12 9.69E-12 5.38E-29 2.10E-19 7.39E-12 1.51E-29 1.35E-152 1.87E-15 8.86E-15 0.00E+00

F2 Mean 1.82E+01 4.04E-08 4.71E+50 1.85E-17 1.43E-11 1.52E+50 3.74E-18 1.48E+36 8.10E+49 1.60E-09 4.35E+50
Std 2.23E+00 1.35E-08 1.92E+51 1.36E-17 1.15E-11 6.27E+50 6.73E-18 2.80E+35 3.95E+50 6.14E-10 1.42E+51

F3 Mean 2.80E+02 4.54E+00 6.08E-11 3.15E-01 1.04E-01 3.40E-12 4.42E-31 1.48E-152 9.74E-15 1.39E+00 1.06E-299
Std 7.38E+01 4.04E+00 5.91E-12 1.11E+00 1.50E-01 3.36E-12 8.91E-31 1.35E-152 1.11E-15 1.98E+00 0.00E+00

F4 Mean 1.77E+00 5.79E-02 2.98E-08 2.64E-01 2.40E-08 2.86E-09 1.20E-19 1.08E-77 8.47E-12 1.60E-02 7.43E-152
Std 1.71E-01 6.77E-02 2.71E-09 1.45E+00 1.16E-08 2.88E-09 1.58E-19 5.19E-79 1.17E-12 1.52E-02 2.49E-152

F5 Mean 5.47E+00 9.20E+00 2.21E+01 2.94E+00 2.56E+00 2.03E+01 2.12E+01 1.48E-01 2.07E+01 7.67E+00 2.24E+01
Std 9.43E-01 9.87E-01 1.06E+00 5.46E-01 7.71E-01 1.60E+00 1.18E+00 1.27E-01 1.06E+00 9.06E-01 8.81E-01

F6 Mean 6.02E+01 7.14E-03 2.11E-03 2.44E-03 1.87E-03 2.01E-03 1.03E-04 1.13E-04 2.77E-04 4.90E-03 6.85E-05
Std 1.38E+01 2.79E-03 8.96E-04 1.41E-03 9.55E-04 1.18E-03 7.42E-05 1.28E-04 2.49E-04 1.70E-03 6.09E-05

F7 Mean 0.00E+00 9.84E-135 1.71E-23 7.16E-218 1.70E-202 2.74E-28 4.05E-32 1.93E-207 1.92E-20 2.96E-155 4.15E-27
Std 0.00E+00 5.39E-134 8.68E-23 0.00E+00 0.00E+00 1.39E-27 1.12E-31 0.00E+00 8.47E-20 1.62E-154 2.27E-26

F8 Mean 9.97E-02 1.28E-66 7.32E-14 1.16E-129 2.23E-60 9.96E-16 4.86E-37 9.98E-157 4.00E-19 2.38E-64 1.82E-306
Std 2.20E-01 4.84E-66 6.04E-14 6.03E-129 4.85E-60 1.62E-15 1.49E-36 7.46E-158 2.59E-19 1.30E-63 0.00E+00

F9 Mean 2.82E+02 6.63E-13 8.60E-11 1.94E-29 8.17E-20 3.97E-12 1.13E-30 4.23E-152 9.06E-15 1.38E-15 4.72E-299
Std 5.17E+01 5.34E-13 8.92E-12 2.56E-29 5.83E-20 3.66E-12 2.60E-30 1.02E-152 1.95E-15 1.01E-15 0.00E+00

F10 Mean 1.24E+03 9.79E+01 9.89E+01 9.66E+01 9.69E+01 9.88E+01 9.89E+01 9.07E+01 9.89E+01 9.77E+01 9.89E+01
Std 2.28E+02 5.73E-01 2.93E-02 1.08E+00 8.66E-01 3.76E-02 4.76E-02 2.30E+01 3.48E-02 7.22E-01 3.49E-02

F11 Mean 3.65E+02 7.60E-13 8.13E-11 3.57E-29 3.77E-20 4.82E-12 3.26E-30 9.41E-153 1.00E-14 1.93E-15 4.59E-299
Std 7.04E+01 6.45E-13 6.27E-12 1.09E-28 3.04E-20 3.99E-12 1.45E-29 5.44E-153 1.66E-15 1.49E-15 0.00E+00

F12 Mean 6.01E+02 6.67E-01 9.98E-01 6.67E-01 6.67E-01 9.95E-01 9.98E-01 1.00E+00 9.96E-01 6.67E-01 9.99E-01
Std 1.55E+02 3.47E-05 8.04E-04 3.93E-08 1.41E-06 9.93E-04 5.10E-04 8.11E-05 8.74E-04 5.49E-06 4.19E-04

F13 Mean 1.06E-33 0.00E+00 5.13E-22 0.00E+00 3.61E-169 3.15E-25 3.19E-34 1.33E-150 4.62E-31 0.00E+00 1.53E-302
Std 5.50E-33 0.00E+00 1.69E-21 0.00E+00 0.00E+00 8.18E-25 1.63E-33 3.20E-150 1.56E-30 0.00E+00 0.00E+00

F14 Mean 6.38E-24 1.24E-205 3.84E-17 2.66E-201 1.86E-63 4.88E-18 3.01E-31 6.40E-150 9.63E-23 2.87E-186 3.05E-298
Std 1.76E-23 0.00E+00 6.24E-17 0.00E+00 1.02E-62 7.45E-18 6.15E-31 1.34E-149 2.26E-22 0.00E+00 0.00E+00

F15 Mean 1.88E-32 8.39E-261 1.23E-19 3.97E-253 9.63E-92 3.93E-19 1.55E-34 1.71E-153 3.26E-22 6.24E-310 1.69E-303
Std 5.59E-32 0.00E+00 2.55E-19 0.00E+00 4.94E-91 9.39E-19 8.12E-34 5.23E-153 4.34E-22 0.00E+00 0.00E+00

F16 Mean 4.87E+02 9.55E+00 1.77E-06 3.79E-15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.04E+00 0.00E+00
Std 6.30E+01 8.37E+00 9.70E-06 2.08E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.80E+00 0.00E+00

F17 Mean 4.34E+02 2.34E+01 7.57E+01 1.00E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.92E-17 1.32E+01 0.00E+00
Std 6.22E+01 2.09E+01 2.31E+02 3.05E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.24E-16 9.07E+00 0.00E+00

F18 Mean 2.52E+00 8.15E-08 3.08E-08 3.27E-14 2.87E-11 2.76E-09 8.88E-16 8.88E-16 7.78E-12 4.06E-09 8.88E-16
Std 1.91E-01 3.11E-08 2.55E-09 6.08E-15 1.33E-11 2.31E-09 0.00E+00 0.00E+00 9.15E-13 1.29E-09 0.00E+00

F19 Mean 1.38E+02 4.01E-03 6.69E-11 0.00E+00 0.00E+00 1.98E-12 0.00E+00 0.00E+00 9.25E-15 1.83E-03 0.00E+00
Std 1.42E+01 1.15E-02 2.72E-11 0.00E+00 0.00E+00 1.80E-12 0.00E+00 0.00E+00 4.81E-15 5.61E-03 0.00E+00

F20 Mean 1.33E+01 3.92E-03 2.01E-09 3.66E-18 3.01E-12 3.26E-11 1.05E-19 1.15E-57 7.60E-12 2.49E-03 1.27E-151
Std 3.35E+00 2.70E-03 1.85E-09 2.04E-18 2.42E-12 5.92E-11 1.32E-19 6.30E-57 9.27E-13 1.50E-03 3.56E-152

F21 Mean 1.13E-01 2.05E-01 9.83E-01 2.83E-02 3.74E-02 7.49E-01 9.33E-01 1.49E-03 7.70E-01 1.51E-01 1.09E+00
Std 8.19E-02 4.33E-02 8.89E-02 8.01E-03 9.89E-03 1.14E-01 1.20E-01 6.36E-04 1.10E-01 4.35E-02 7.82E-02

F22 Mean 1.02E+00 5.66E+00 9.99E+00 5.16E+00 6.05E+00 9.99E+00 9.98E+00 9.70E+00 9.94E+00 4.96E+00 9.99E+00
Std 1.98E-01 4.20E-01 5.25E-03 1.35E+00 2.96E+00 4.55E-03 4.85E-03 6.11E-01 1.34E-01 4.19E-01 2.48E-03

F23 Mean 2.35E+01 1.81E+01 6.84E+01 3.96E+00 4.54E+00 6.05E+01 6.85E+01 1.94E+00 6.54E+01 1.37E+01 6.69E+01
Std 7.20E+00 4.80E+00 4.20E+00 1.59E+00 1.69E+00 6.39E+00 4.94E+00 8.69E-01 5.49E+00 3.09E+00 5.65E+00

F24 Mean 5.16E+01 1.67E+01 2.66E+00 3.20E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.33E+01 0.00E+00
Std 9.49E+00 1.08E+01 3.18E+00 1.75E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.05E+00 0.00E+00

F25 Mean 3.97E+00 6.80E-01 4.00E-01 2.29E-01 2.49E-01 3.33E-02 1.09E-32 8.86E-02 9.95E-02 6.47E-01 7.39E-301
Std 1.06E+00 2.51E-01 3.16E-03 1.50E-01 1.52E-01 4.77E-02 3.81E-32 3.58E-02 3.00E-06 2.53E-01 0.00E+00

F26 Mean 6.60E+01 1.01E-13 8.60E-11 0.00E+00 0.00E+00 5.22E-12 0.00E+00 0.00E+00 7.87E-15 2.96E-16 0.00E+00
Std 6.71E+00 1.50E-13 8.49E-12 0.00E+00 0.00E+00 6.98E-12 0.00E+00 0.00E+00 1.50E-15 4.86E-16 0.00E+00

+/-/≈ 1/25/0 1/25/0 0/26/0 2/21/3 0/21/5 0/23/3 1/19/6 4/16/6 0/24/2 1/25/0 ∼
Rank 7 7 8 4 4 5 3 2 6 7 1
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Figure 9. Box plot results for the function F3, F8, F20 and F25.

5. Nodes Coverage Optimization in WSN

Through the above experiments, it can be known that HPSBA performs better in nu-
merical optimization problems, but for practical problems, the effectiveness of the proposed
algorithm remains to be verified. In this section, we apply the proposed HPSBA without
parameter ω in Equation (14) to the NOC problem of the WSN. The model description and
objective function of the problem are detailed in Section 2.3.

5.1. Parameter Setting and Pseudo Code of Node Coverage Using HPSBA

To confirm the performance of the HPSBA for solving the NOC problem, there are two
group experiments are designed as follows: (1) To study the performance of the HPSBA
in node optimization coverage problem, three comparison algorithms, PSO, BOA, and
MBOA, are employed as competitors. (2) The HPSBA algorithm is applied to the problem
of optimal coverage of nodes with obstacles.

Equation (10) can be used to determine the number of sensor nodes needed to cover
the theoretical area. The node coverage area, the number of sensor nodes, and the parameter
settings of the simulation experiment are shown in Table 6.
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Table 6. Node coverage parameter settings.

Parameters Setting Values

Side length of coverage area/m 100 × 100 100 × 100
Number of nodes 45 40, 45, 50
Perception radius/m 10 10
Communication radius rc/m 20 20
Maximum iterations (Tmax) 100, 150, 200 150
Boundary threshold/m rs/3 rs/3

The simulations of node optimization coverage of the WSN are conducted using
PSO, BOA, MBOA, and HPSBA. The population and number of iterations of comparison
algorithms are respectively set 30 and 150. Additionally, the following is a discussion of the
parameters for the comparison methods:

• PSO based node optimization coverage: Each target node runs the PSO to become a
deployed node. Parameters that are considered for coverage are: inertial weight = 0.7,
cognitive and social scaling parameters c1 = c2 = 2.

• BOA based node optimization coverage: Each target node runs the BOA to become a
deployed node. Parameters that are considered for coverage are: probability switch
weight SP = 0.8, cognitive and social scaling parameters c = 1, and a = 0.1.

• MBOA based node optimization coverage: Each target node runs the MBOA to become
a deployed node. Parameters that are considered for coverage are: probability switch
weight SP = 0.5, cognitive and social scaling parameters c(0) = r1 = 0.35 with chaotic
adjust strategy, and a = 0.1.

• HPSBA based node optimization coverage: Each target node runs the proposed
HPSBA to become a deployed node. Parameters that are considered for coverage are
set as follows: initial value of inertial weight = 0.9, probability switch weight SP = 0.6,
cognitive and social scaling parameters c1 = c2 = 2, a = 0.1 and c(0) = 0.35.

5.2. Results Analyses of Coverage Optimization Problem
5.2.1. The Effect of the Number of Nodes on Coverage

To further test the optimization performance of the HPSBA for coverage optimization
problem, the coverage rates of various algorithms in the monitoring area under different
numbers of sensor nodes are compared. Deploy sensor nodes in a 100 m × 100 m square
monitoring area, with that the sensing radius is set 10 m, the communication radius is set
20 m, and the maximum iterations is set 150. Comparison algorithms are used when sensor
nodes numbers are 40, 45, and 50, respectively. When nodes are 45 with 150 iterations, the
coverage simulation results are shown in Figure 10. Other parameters remain unchanged,
and the variation trend of the coverage rate with the number of nodes under different
coverage strategies is shown in Figure 10a.

As seen from Figure 10 that the initial random coverage is shown in Figure 10a with
45 sensor nodes. As the number of iterations of HPSBA reaches 150 times, the coverage
position of the nodes is shown in Figure 10b. According to the HPSBA to optimize the
sensor node coordinate positions before and after coverage, the minimum spanning tree
Prim algorithm [55] is used to draw the node communication network in the coverage area,
as shown in Figure 10c,d.

As seen from Figure 10c,d, the uniformity of the communication distance between the
initially deployed nodes is poor, the sink node is located in the center of the coverage area,
and the data transmission distance between the nodes is longer. Energy consumption is
large, and the optimized communication distance between nodes is more uniform, there are
multiple convergence nodes, and the location is located at the boundary, thereby enhancing
the reliability of the network, thereby reducing the energy consumption of node data
transmission, and extending the network life.
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Figure 10. Node coverage and communication distribution diagram.

The coverage curves of node coverage based on BOA, MBOA, PSO and HPSBA
node are shown in Figure 11. The coverage effect of the BOA is poor. HPSBA is in the
leading position after 10 iterations. The final coverage rates of the four algorithms after
150 iterations are: 83.65%, 83.90%, 94.12%, and 96.54%.

In the case of different numbers of nodes, Figure 12 provides an illustration of the cal-
culated fitness average values. The proposed HPSBA coverage strategy is better than BOA,
MBOA and PSO in the WSN node coverage with different number of nodes. Moreover, it is
evident that the most effective simulation results are obtained with the proposed HPSBA,
and the coverage rate reaches 93.15% in nodes = 40, 96.54% in nodes N = 45, and 98.42%
in nodes N = 50. Compared to the standard BOA, the coverage rate is increased by the
percentage points of 11.49, 12.89 and 12.41 in N = 40, N = 45 and N = 50, respectively.
It is noteworthy that as the coverage optimization problem (80-dimension when N = 40,
90-dimension when N = 45, 100-dimension when N = 50) grows in size, HPSBA has more
outstanding advantages over the basic BOA.

5.2.2. The Effect of the Number of Iterations on Coverage

To verify the influence of the number of algorithm iterations on the coverage rate, we
set different iteration numbers, 100, 150, and 200, respectively. The optimized coverage
results with 45 sensor nodes of the four comparison algorithms are shown in Table 7.



Axioms 2022, 11, 675 22 of 25

Figure 11. Coverage comparison curves and optimized coverage time.

Figure 12. Coverage rates of different number of nodes.

As seen from Table 7, it is evident that the most effective simulation results are obtained
with the proposed HPSBA, and the coverage rate reaches 93.28% in Tmax = 100, 96.54%
in Tmax = 150, and 96.32% in Tmax = 200. Compared to the standard BOA, the coverage
rate is increased by the percentage points of 8.49, 12.89, and 9.90 in Tmax = 100, 150 and 200,
respectively. It is noteworthy that as the coverage optimization problem (80-dimension
when N = 40, 90-dimension when N = 45, 100-dimension when N = 50) grows in size, the
proposed HPSBA demonstrates a superior advantage to the basic BOA. Furthermore, the
proposed HPSBA compared with MBOA, the coverage rate is increased by the percentage
points of 8.17, 12.64. HPSBA compared with PSO, the coverage rate is increased by the
percentage points of 1.08, 2.42, and 2.00. Overall, when it comes to the WSN node coverage
optimization problem, HPSBA outperforms the other three competitors.
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Table 7. Node coverage rate of different iterations.

Item
TMax = 100 TMax = 150 TMax = 200

Cov/% Time/s Cov/% Time/s Cov/% Time/s

BOA 84.79 12.21 83.65 16.55 86.42 40.98
MBOA 85.11 10.93 83.90 16.04 85.82 21.10

PSO 92.20 11.94 94.12 24.4 94.32 51.92
HPSBA 93.28 11.09 96.54 16.55 96.32 21.31

5.2.3. Node Obstacle Avoidance Coverage Based on HPSBA

The proposed HPSBA has a positive effect on the sensor network’s coverage of two-
dimensional nodes when compared to the previous experimental results. To verify the
effectiveness of the HPSBA node obstacle avoidance coverage problem, a node coverage
experiment is designed under obstacles: the node coverage area is a two-dimensional plane of
100 m × 100 m, the number of sensor nodes is 40, the sensing radius rs is set 10 m, communi-
cation radius rc = 20 m, the number of iterations is 200, and the obstacle is a rectangular area
of 20 m × 20 m. The optimization results of the coverage of obstacle avoidance nodes based
on HPSBA and the coverage curve of 200 iterations are depicted in Figure 13.

Figure 13. Coverage of obstacle avoidance nodes based on HPSBA.

As seen from Figure 13, HPSBA has a better application effect in the coverage of obstacle
avoidance nodes. After 200 iterations, the node coverage in the set coverage area increased from
77.01% to 98.67%, an increase point of 21.66, and the time consumption is 21.34 s.

6. Conclusions

Aiming at the uneven distribution of nodes and low coverage in the random coverage
of sensor networks, a hybrid particle swarm butterfly algorithm (HPSBA) is proposed for
deploying WSN nodes. HPSBA improves the convergence speed through Logistic map
and adaptive adjustment strategies, and the algorithm’s accuracy at convergence is also
improved. Through the optimization experiment of twenty-six benchmark functions with
ten comparison swarm intelligence algorithms, the optimization results show that HPSBA’s
optimization ability and convergence accuracy are improved, and the stability is enhanced.

For the WSN node coverage problem, HPSBA can effectively coordinate the global
exploration and local development capabilities of the algorithm. Compared with other
algorithms, HPSBA effectively improves the coverage of WSN nodes while using fewer
nodes, thus reducing it. The configuration cost of the network is reduced. However, the
energy of nodes is usually taken into account in the real node coverage. More advanced
algorithms [56] will be considered in the future work.

We will concentrate on the following tasks in future work: (i) In order to guarantee
optimization precision, we will further develop HPSBA in light of the high complexity
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of its main framework. (ii) The proposed HPSBA will be further applied to solve multi-
objective optimization problem, such as energy, distance, and uniformity for WSN in a
three-dimensional environment, etc, between nodes.
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