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Abstract: In this work, a large class of integro-differential equations, arising from the description of
heat transfer problems, is considered, particularly the nonlinear equations. We propose a procedure
for constructing their solution in a very simple and reliable way in which the only needed tool is the
same one employed to solve a linear second-order ordinary differential equation, subject to Robin
boundary conditions. Proofs of the convergence, existence, and uniqueness are presented. Some
special cases are simulated to illustrate the proposed tools.
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1. Introduction

In this work, the solution of a Fredholm integro-differential equation is represented
as the limit of a sequence whose elements can be obtained from the minimization of
quadratic functionals.

The integro-differential problem to be considered here has, as a particular case, the
mathematical description of the heat transfer process in symmetrical sets of fins subjected
to thermal radiation heat exchange.

In fact, any heat transfer problem involving nonconvex fins (or symmetrical sets of fins)
at high temperature levels needs to consider thermal radiant heat transfer from/to the fin.
The amount of reflected or emitted thermal radiation from a fin, directly reaching this same
fin (or the same set of fins), is represented by an integral operator in the governing equation,
giving rise to a second order integro-differential equation. The problems involving thermal
radiation heat transfer are inherently nonlinear.

The procedure to be employed for constructing the exact solution may be used for
obtaining approximations, for instance, by means of a finite difference scheme or by means
of a finite element approximation (taking advantage of the quadratic functional).

Due to its applications in several areas of physics, mathematics, and engineering,
Fredholm integro-differential equations continue to be an area of interest.

In the last two decades, their numerical simulations and mathematical analysis have
been found with great frequency in scientific articles. Several procedures for solving integro-
differential equations have been used, for instance, the Taylor polynomial approach [1,2],
block-pulse functions [2,3], the CAS wavelet operational matrix [4–6], the Tau method [7],
the Spectral Homotopy Analysis method [8,9], the Legendre collocation method [10],
the Chebyshev finite difference method [11], the Decomposition Method [12], the Pade
approximant [13], and other procedures [14,15].

The main contribution of this work lies in the extreme simplicity of the proposed
procedure. It is presented a simple and reliable way to construct the exact solution for a
given class of nonlinear Fredholm integro-differential equations, subject to Robin boundary
conditions. The mentioned procedure can be also used to carry out numerical simulations

Axioms 2022, 11, 672. https://doi.org/10.3390/axioms11120672 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11120672
https://doi.org/10.3390/axioms11120672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-2947-8142
https://doi.org/10.3390/axioms11120672
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11120672?type=check_update&version=3


Axioms 2022, 11, 672 2 of 14

for the considered equations. The required tools are available to any undergraduate
engineering student.

2. The Considered Problem

The main subject of this work is the problem represented in Equation (1), which
generalizes the mathematical description of nonconvex sets of cylindrical fins [16–21], in
which there is direct thermal radiant interchange among points (far positioned) of these
fins. The main objective is to find the function u, the solution of

d2u
dx2 − A

{
f̂ (u)

}
− B

{
ĥ(u)−

∫ 1
0 ĥ(u)K(x, ξ)dξ

}
+ C = 0 0 < x < 1

du
dx = γL(u− uL), x = 0
− du

dx = γR(u− uR), x = 1

, (1)

in which γL and γR are positive constants, while uL and uR are nonnegative constants.
In addition,

f = f̂ (u)→ nondecreasing function of u, with f̂ (0) ≤ 0
h = ĥ(u)→ nondecreasing function of u, with ĥ(0) = 0

A = Ã(x) ≥ 0→ known function
B = B̃(x) > 0→ known function
C = C̃(x) ≥ 0→ known function

K(x, ξ) ≥ 0, 0 ≤ x ≤ 1, 0 ≤ ξ ≤ 1
0 ≤

∫ 1
0 K(x, ξ)dξ ≤ µ < 1, 0 ≤ x ≤ 1, µ→ constant

, (2)

by means of a sequence whose elements can be easily obtained.
For instance, when problem (1) represents the heat transfer process in a set of two

parallels fins, the kernel is given by [22].

K(x, ξ) =
(d/H)2

4
(
(x− ξ)2 + (d/H)2

)3/2 , (3)

in which d is the distance between the fins, and H is the length of each fin.
When problem (1) represents the heat transfer process in a set of two fins (with an

angle 2θ), the kernel is given by [22].

K(x, ξ) =
xξ sin2(2θ)

4
(
(4xξ sin θ)2 + (x− ξ)2

)3/2 . (4)

When the surfaces are assumed to be black, the function h = ĥ(u) is given by [23–26].

h = ĥ(u) = B|T|3T, B = constant. (5)

For a porous fin, the function f = f̂ (u) is usually given by [20].

f = f̂ (u) = A|T − T∞|(T − T∞), A = constant, T∞ = constant. (6)

For a solid cylindrical fin, we usually have [25,26].

f = f̂ (u) = A(T − T∞), A = constant, T∞ = constant. (7)

The function C = C̃(x) plays the role of an external source. Many times, it is assumed
to be zero everywhere [27].
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3. The Solution u Is Nonnegative

Aiming to prove that the solution of (1), denoted here by u, is nonnegative everywhere,
let us begin by assuming that u has a minimum within the interval (0, 1). Denoting by x the
point at which the minimum is reached, we have in a small vicinity [28,29] of this point that

− A
{

f̂ (u)
}
− B

{
ĥ(u)−

∫ 1

0
ĥ(u)K(x, ξ)dξ

}
+ C ≤ 0, x− δ1 < x < x + δ2. (8)

Taking into account (2), we may write

A
{

f̂ (u)
}
+ B

{
ĥ(u)−

∫ 1

0
ĥ(u)K(x, ξ)dξ

}
≥ 0, x− δ1 < x < x + δ2. (9)

Therefore, denoting by uMIN the minimum value of u, we have (within the consid-
ered vicinity)

A
{

f̂ (uMIN)
}
+ B

{
ĥ(uMIN)

}
≥ 0 ⇒ uMIN ≥ 0. (10)

On the other hand, let us assume that u does not assume a minimum for x ∈ (0, 1). In
this case, we must have the minimum at x = 0 or at x = 1. If the minimum is reached at
x = 0, then the derivative of u is nonnegative at x = 0; hence,

γL(uMIN − uL) ≥ 0 at x = 0 ⇒ uMIN ≥ 0, (11)

and if the minimum is reached at x = 1, then the derivative of u is nonpositive at x = 1;
thus,

γR(uMIN − uR) ≥ 0 at x = 1 ⇒ uMIN ≥ 0. (12)

Hence, it is ensured that the solution of (1), denoted by u, is nonnegative everywhere.

4. An Upper Bound for the Solution u

Let us assume that u assumes its maximum at the (interior) point x = x. In a sufficiently
small neighborhood of this point, we have

− A
{

f̂ (u)
}
− B

{
ĥ(u)−

∫ L

0
ĥ(u)K(x, ξ)dξ

}
+ C ≥ 0, x− δ1 < x < x + δ2. (13)

Hence,{
max

0≤x≤1
C
}
≥
{

min
0≤x≤1

A
}{

f̂ (uMAX)
}
+

{
min

0≤x≤1
B
}
(1− µ)

{
ĥ(uMAX)

}
. (14)

The above inequality consists of an upper bound for u, provided it assumes a maxi-
mum for x ∈ (0, 1).

On the other hand, let us assume that u does not reach a maximum for x ∈ (0, 1). In
this case, we must have the maximum at x = 0 or at x = 1. If the maximum is reached at
x = 0, then the derivative of u is nonpositive at x = 0; so,

γL(uMAX − uL) ≤ 0 at x = 0 ⇒ uMAX ≤ uL, (15)

and if the maximum is reached at x = 1, then the derivative of u is nonnegative at x = 1;
hence,

γR(uMAX − uR) ≤ 0 at x = 1 ⇒ uMAX ≤ uR. (16)
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Therefore, we are able to evaluate an upper bound for the solution of (1), denoted by
u. This value will be the larger one among uL, uR, and u∗, in which u∗ is the (unique) root
of the equation below.{

max
0≤x≤1

C
}

=

{
min

0≤x≤1
A
}{

f̂ (u∗)
}
+

{
min

0≤x≤1
B
}
(1− µ)

{
ĥ(u∗)

}
. (17)

5. Solution Construction

The solution of problem (1), denoted here by u, is given by the limit of the sequence[
Ψ0, Ψ1, Ψ2, Ψ3, . . .

]
, whose elements are given by

d2Ψi+1

dx2 − αΨi+1 + βi = 0, 0 < x < 1

βi = αΨi − A f̂
(

Ψi
)
− B

{
ĥ
(

Ψi
)
−
∫ 1

0 ĥ
(

Ψi
)

K(x, ξ)dξ
}
+ C

dΨi+1

dx = γL

(
Ψi+1 − uL

)
, x = 0

− dΨi+1

dx = γR

(
Ψi+1 − uR

)
, x = 1

, (18)

in which Ψ0 ≡ 0 and α is a (large) positive constant. In other words,

u ≡ lim
i→∞

Ψi. (19)

6. The Behavior of the Sequence and the Constant α

In order to show that
[
Ψ0, Ψ1, Ψ2, Ψ3, . . .

]
is a non-decreasing sequence, the first step

is to show that Ψ1 is nonnegative everywhere. For this, let us consider i = 0 and write

d2Ψ1

dx2 − αΨ1 + β0 = 0, 0 < x < 1

β0 = αΨ0 − A f̂
(
Ψ0)− B

{
ĥ
(
Ψ0)− ∫ 1

0 ĥ
(
Ψ0)K(x, ξ)dξ

}
+ C = −A f̂ (0) + C̃(x) ≥ 0

dΨ1

dx = γL

(
Ψ1 − uL

)
, x = 0

− dΨ1

dx = γR

(
Ψ1 − uR

)
, x = 1

. (20)

Suppose that Ψ1 assumes a minimum for x ∈ (0, 1). In this case, within a sufficiently
small vicinity of the point x = x, in which Ψ1 reaches its minimum, we must have (denoting
the minimum by Ψ1

MIN).

−αΨ1
MIN + β0 ≤ 0 ⇒ Ψ1

MIN ≥
β0

α
≥ 0. (21)

On the other hand, if Ψ1 assumes its minimum at x = 0, we must have

γL

(
Ψ1

MIN − uL

)
≥ 0 ⇒ Ψ1

MIN ≥ uL ≥ 0, (22)

while, if the minimum is reached at x = 1, we have

γR

(
Ψ1

MIN − uR

)
≥ 0 ⇒ Ψ1

MIN ≥ uR ≥ 0. (23)

Therefore, the minimum of Ψ1 is nonnegative. In other words, the function Ψ̂1
(x) is

nonnegative everywhere. In addition, we have proven that Ψ1 ≥ Ψ0 ≡ 0.
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Now, let us consider (18) for two consecutive values of i. The difference yields

d2(Ψi+1−Ψi)
dx2 − α

(
Ψi+1 −Ψi

)
+
(

βi − βi−1) = 0, 0 < x < 1

βi − βi−1 = α
(

Ψi −Ψi−1
)
− A

{
f̂
(

Ψi
)
− f̂

(
Ψi−1

)}
−

− B
{

ĥ
(

Ψi
)
− ĥ
(

Ψi−1
)
−
∫ 1

0

(
ĥ
(

Ψi
)
− ĥ
(

Ψi−1
))

K(x, ξ)dξ
}

d(Ψi+1−Ψi)
dx = γL

(
Ψi+1 −Ψi

)
, x = 0

− d(Ψi+1−Ψi)
dx = γR

(
Ψi+1 −Ψi

)
, x = 1

. (24)

If the difference Ψi+1 − Ψi assumes its minimum at the point x ∈ (0, 1), then, in a
sufficiently small neighborhood of this point, we must have

α
(

Ψi+1 −Ψi
)
≥
(

βi − βi−1
)

. (25)

If the minimum is reached at x = 0, we must have

γL

(
Ψi+1 −Ψi

)
≥ 0 ⇒ Ψi+1 −Ψi ≥ 0, (26)

while, if the minimum is reached at x = 1, we have

γR

(
Ψi+1 −Ψi

)
≥ 0 ⇒ Ψi+1 −Ψi ≥ 0. (27)

In this way, in order to ensure that Ψi+1 −Ψi ≥ 0 everywhere, we must ensure that
βi − βi−1 ≥ 0 for all x ∈ (0, 1).

This condition is always satisfied when the constant α is chosen in such a way that

α
(

Ψi −Ψi−1
)
≥

≥ A
{

f̂
(

Ψi
)
− f̂

(
Ψi−1

)}
+ B

{
ĥ
(

Ψi
)
− ĥ
(

Ψi−1
)
−
∫ 1

0

(
ĥ
(

Ψi
)
− ĥ
(

Ψi−1
))

K(x, ξ)dξ
} (28)

for all x ∈ (0, 1).
Hence, if Ψi ≥ Ψi−1, a sufficient (not necessary) condition for ensuring that Ψi+1 ≥ Ψi

is the following

α ≥
A
{

f̂
(

Ψi
)
− f̂

(
Ψi−1

)}
+ B

{
ĥ
(

Ψi
)
− ĥ
(

Ψi−1
)}

Ψi −Ψi−1 , x ∈ (0, 1), i = 1, 2, 3, . . . (29)

Therefore, since Ψ1 ≥ Ψ0, we ensure that Ψ2 ≥ Ψ1 provided

α ≥
A
{

f̂
(

Ψ1
)
− f̂

(
Ψ0)}− B

{
ĥ
(

Ψ1
)
− ĥ
(
Ψ0)}

Ψ1 −Ψ0 . (30)

Repeating this procedure we have, for sufficiently large α, that Ψi+1 ≥ Ψi.

7. The Solution u as an Upper Bound for
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( ) ( )
( ) ( ){ } ( ) ( ) ( ) ( )( ) ( ){ }

( ) ( )
( ) ( )

2 1
1

2

1

0

1
1

1
1

垐 垐 垐 , 0

, 0

, 1

i
i i

i i i

i
i

L

i
i

R

d u
dx

A f u f B h u h h u h K x d

d u
u x

dx
d u

u x
dx

α

ξ ξ

γ

γ

+
+

+
+

+
+

− Ψ
+ Ψ − Ψ −

− − Ψ − − Ψ − − Ψ =

− Ψ
= − Ψ =

− Ψ
− = − Ψ =


. (31)

Let us consider that 1iu +− Ψ  assumes its minimum at the interior point x x= . So, 
in a sufficiently small neighborhood of this point, we must have 

( ) ( ) ( ){ } ( ) ( ) ( ) ( )( ) ( ){ }11

0
垐 垐 垐 , 0i i i i iA f u f B h u h h u h K x dα ξ ξ+Ψ − Ψ − − Ψ − − Ψ − − Ψ ≤  (32)

or, in a more convenient form, assuming that (29) holds, 

( ) ( ) ( ){ }
( ) ( ) ( ) ( )( ) ( ){ }

( ) ( ){ } ( ) ( ){ }

1 1

11

0

1 1

垐

垐 垐 ,

垐 垐

i i i i

i i i

i i

A f f

B h h h u h K x d

A f u f B h u h

α

ξ ξ

+ +

+

+ +

Ψ − Ψ − Ψ − Ψ −

− Ψ − Ψ − − Ψ ≤

≤ − Ψ + − Ψ

 . (33)

Since u  is nonnegative everywhere, and 0 0Ψ ≡  (and taking into account (29)—the 
definition of α ), we conclude that 

( ) ( ){ } ( ) ( ){ }1 1垐 垐 0A f u f B h u h− Ψ + − Ψ ≥  (34)

in the neighborhood of x x= . Therefore, in this case, 1u ≥ Ψ  everywhere. 
On the other hand, if the difference 1iu +− Ψ  assumes its minimum at 0x = , we 

must have 

From (1) and (18), we may write

d2(u−Ψi+1)
dx2 + α

(
Ψi+1 −Ψi

)
−

− A
{

f̂ (u)− f̂
(

Ψi
)}
− B

{
ĥ(u)− ĥ

(
Ψi
)
−
∫ 1

0

(
ĥ(u)− ĥ

(
Ψi
))

K(x, ξ)dξ
}
= 0

d(u−Ψi+1)
dx = γL

(
u−Ψi+1

)
, x = 0

− d(u−Ψi+1)
dx = γR

(
u−Ψi+1

)
, x = 1

. (31)
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Let us consider that u−Ψi+1 assumes its minimum at the interior point x = x. So, in
a sufficiently small neighborhood of this point, we must have

α
(

Ψi+1 −Ψi
)
− A

{
f̂ (u)− f̂

(
Ψi
)}
− B

{
ĥ(u)− ĥ

(
Ψi
)
−
∫ 1

0

(
ĥ(u)− ĥ

(
Ψi
))

K(x, ξ)dξ

}
≤ 0 (32)

or, in a more convenient form, assuming that (29) holds,

α
(

Ψi+1 −Ψi
)
− A

{
f̂
(

Ψi+1
)
− f̂

(
Ψi
)}
−

−B
{

ĥ
(

Ψi+1
)
− ĥ
(

Ψi
)
−
∫ 1

0

(
ĥ(u)− ĥ

(
Ψi
))

K(x, ξ)dξ
}
≤

≤ A
{

f̂ (u)− f̂
(

Ψi+1
)}

+ B
{

ĥ(u)− ĥ
(

Ψi+1
)} . (33)

Since u is nonnegative everywhere, and Ψ0 ≡ 0 (and taking into account (29)—the
definition of α), we conclude that

A
{

f̂ (u)− f̂
(

Ψ1
)}

+ B
{

ĥ(u)− ĥ
(

Ψ1
)}
≥ 0 (34)

in the neighborhood of x = x. Therefore, in this case, u ≥ Ψ1 everywhere.
On the other hand, if the difference u − Ψi+1 assumes its minimum at x = 0, we

must have
γL

(
u−Ψi+1

)
≥ 0 ⇒ u−Ψi+1 ≥ 0 , at x = 0, (35)

while, if the minimum is reached at x = 1, we have

γR

(
u−Ψi+1

)
≥ 0 ⇒ u−Ψi+1 ≥ 0 , at x = 1. (36)

Repeating this procedure, we can conclude that the minimum of u−Ψi+1 is nonnega-
tive. Therefore,

u ≥ . . . ≥ Ψi+1 ≥ Ψi ≥ . . . ≥ Ψ3 ≥ Ψ2 ≥ Ψ1 ≥ Ψ0 ≡ 0, for x ∈ [0, 1]. (37)

In other words, the solution of the original problem represents an upper bound for the
sequence

[
Ψ0, Ψ1, Ψ2, Ψ3, . . .

]
. This fact ensures the convergence.

Since the solution u is nonnegative and has a known upper bound, the constant α may
be chosen from the following formula (this is not a necessary choice)

α =

{
max

0≤x≤1
A
}{

max
0≤θ≤uMAX

d f
dθ

}
+

{
max

0≤x≤1
B
}{

max
0≤θ≤uMAX

dh
dθ

}
, (38)

provided the derivatives of f and of h are bounded.
It is remarkable that the convergence may be reached for lower values of the constant α.

8. Solution Uniqueness

In order to demonstrate that the limit of the sequence
[
Ψ0, Ψ1, Ψ2, Ψ3, . . .

]
is the unique

solution of problem (1), let us assume that u is different from Ψ∞ (the limit).
Since (37) holds, we must have

u ≥ Ψ∞, 0 ≤ x ≤ 1, (39)

and we only need to show that the maximum of u−Ψ∞ is not positive.
For this, let us assume that u−Ψ∞ assumes its maximum at the point x ∈ (0, 1). So,

in a sufficiently small vicinity of this point, we must have

− A
{

f̂ (u)− f̂ (Ψ∞)
}
− B

{
ĥ(u)− ĥ(Ψ∞)−

∫ 1

0

(
ĥ(u)− ĥ(Ψ∞)

)
K(x, ξ)dξ

}
≥ 0. (40)
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So, from the definition of the constant α, we have, in the considered vicinity,

α(u−Ψ∞) ≤ 0 ⇒ u ≤ Ψ∞. (41)

Now, suppose that u − Ψ∞ assumes its maximum at the point x = 0. In this case,
we have

γL(u−Ψ∞) ≤ 0 ⇒ u ≤ Ψ∞ , at x = 0. (42)

On the other hand, if u−Ψ∞ assumes its maximum at the point x = 1, we have

γR(u−Ψ∞) ≤ 0 ⇒ u ≤ Ψ∞ , at x = 1. (43)

Consequently, it is demonstrated that the solution is unique and is represented by the
limit of the sequence

[
Ψ0, Ψ1, Ψ2, Ψ3, . . .

]
.

9. Variational Formulation

The solution of problem (18), denoted by Ψi+1, is the function that minimizes the
(quadratic) functional below

I[v] =
1
2

1∫
0

{(
dv
dx

)2
+ αv2

}
dx−

1∫
0

βivdx +
1
2

γL

[
(v− uL)

2
]

x=0
+

1
2

γR

[
(v− uR)

2
]

x=1
. (44)

The first variation of I[v] is given by [30]

δI[v] =
1∫

0

{(
dv
dx

)
dδv
dx

+ αvδv
}

dx−
1∫

0

βiδvdx + γL[(v− uL)δv]x=0 + γR[(v− uR)δv]x=1, (45)

or in a more convenient form by

δI[v] =
1∫

0

{
d

dx

((
dv
dx

)
δv
)
− d2v

dx2 δv + αvδv
}

dx−
1∫

0

βiδvdx + γL[(v− uL)δv]x=0 + γR[(v− uR)δv]x=1 (46)

in which δv is any admissible variation.
Considering that

1∫
0

d
dx

((
dv
dx

)
δv
)

dx =

[(
dv
dx

)
δv
]

x=1
−
[(

dv
dx

)
δv
]

x=0
, (47)

we may write

δI[v] =
1∫

0

{
− d2v

dx2 δv + αvδv
}

dx−
1∫

0
βiδvdx + γL[(v− uL)δv]x=0+

+ γR[(v− uR)δv]x=1 +
[(

dv
dx

)
δv
]

x=1
−
[(

dv
dx

)
δv
]

x=0

. (48)

The extremum of the functional is obtained making δI[v] = 0. Considering that δv
is arbitrary, we obtain the Euler–Lagrange equation and the natural boundary conditions
as follows

− d2v
dx2 + αv− βi = 0, 0 < x < 1

γL(v− uL)−
(

dv
dx

)
= 0, x = 0

γR(v− uR) +
(

dv
dx

)
= 0, x = 1

. (49)

Problems (44) and (18) are the same problem, since βi is known.
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Since the functional I[v] is strictly convex (see Appendix A), its extremum is unique
and corresponds to a minimum [29,30]. Thus, each element Ψi+1 may be obtained from the
minimization of I[v].

The existence of this minimum is ensured, since the functional is coercive [31].

10. A Numerical Approximation

The procedure proposed for constructing the solution of (1) may be used for obtaining
numerical approximations too.

To illustrate this fact, let us consider the following (piecewise linear) approximation
for the element Ψi, given by

Ψi =
(

Ψi
j+1 −Ψi

j

)( x− xj

∆x

)
+ Ψi

j, xj ≤ x ≤ xj+1, xj = (j− 1)∆x, j = 1, 2, . . . , N, ∆x =
1
N

(50)

in which Ψi
j represents the approximation for Ψi at the spatial point xj, and ∆x = 1/N.

In this case, the functional I[v] becomes, for each i, the following function

Fi+1(v1, v2, . . . , vN , vN+1) =
1
2 γL(v1 − uL)

2 + 1
2 γR(vN − uR)

2+

+ 1
2

N
∑

j=1

xj+1∫
xj

{( vj+1−vj
∆x

)2
+ α
((

vj+1 − vj
)( x−xj

∆x

)
+ vj

)2
− 2βi

((
vj+1 − vj

)( x−xj
∆x

)
+ vj

)}
dx

(51)

in which βi is given by (considering the piecewise approximation (50))

βi = α
((

Ψi
j+1 −Ψi

j

)( x−xj
∆x

)
+ Ψi

j

)
− A f̂

((
Ψi

j+1 −Ψi
j

)( x−xj
∆x

)
+ Ψi

j

)
−

−B
{

ĥ
((

Ψi
j+1 −Ψi

j

)( x−xj
∆x

)
+ Ψi

j

)
−
∫ 1

0 ĥ
((

Ψi
j+1 −Ψi

j

)(
ξ−xj
∆x

)
+ Ψi

j

)
K(x, ξ)dξ

}
+ C

. (52)

The values of vj that minimize the function Fi+1(v1, v2, . . . , vN , vN+1) defined in (46)
are exactly the values of Ψi+1

j , obtained from the following system (linear),

∂

∂vj

{
Fi+1(v1, v2, . . . , vN , vN+1)

}
= 0, j = 1, 2, . . . , N + 1. (53)

11. Two Examples (With Known Exact Solutions)

Let us consider the following problem

d2u
dx2 − u−

{
|u|3u−

∫ 1
0 |u|

3u 5
31 dξ

}
+ x + (1 + x)4 = 0, 0 < x < 1

du
dx = u, x = 0

− du
dx = u− 3, x = 1

, (54)

whose exact solution is given by

u = 1 + x, 0 ≤ x ≤ 1. (55)

Comparing (53) with (1) we have that

A = B = 1, C = x + (1 + x)4, γL = γR = 1, uL = 0, uR = 3
K(x, ξ) = 5/31, f̂ (u) = u, ĥ(u) = |u|3u

. (56)

Some elements of the sequence
[
Ψ0, Ψ1, Ψ2, Ψ3, . . .

]
, approximated by (50), are shown

in Figure 1, as well as the exact solution.
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Figure 1. Some elements of the sequence
[
Ψ0, Ψ1, Ψ2, Ψ3, . . .

]
obtained with three different values of

the constant α ( α = 20 (A), α = 15 (B), α = 50 (C) ). In all cases, N = 50.

It is to be noticed that the speed of convergence was strongly affected by the value
of α. As α increased, the speed of convergence decreased. Nevertheless, α cannot be very
small, since this may give rise to nonincreasing sequences, and the convergence may not
be achieved.

To illustrate the role of the constant α in an explicit way, let us consider the follow-
ing problem:

d2u
dx2 − 1

2 u−
{
|u|3u−

∫ 1
0 |u|

3u 1
2 dξ
}
+ 1 = 0, 0 < x < 1

du
dx = u− 1, x = 0
− du

dx = u− 1, x = 1

, (57)

whose exact solution is given by

u = 1, 0 ≤ x ≤ 1. (58)

The elements of the sequence are obtained from

d2Ψi+1

dx2 − αΨi+1 + βi = 0, 0 < x < 1

βi = αΨi − 1
2 Ψi −

{∣∣∣Ψi
∣∣∣3Ψi −

∫ 1
0

∣∣∣Ψi
∣∣∣3Ψi 1

2 dξ

}
+ 1

dΨi+1

dx =
(

Ψi+1 − 1
)

, x = 0

− dΨi+1

dx =
(

Ψi+1 − 1
)

, x = 1

. (59)

Let us assume that for each i, Ψi is a constant for 0 ≤ x ≤ 1. This is equivalent to
imposing Ψi

2 = Ψi
1, assuming N = 1. In this case, the functional becomes the function

Fi+1(v) =
1
2
(v− 1)2 +

1
2
(v− 1)2 +

1
2

1∫
0

{
α(v)2 − 2βi(v)

}
dx. (60)

So, the constant value for Ψi+1 will be obtained from the minimization of the function
Fi+1(v). In other words, it will be the root of

d
dv

Fi+1(v) = (v− 1) + (v− 1) + αv−
1∫

0

βidx. (61)
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The root of the above expression will be exactly the value of Ψi+1 (assumed a constant
for each i), given by

(
Ψi+1 − 1

)
+
(

Ψi+1 − 1
)
+ αΨi+1 −

1∫
0

βidx = 0 ⇒ Ψi+1 =

1∫
0

βidx + 2

2 + α
, (62)

or considering the expression for βi, we have

Ψi+1 =
2 + βi

2 + α
=

3 +
(

α− 1
2

)
Ψi − 1

2

(
Ψi
)4

2 + α
. (63)

Table 1 illustrates the convergence for several values of the constant α. Notice that
for α = 0.1 and for α = 0.01, the convergence was not reached. For α = 2, we reached
convergence, but the sequence was not a nondecreasing one. The speed of convergence, for
α ≥ 5, decreased as α increased.

In other words, each column of Table 1 represents the elements: Ψ1, ..., Ψ50, obtained
with nine different values of the constant α.

Table 1. The constant Ψi obtained for nine different values of α.

α→ 100 50 20 10 5 2 0.5 0.1 0.01

i = 1 0.0294 0.0577 0.1364 0.2500 0.4286 0.7500 1.200 1.4286 1.4925
i = 2 0.0581 0.1126 0.2572 0.4478 0.7017 0.9917 0.7853 0.1648 −0.1058
i = 3 0.0861 0.1649 0.3643 0.6028 0.8623 1.0010 1.1239 1.3970 1.5183
i = 4 0.1134 0.2146 0.4588 0.7217 0.9434 0.9999 0.8808 0.2556 −0.1995
i = 5 0.1400 0.2620 0.5420 0.8101 0.9785 1.0000 1.0796 1.3789 1.5408
i = 6 0.1660 0.3070 0.6149 0.8734 0.9921 1.0000 0.9283 0.3053 −0.285
i = 7 0.1913 0.3499 0.6781 0.9172 0.9972 1.0000 1.0515 1.3684 1.5604
i = 8 0.2161 0.3906 0.7326 0.9466 0.9990 1.0000 0.9555 0.3332 −0.3625
i = 9 0.2402 0.4293 0.7792 0.9659 0.9996 1.0000 1.0333 1.3622 1.5766

i = 10 0.2637 0.4660 0.8186 0.9784 0.9999 1.0000 0.9720 0.3494 −0.4288
i = 11 0.2866 0.5009 0.8517 0.9864 1.0000 1.0000 1.0215 1.3585 1.5887
i = 12 0.3090 0.5339 0.8794 0.9915 1.0000 1.0000 0.9823 0.3589 −0.4793
i = 13 0.3307 0.5651 0.9022 0.9946 1.0000 1.0000 1.0138 1.3563 1.5963
i = 14 0.3520 0.5947 0.9210 0.9966 1.0000 1.0000 0.9887 0.3646 −0.5116
i = 15 0.3727 0.6226 0.9363 0.9979 1.0000 1.0000 1.0089 1.3549 1.6002
i = 16 0.3929 0.6489 0.9488 0.9987 1.0000 1.0000 0.9928 0.3681 −0.5287
i = 17 0.4125 0.6737 0.9590 0.9992 1.0000 1.0000 1.0057 1.3541 1.6020
i = 18 0.4317 0.6970 0.9671 0.9995 1.0000 1.0000 0.9954 0.3702 −0.5364
i = 19 0.4504 0.7189 0.9737 0.9997 1.0000 1.0000 1.0036 1.3536 1.6027
i = 20 0.4685 0.7395 0.9790 0.9998 1.0000 1.0000 0.9971 0.3715 −0.5395
i = 21 0.4862 0.7587 0.9832 0.9999 1.0000 1.0000 1.0023 1.3533 1.6030
i = 22 0.5035 0.7768 0.9866 0.9999 1.0000 1.0000 0.9981 0.3723 −0.5407
i = 23 0.5202 0.7936 0.9893 1.0000 1.0000 1.0000 1.0015 1.3531 1.6031
i = 24 0.5365 0.8093 0.9915 1.0000 1.0000 1.0000 0.9988 0.3727 −0.5411
i = 25 0.5524 0.8240 0.9932 1.0000 1.0000 1.0000 1.0010 1.3530 1.6031
i = 26 0.5678 0.8376 0.9946 1.0000 1.0000 1.0000 0.9992 0.3730 −0.5413
i = 27 0.5828 0.8503 0.9957 1.0000 1.0000 1.0000 1.0006 1.3529 1.6031
i = 28 0.5973 0.8621 0.9966 1.0000 1.0000 1.0000 0.9995 0.3732 −0.5414
i = 29 0.6115 0.8730 0.9973 1.0000 1.0000 1.0000 1.0004 1.3529 1.6031
i = 30 0.6252 0.8832 0.9978 1.0000 1.0000 1.0000 0.9997 0.3733 −0.5414
i = 31 0.6386 0.8926 0.9983 1.0000 1.0000 1.0000 1.0003 1.3528 1.6031
i = 32 0.6515 0.9012 0.9986 1.0000 1.0000 1.0000 0.9998 0.3734 −0.5414
i = 33 0.6641 0.9093 0.9989 1.0000 1.0000 1.0000 1.0002 1.3528 1.6031
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Table 1. Cont.

α→ 100 50 20 10 5 2 0.5 0.1 0.01

i = 34 0.6762 0.9167 0.9991 1.0000 1.0000 1.0000 0.9999 0.3734 −0.5414
i = 35 0.6881 0.9235 0.9993 1.0000 1.0000 1.0000 1.0001 1.3528 1.6031
i = 36 0.6995 0.9298 0.9995 1.0000 1.0000 1.0000 0.9999 0.3734 −0.5414
i = 37 0.7106 0.9356 0.9996 1.0000 1.0000 1.0000 1.0001 1.3528 1.6031
i = 38 0.7213 0.9409 0.9997 1.0000 1.0000 1.0000 0.9999 0.3735 −0.5414
i = 39 0.7318 0.9459 0.9997 1.0000 1.0000 1.0000 1.0000 1.3528 1.6031
i = 40 0.7418 0.9504 0.9998 1.0000 1.0000 1.0000 1.0000 0.3735 −0.5414
i = 41 0.7516 0.9545 0.9998 1.0000 1.0000 1.0000 1.0000 1.3528 1.6031
i = 42 0.7610 0.9584 0.9999 1.0000 1.0000 1.0000 1.0000 0.3735 −0.5414
i = 43 0.7701 0.9619 0.9999 1.0000 1.0000 1.0000 1.0000 1.3528 1.6031
i = 44 0.7789 0.9651 0.9999 1.0000 1.0000 1.0000 1.0000 0.3735 −0.5414
i = 45 0.7874 0.9680 0.9999 1.0000 1.0000 1.0000 1.0000 1.3528 1.6031
i = 46 0.7957 0.9707 0.9999 1.0000 1.0000 1.0000 1.0000 0.3735 −0.5414
i = 47 0.8036 0.9732 1.0000 1.0000 1.0000 1.0000 1.0000 1.3528 1.6031
i = 48 0.8113 0.9755 1.0000 1.0000 1.0000 1.0000 1.0000 0.3735 −0.5414
i = 49 0.8187 0.9776 1.0000 1.0000 1.0000 1.0000 1.0000 1.3528 1.6031
i = 50 0.8258 0.9795 1.0000 1.0000 1.0000 1.0000 1.0000 0.3735 −0.5414

12. Conclusions

The procedure proposed here differs from others due to its simplicity. Only basic tools
are needed, which are available for undergraduate students. This is the main novelty and
contribution of this work.

In addition, since the exact solution is represented by the limit of a sequence, there is
no limit of accuracy when employing a numerical approximation.

The proposed procedure may be used for problems involving Dirichlet and some
Neumann boundary conditions. This may be performed by employing very large or very
small values for γL and γR. When γL (and/or γR) is very large, we approximate a Dirichlet
boundary condition. When γL (and/or γR) is very small, we approximate a Neumann
boundary condition (in this case representing an insulated edge).

When modeling a heat transfer problem involving high temperature levels, thermal
radiant heat transfer plays a meaningful role, since the thermal interaction among far-
positioned points becomes more significant as the temperature levels become larger. This
fact gives rise to an integral operator, which represents the amount of thermal radiant
energy arriving at each point of the body.

Besides the heat transfer phenomena, in which the thermal radiation plays a non-
negligible role, integro-differential equations are found in several other branches, such as
optimal control problems [32]. Integro-differential equations involving fractional deriva-
tives also consist of a potential issue to be explored due to their increasing interest and
applicability [33–39].

The heat transfer process in a nonsymmetrical system of fins, as well as in multiphase
bodies [40], gives rise to systems of second-order integro-differential equations. It seems
logical that, with some adjustments, the procedure proposed here may be extended to such
a class of problems.
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Appendix A. On the Convexity of the Functional I[v]

A functional I[v] is said to be strictly convex, if and only if

θ I[v1] + (1− θ)I[v2] > I[θv1 + (1− θ)v2], θ ∈ (0, 1), v1 6= v2. (A1)

So, the functional defined in (44) is said to be strictly convex, if and only if the following
inequality holds

θ

{
1
2

1∫
0

{(
dv1
dx

)2
+ αv2

1

}
dx−

1∫
0

βiv1dx + 1
2 γL

[
(v1 − uL)

2
]

x=0
+ 1

2 γR

[
(v1 − uR)

2
]

x=1

}
+

+(1− θ)

{
1
2

1∫
0

{(
dv2
dx

)2
+ αv2

2

}
dx−

1∫
0

βiv2dx + 1
2 γL

[
(v2 − uL)

2
]

x=0
+ 1

2 γR

[
(v2 − uR)

2
]

x=1

}
>

>

{
1
2

1∫
0

{(
d

dx (θv1 + (1− θ)v2)
)2

+ α(θv1 + (1− θ)v2)
2
}

dx−
1∫

0
βi(θv1 + (1− θ)v2)dx+

+ 1
2 γL

[
((θv1 + (1− θ)v2)− uL)

2
]

x=0
+ 1

2 γR

[
((θv1 + (1− θ)v2)− uR)

2
]

x=1

}
. (A2)

Since

θ

1∫
0

βiv1dx + (1− θ)

1∫
0

βiv2dx =

1∫
0

βi(θv1 + (1− θ)v2)dx, (A3)

it suffices to show that

θ

{
1
2

1∫
0

{(
dv1
dx

)2
+ αv2

1

}
dx + 1

2 γL

[
(v1 − uL)

2
]

x=0
+ 1

2 γR

[
(v1 − uR)

2
]

x=1

}
+

+(1− θ)

{
1
2

1∫
0

{(
dv2
dx

)2
+ αv2

2

}
dx + 1

2 γL

[
(v2 − uL)

2
]

x=0
+ 1

2 γR

[
(v2 − uR)

2
]

x=1

}
>

>

{
1
2

1∫
0

{(
d

dx (θv1 + (1− θ)v2)
)2

+ α(θv1 + (1− θ)v2)
2
}

dx+

+ 1
2 γL

[
((θv1 + (1− θ)v2)− uL)

2
]

x=0
+ 1

2 γR

[
((θv1 + (1− θ)v2)− uR)

2
]

x=1

}
. (A4)

To demonstrate the above inequality, it is enough to prove that

θ
(

dv1
dx

)2
+ (1− θ)

(
dv2
dx

)2
≥
(

d
dx (θv1 + (1− θ)v2)

)2

θv2
1 + (1− θ)v2

2 > (θv1 + (1− θ)v2)
2

θ(v1 − uL)
2 + (1− θ)(v2 − uL)

2 > ((θv1 + (1− θ)v2)− uL)
2

θ(v1 − uR)
2 + (1− θ)(v2 − uR)

2 > ((θv1 + (1− θ)v2)− uR)
2

. (A5)

Since, for θ ∈ (0, 1),

θa2 + (1− θ)b2 − (θa + (1− θ)b)2 =

= θa2 + (1− θ)b2 − (θa)2 − ((1− θ)b)2 − 2θ(1− θ)ab =

= θ(1− θ)a2 + θ(1− θ)b2 − 2θ(1− θ)ab = θ(1− θ)(a− b)2 ≥ 0
, (A6)

we have that

θ
(

dv1
dx

)2
+ (1− θ)

(
dv2
dx

)2
≥
(

d
dx (θv1 + (1− θ)v2)

)2
⇔ θ(1− θ)

(
dv1
dx −

dv2
dx

)2
≥ 0

θ(1− θ)(v1 − v2)
2 > 0 ⇔


θv2

1 + (1− θ)v2
2 > (θv1 + (1− θ)v2)

2

θ(v1 − uL)
2 + (1− θ)(v2 − uL)

2 > ((θv1 + (1− θ)v2)− uL)
2

θ(v1 − uR)
2 + (1− θ)(v2 − uR)

2 > ((θv1 + (1− θ)v2)− uR)
2

. (A7)

Therefore, (A5) holds for any θ ∈ (0, 1) and v1 6= v2, ensuring the functional convexity.
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