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Abstract: This paper presents an important theorem, which shows that, heading from the moments of
the standard normal distribution, one can generate density functions originating a family of models.
Additionally, we discussed that different random variable domains are achieved with transformations.
For instance, we adopted the moment of order two, from the proposed theorem, and transformed
it, which enabled us to exemplify this class as a unit distribution. We named it as Alpha-Unit
(AU) distribution, which contains a single positive parameter α (AU(α) ∈ [0, 1]). We presented its
properties and demonstrated two estimation methods for the α parameter, the maximum likelihood
estimator (MLE) and uniformly minimum-variance unbiased estimator (UMVUE) methods. In order
to analyze the statistical consistency of the estimators, a Monte Carlo simulation study was carried
out, in which the robustness was demonstrated. As a real-world application, we adopted two sets
of unit data, the first regarding the dynamics of Chilean inflation in the post-military period, and
the other one regarding the daily maximum relative humidity of the air in the Atacama Desert. In
both cases presented, the AU model is competitive, whenever the data present a range greater than
0.4 and extremely heavy asymmetric tail. We compared our model with other commonly used unit
models, such as the beta, Kumaraswamy, logit-normal, simplex, unit-half-normal, and unit-Lindley
distributions.

Keywords: asymmetry accommodation; rates and proportions; single-parameter distribution; unit
distribution; water monitoring

1. Introduction

Statistical methodology plays an important role in quantitative methods, given the
hypothesis testing and inferential procedures. Nonetheless, the comparison across features
is given based on a generated function estimated from the data information. Most often,
mild suppositions are assumed, which compromises the generalization of the results.

Under the perspective of statistical generalization (inferential method), some chal-
lenges are found for bounded distribution estimation. For instance, the confidence interval,
which is often adopted from the maximum likelihood estimation approach and asymptotic
supposition, is also assumed. Specially, interval estimation can be seen as the parameter
space domain.

One exemplification is the case in which bounded information data are observed and,
nonetheless, normality is commonly assumed to be true. This is the case of proportion/rate
data, which are double bounded in the lower limit equal to zero and upper limit equal
to one. Relative humidity is an example of this scenario in which every decision-making
should be ∈ [0, 1] [1,2], or rates commonly used in the fields of finance, economics and
demography, to number a few.
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In the case of rates and proportions processes, as well as other processes whose vari-
ables of interest assume values in the range (0, 1), there is a well-represented class of
models, the unit distributions family, which deals with this type of double-bounded data.
Among the many existing unit distributions, it is noteworthy mentioning the power distri-
bution, beta distribution [3], Kumaraswamy distribution [4], unit-logistic distribution [5],
simplex distribution [6], unit-Weibull distribution [7,8], unit-Lindley distribution [9], unit-
half-normal distribution [10], unit log-log distribution [11], modified Kumaraswamy and
reflected modified Kumaraswamy distributions [12], unit-Teissier distribution [13], unit
extended Weibull families of distributions [14], lognormal distribution [15], unit folded
normal distribution [16], Marshall-Olkin reduced Kies distribution [17], and unit-Chen
distribution [18].

Despite the applicability of the unit distributions in double-bounded variables, another
important fact is that the interval estimation for the parameter may also be limited in a
domain (like positive real number). In the face of it, we also presented an inferential
alternative through the delta method.

This study starts with a presentation of an important theorem that changes from a
modification of the standard normal distribution into a class of density functions that can be
seen as a unit. Then, as an exemplification, a second moment case was chosen to illustrate
the usefulness of this class of probabilistic models. This class of distributions shows to be
competitive for high-frequency data with range greater than 0.4, important to real-world
applications, whereas a classical unit distribution fails [19]. Additionally, two different
data sets were selected to illustrate the adjustment of the proposed model. The first one is
related to the Chilean inflation (ultimate post-military era), and the second one comes from
the driest area of the planet (excluding the north and south poles).

This paper is structured in four parts. Section 2 presents the proposed one-parameter
unit distribution. In Section 3, the inferences for the distribution parameter adopting the
uniformly minimum-variance unbiased estimator (UMVUE) and maximum likelihood
estimator (MLE) as point estimators, as well as interval estimations, are discussed. A
simulation study is also presented in this section. In Section 4, two real data sets are used
to illustrate the proposed methodology, one from the Chilean inflation in the post-military
period, and other one from the relative humidity water monitoring in the Atacama Desert.
Finally, Section 5 lists the conclusions of this study. Nevertheless, before moving on into
the described structure, a wide class of models that can be generated in many different
random variable supports is presented. Therefore, a theorem is elicited and, as a special
case, the whole paper will consider an order two for exemplification of this powerful class
of distributions.

Motivation

The normal (or Gaussian) distribution is very important to the history of statistics, and
numerous modifications to this distribution have been proposed in the literature [20,21].
An interesting fact related to the normal distribution is that its even moments can be used
to generate new distributions, which is the case presented below, through a definition
and a result embodied in a theorem that accounts for the characterization of these new
distributions.

Definition 1. A random variable B is said to be distributed according to a Bimodal Normal (BN)
distribution of order k, that is, B ∼ BN(k) (discussed in [22]), if its probability density function
(PDF) is given by

f (b | k) =
1
c

b2kφ(b), b ∈ R,

in which φ(·) is the PDF of the standard normal distribution, c = ∏k
j=1(2j − 1) and k =

{1, 2, 3, . . .}.
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This class of distributions is always bimodal, which means that the observed modes
move away from each other when the order k increases (as depicted by Figure 1).

Figure 1. Density function of the BN distribution by varying the parameter k (displayed at the top of
each chart).

It is noteworthy mentioning that transformations derived from the BN(k) distribution
may lead to other domains of interest, e.g., the unit domain. For example, let B ∼ BN(k),
then a scale parameter α, the transformation α|B| ∈ R+, and then the transformation
e−α|B| ∈ [0, 1]. Thus, the stochastic characterization of a BN(k) distribution can be obtained
according to the following theorem.

Theorem 1. Let W1 and W2 be independent random variables, in which W1 is such that P(W1 =
1) = P(W1 = −1) = 1/2 and W2 ∼ χ2

2k+1. Then,

W1
√

W2 ∼ BN(k). (1)

So, this theorem is mainly motivated by the result that shows that if X ∼ BN(k), then
X2 ∼ χ2

2k+1. The entire demonstration is presented in Appendix A.

2. The Model

In this section, a new unit distribution, named Alpha-Unit, which presents a single
parameter, α, is discussed. Its stochastic representations (probability density and cumulative
distribution functions), moments (including mean and variance), moment-generating
function, and how to generate pseudo-random numbers from it will be presented. Moreover,
a proposal of statistical control chart for unit data based on the Alpha-Unit distribution
will also be shown.

The Alpha-Unit density is originated from the general theorem (Theorem 1), by
considering k = 1. Moreover, it represents the second moment of the standard normal
distribution and, later, transformed its domain. However, as k increases, the concentration
of the distribution intensifies and other densities could be obtained.

Properties and Characterization

Definition 2. (Alpha-Unit distribution). A random variable X follows an Alpha-Unit (AU)
distribution with parameter α > 0, that is, X ∼ AU(α), if its PDF is given by

fX(x | α) =
2

xα

(
ln(x)

α

)2

φ

(
ln(x)

α

)
, 0 < x ≤ 1. (2)

Remark 1. If X ∼ AU(α), then its PDF is unimodal.
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Proof. The maxima of the AU distribution are studied, to which the criterion of the first
derivative is first considered:

d fX(x | α)

dx
=

2
xα2

ln(x)
α

φ

(
ln(x)

α

)[
2
x
− ln(x)

x
− [ln(x)]2

α

1
xα

]
= 0.

By solving algebraically for x, we obtain:

x =


e

(
α2+
√

α4+8α2
2

)
(i)

e

(
α2−
√

α4+8α2
2

)
(ii)

.

By working algebraically, it can be seen that this is only true for (ii), and is a global
maximum, given that the solution is in between 0 and 1. Therefore, the AU distribution is
unimodal.

Proposition 1. If X ∼ AU(α), then its r-th order moment is given by

E[Xr] = 2e
(

r2α2
2

)[(
1 + r2α2

)
(1−Φ(rα))− rαφ(rα)

]
,

in which Φ(·) is the cumulative distribution function (CDF) of the standard normal distribution.

Proof. From the definition of the r-th order moment, we have:

E[Xr] =
∫ 1

0
xr fX(x | α)dx =

∫ 1

0
xr 2

xα

(
ln(x)

α

)2

φ

(
ln(x)

α

)
dx. (3)

By changing the variables:
u = 1

α ln(x) ⇒ euα = x

du = 1
αx dx ⇒ αeuαdu = dx

,

then substituting into Equation (3) and developing algebraically, we obtain:

E[Xr] = 2e
α2r2

2

∫ 0

−∞
u2 1√

2π
e−

(u−αr)2
2 du.

Then, by making another change of variables: h = u− αr, dh = du; and replacing
these expressions in the previous equation, we have:

E[Xr] = 2e
α2r2

2

∫ −αr

−∞
(h + αr)2 1√

2π
e−

h2
2 dh

= 2e
α2r2

2

∫ −αr

−∞

(
h2 + 2hαr + α2r2

)
φ(h)dh

= 2e
α2r2

2

(∫ −αr

−∞
h2φ(h)dh + 2αr

∫ −αr

−∞
hφ(h)dh + α2r2

∫ −αr

−∞
φ(h)dh

)
.

By solving the integrals, we get to:

E[Xr] = 2e
α2r2

2

[
αrφ(αr) + (1−Φ(αr))− 2αrφ(αr) + α2r2(1−Φ(αr))

]
.

Then, by solving algebraically, we go down to the expression of Proposition 1.
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Out of Proposition 1, we obtain the mean and variance of the AU(α) model as it
follows:

E[X] = 2e
α2
2

[
(1 + α2)(1−Φ(α))− αφ(α)

]
,

Var[X] = E[X2]− (E[X])2

= 2e2α2
[
(1 + 4α2)(1−Φ(2α))− 2αφ(2α)

]
− 4eα2

[
(1 + α2)(1−Φ(α))− αφ(α)

]2
.

Remark 2. As an illustration, Figure 2 displays the generated asymmetry and kurtosis based on
the chosen α parameter of the AU distribution.

Figure 2. Density function of the AU distribution by varying the parameter α (displayed at the top of
each chart). Whereas B ∼ BN(1)→ B2 ∼ χ2

3, then the AU model was generated from X = e−α|B|.

Proposition 2. If X ∼ AU(α), then its CDF is given by

FX(x | α) = 2Φ
(

ln(x)
α

)
− 2
(

ln(x)
α

)
φ

(
ln(x)

α

)
.

Proof. By definition, the CDF is:

FX(x | α) =
∫ x

0

2
tα

(
ln(t)

α

)2

φ

(
ln(t)

α

)
dt. (4)

By making the change of variables:
u = ln(t)

α ⇒ euα = t

du = 1
αt dt ⇒ αeuαdu = dt

,

then substituting into Equation (4) and reducing expressions algebraically, we get to:

FX(x | α) = 2
∫ ln(x)

α

−∞
u2φ(u)du.
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By calculating the integral, we find:

FX(x | α) = 2
[
−uφ(u)

∣∣∣ln(x)/α

−∞
+
∫ ln(x)/α

−∞
φ(u)du

]
= 2

[
−
(

ln(x)
α

)
φ

(
ln(x)

α

)
+ Φ

(
ln(x)

α

)]
.

Then, by multiplying and commuting, we get to the expression of Proposition 2.

Additionally, if X denotes the monitored variable, then the PDF of X is given by (2).
Also, consider that the probability of false alarm (known as type I error) is π. Thus, we
get to:

P(X < LCL | α) = P(X > UCL | α) = π/2,

in which α is the in-control process parameter (that is, the parameter that controls the
quality characteristic based on the in-control state), and LCL and UCL are the lower and
upper control chart limits, respectively. Given the CDF FX(x | α), then the quantile function
of X is defined by Q(p | α) = F−1

X (p | α), 0 < p < 1, which can be obtained by setting to
zero and solving (numerically) for x the following equation:

Φ
(

ln(x)
α

)
−
(

ln(x)
α

)
φ

(
ln(x)

α

)
− p

2
, for 0 < p < 1.

Following [23], the control limits and centerline (CL) of the proposed control chart for
unit data based on the AU distribution or, simply, AU control chart, are given by

LCL = Q(π/2 | α), CL = E[X | α], UCL = Q(1− π/2 | α),

in which Q(.) is the quantile function of the AU(α) distribution.

Proposition 3. If X ∼ AU(α), then its moment-generating function (MGF) is given by

ψX(t | α) = 2
∞

∑
k=0

tk

k!
e
(

k2α2
2

)[(
1 + k2α2

)
(1−Φ(kα))− kαφ(kα)

]
.

Proof. By definition, the MGF is:

ψX(t | α) = E
[
etx] = ∫ 1

0
etx 2

xα

(
ln(x)

α

)2

φ

(
ln(x)

α

)
dx. (5)

By making the following change of variables:
u = ln(x)

α ⇒ euα = x

du = 1
αx dx ⇒ αeuαdu = dx

,

then substituting and simplifying into Equation (5), we get to:

ψX(t | α) = 2
∫ 0

−∞
e(te

uα)u2φ(u)du

= 2
∫ 0

−∞

∞

∑
k=0

tkeuαk

k!
u2φ(u)du.
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Working algebraically, we obtain:

ψX(t | α) = 2
∞

∑
k=0

tk

k!
e
(

α2k2
2

) ∫ 0

−∞
u2 1√

2π
e

(
−(u−αk)2

2

)
du.

By making the following change of variables: h = u− αk, dh = du; then substituting
it into the previous equation, we get to:

ψX(t | α) = 2
∞

∑
k=0

tk

k!
e
(

α2k2
2

) ∫ −αk

−∞
(h + αk)2φ(h)dh.

Then, by solving the integral and adjusting algebraically, we get to the expression of
Proposition 3.

The pseudo-code presented in Algorithm 1 describes the important steps for the
generation of random (in fact, pseudo-random) numbers from the AU(α) distribution.
Further proofs are attached under Appendix B.

Algorithm 1 Random number generation from the AU(α) model.

Step 1. Generate a random number x1 ∼ χ2
3.

Step 2. Generate a random number u ∼ Uniform(0, 1). If u ≤ 1/2, set v =
√

X1;
otherwise, v = −√x1.

Step 3. Based on the numbers obtained, generate y = α|v|, in which α is a (positive) scale
parameter and |v| follows a Bimodal Half-Normal (BHN) distribution.

Step 4. Conclude with the number generated by Step 3 as a negative power of base e,
that is, x = e−y = e−α|v| ∈ [0, 1].

Step 5. Repeat Steps 1–4 n times to obtain a random sample of size n from the AU(α)
model.

3. Inference

In this section, the parameter estimation adopting the UMVUE and MLE approaches
are discussed. At first, it will be demonstrated that the UMVUE can be obtained straight-
forwardly, since the proposed AU distribution is part of the exponential family. Later, the
MLE will also be discussed, which will help to estimate not only the point estimation of the
α parameter, but also the interval estimation. We enrolled the reasoning considering the
asymptotic convergence in distribution of the parameter estimator, as well as adapted a
transformation that ensures that the interval of the parameter will always be on its domain
(the delta method). The delta transformation procedure will enable the correct inferences
and the standard error calculation associated with the parameter estimate. Later on, a
simulation study to illustrate these theoretical results is presented.

3.1. UMVUE through the Exponential Family

Many of the distributions used in statistics belong to the exponential family, thereby
implying in a considerable advantage over other models that do not belong to this family.
Such an advantage is significantly declared when it comes to calculating the statistic T(X)
of a random sample X = (X1, X2, . . . , Xn). Next, it is shown that the proposed AU(α)
distribution belongs to this family.

A random variable X is said to belong to the one-parameter exponential family if its
associated PDF f (· | θ) can be written in the form of:

f (x | θ) = exp{c(θ)T(x) + d(θ) + S(x)}.
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Let X ∼ AU(α), then the PDF of X can be written in exponential form as it follows:

f (x | α) = exp
{
− 1

2α2 [ln(x)]2 − 3 ln(α) + ln
(
[ln(x)]2

x
√

2π

)}
.

Then, X belongs to the one-parameter exponential family if we define:

c(α) = − 1
2α2 , T(x) = [ln(x)]2, d(α) = −3 ln(α), S(x) = ln

(
[ln(x)]2

x
√

2π

)
.

Let x = (x1, x2, . . . , xn) be an observation (or realization) of the random sample
X = (X1, X2, . . . , Xn), with Xi ∼ AU(α), for i = 1, 2, . . . , n. Then, the joint PDF presented
in exponential form is

f (x | α) = exp

{
− 1

2α2

n

∑
i=1

[ln(xi)]
2 − 3n ln(α) +

n

∑
i=1

ln
(
[ln(xi)]

2

xi
√

2π

)}
,

from which it can be concluded that the statistic T(X) = ∑n
i=1[ln(Xi)]

2 is sufficient and
complete, once the AU distribution is part of the exponential family.

Proposition 4. Let X = (X1, X2, . . . , Xn) be a random sample, with Xi ∼ AU(α), for i =
1, 2, . . . , n, and T(X) = ∑n

i=1[ln(Xi)]
2. Then,

Wn =
1
α2 T(X) ∼ χ2

3n.

Proof. If G =
[

ln(X)
α

]2
, then G ∼ χ2

3. Thus, n independent and identically distributed

samples of G will have the sum of n χ2
3, which will result in a chi-squared distribution with

degrees of freedom equal to 3n, that is, χ2
3n, since

FG(g) = P(G ≤ g) = P
([

ln(X)

α

]2

≤ g

)
= P

(
−√g ≤ ln(X)

α
≤ √g

)
= P(−α

√
g ≤ ln(X) ≤ α

√
g) = P(ln(X) ≤ α

√
g)− P(ln(X) ≤ −α

√
g)

= 1− P(ln(X) ≤ −α
√

g) = 1− P
(

X ≤ e−α
√

g
)
= 1− FX

(
e−α
√

g
)

,

so,

fG(g) =
dFG(g)

dg
= fX

(
e−α
√

g
)(

e−α
√

g
)( α

2
√

g

)
=

2
αe−α

√
g

(−α
√

g
α

)2

φ

(−α
√

g
α

)
e−α
√

g α

2
√

g

=
1
√

g
(
√

g)2 1√
2π

e−
(
√

g)2

2 =
1√
2π

g1/2 exp(−g/2) ≡ χ2
3.

Proposition 5. Let X = (X1, X2, . . . , Xn) be a random sample, with Xi ∼ AU(α), for i =
1, 2, . . . , n, and T(X) = ∑n

i=1[ln(Xi)]
2. Then,

S(X) =
Γ
( 3n

2
)√

2

Γ
(

3n+1
2

)√T(X)

is an unbiased estimator of α.
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Proof. First, remember that if X ∼ Gamma(a, b) distribution, then E[Xk] = Γ(a+b)
bkΓ(a) . Since

the α parameter is observed to be squared, it will be necessary to apply it to find an unbiased
estimator. So, considering the random variable W1/2

n (with Wn as defined in Proposition 4),
it follows that:

E
[
(Wn)

1/2
]
=

Γ
(

3n
2 + 1

2

)
21/2Γ

( 3n
2
) ,

so,

E
[(

1
α2 T(X)

)1/2
]
=

Γ
(

3n
2 + 1

2

)
21/2Γ

( 3n
2
)

E

√T(X)
Γ
( 3n

2
)√

2

Γ
(

3n
2 + 1

2

)


︸ ︷︷ ︸
S(X)

= α.

Remark 3. Considering the two previous propositions and resorting to the Lehmann-Scheffé
theorem, one can conclude that S(X) is UMVUE for α.

3.2. Estimation using the Maximum Likelihood Method

Let x = (x1, x2, . . . , xn) be a realization of the random sample X = (X1, X2, . . . , Xn)
taken from the AU(α) distribution. Then, the log-likelihood function is given by

`(α) = constant− 3n ln(α)− Σn
i=1 ln(xi) + 2Σn

i=1 ln(ln(xi))−
1

2α2 Σn
i=1[ln(xi)]

2.

The MLE of α, i.e., α̂, is found by solving the following equation:

d`(α)
dα

= −3n
α

+
1
α3 Σn

i=1[ln(xi)]
2 = 0,

resulting

α̂ =

{
1

3n

n

∑
i=1

[ln(xi)]
2

}1/2

.

On the other hand, the second derivative of `(α) evaluated at α = α̂ is negative,
therefore concluding that α̂ is MLE for α.

It is known that, under certain regularity conditions,

√
n(α̂− α)

D−→ N
(

0, I−1(α)
)

,

in which I(α) = −E
[

d2`(α)
dα2

]
= 6n

α2 .
A two-sided 100(1− π)% confidence interval for α can be calculated by[

α̂− z1−π/2

√
Var[α̂], α̂ + z1−π/2

√
Var[α̂]

]
, (6)

in which zq is the q-th percentile of the standard normal distribution. The variance of α̂ can
be approximated by the inverse of the observed Fisher information, as

Var[α̂] = I−1(α̂) =
α̂2

6n
.
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Since α is a positive value and we cannot guarantee that the lower limit of the inter-
val (6) is positive, we resort to the delta method to remedy such situation. For this, we
define the function g : [0, ∞)→ R as g(α) = ln(α), and knowing that

√
n(g(α̂)− g(α)) D−→ N

(
0, I−1(α)

[
dg(α)

dα

]2
)

,

we can, then, obtain an approximate two-sided 100(1− π)% confidence interval for α
through α̂ exp

(
− z1−π/2√

6n

)
,

α̂

exp
(
− z1−π/2√

6n

)
. (7)

3.3. Simulation Study

In order to illustrate the presented inferences for the estimation of the AU distribution,
the MLE versus the UMVUE are compared (via simulation study) in this subsection. More-
over, we considered the scenarios in which the parameter α = {0.1, 0.3, 0.5, 0.7, 1.1, 1.5},
considering sample sizes n = {100, 200, 500}, through the Monte Carlo method with
N = 1000 repetitions. This entire procedure took into account the random number genera-
tor for the AU(α) distribution shown in Algorithm 1. All analyses carried out in this study
adopted the open-source R software [24].

For the performance comparison of the proposed estimators (MLE and UMVUE), since
the true parameter value is known, the bias and mean squared error (MSE) metrics were
adopted, and they are defined, respectively, as it follows:

Bias(α) =
1
N

N

∑
i=1

(α̂i − α) and MSE(α) =
1
N

N

∑
i=1

(α̂i − α)2,

in which α̂i is the estimate for α in the i-th iteration (point estimation). Additionally, based
on the asymptotic results presented in this study, we also calculated the 95% confidence
interval (CI) length by adopting the delta method from Equation (7) (interval estimation).
That is, it analyzed the average of all the upper limits of the 95% confidence interval, as
well as the average of all the lower limits, and then calculated their difference.

Table 1 presents the obtained average estimates (AvE) of the α parameter, for each
sample size n, as well as the corresponding bias, MSE and 95% CI length (this last one only
for MLE) results.

The asymptotic convergence of the MLE towards the robustness is noticed as the
sample size increases. In addition, both MLE and UMVUE’s bias and MSE are small and
tend to decrease as n gets larger. On the other hand, the CI length also decreases as the
sample size increases.

Finally, regarding the robustness of the estimators, the difference between the MLE and
UMVUE estimates was taken, considering each different sample size n. Then, the interquartile
range (IQR) was calculated per sample size group. That is, IQR(ni)

(
α̂1

(ni)
MLE − α̂1

(ni)
UMVUE, . . . ,

α̂j
(ni)
MLE − α̂j

(ni)
UMVUE, . . . , α̂6

(ni)
MLE − α̂6

(ni)
UMVUE

)
, in which ni = {100, 200, 500} and αj = {α1 =

0.1, α2 = 0.3, . . . , α6 = 1.5}. For instance, the IQR for n = 100 was 0.00053, whereas for
n = 200 and n = 500, it went down to 0.00025 and 0.00012, respectively. This points out,
in short, that as the sample size gets larger, the error range gets smaller, regardless of the
value of the α parameter.
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Table 1. AvE, bias, MSE and 95% CI length (only for MLE) for the proposed estimators (MLE and
UMVUE) of the single parameter (α) of the AU distribution, considering different sample sizes (n).

n α
MLE UMVUE

AvE Bias MSE CI Length AvE Bias MSE

100 0.1 0.0998 −0.0002 1.6930 × 10−5 0.0160 0.0999 −8.2264 × 10−5 1.6165 × 10−5

200 0.0999 −9.8758 × 10−5 8.7306 × 10−6 0.0113 0.0999 −5.7124 × 10−5 8.7314 × 10−6

500 0.0999 −3.3400 × 10−6 3.5542 × 10−6 0.0071 0.1000 1.3327 × 10−5 3.5555 × 10−6

100 0.3 0.2996 −0.0004 0.0002 0.0480 0.2999 −8.0656 × 10−5 0.0002
200 0.2997 −0.0003 7.8575 × 10−5 0.0339 0.2998 −0.0002 7.8582 × 10−5

500 0.2999 −1.0020 × 10−5 3.1987 × 10−5 0.0214 0.3002 0.0002 3.0979 × 10−5

100 0.5 0.4994 −0.0006 0.0004 0.0800 0.4999 −0.0001 0.0004
200 0.4997 −0.0003 0.0002 0.0565 0.4997 −0.0003 0.0002
500 0.4999 −1.6700 × 10−5 8.8855 × 10−5 0.0357 0.5000 6.6637 × 10−5 8.8888 × 10−5

100 0.7 0.6992 −0.0008 0.0008 0.1120 0.6998 −0.0002 0.0008
200 0.6993 −0.0007 0.0004 0.0791 0.6996 −0.0004 0.0004
500 0.6999 −2.3380 × 10−5 0.0001 0.0501 0.7000 9.3291 × 10−5 0.0001

100 1.1 1.0987 −0.0013 0.0020 0.1760 1.0997 −0.0003 0.0020
200 1.0989 −0.0011 0.0010 0.1244 1.0994 −0.0006 0.0010
500 1.0999 −3.6741 × 10−5 0.0004 0.0787 1.1001 0.0001 0.0004

100 1.5 1.4983 −0.0017 0.0038 0.2400 1.4996 −0.0004 0.0038
200 1.4985 −0.0015 0.0019 0.1696 1.4991 −0.0009 0.0019
500 1.4999 −5.0101 × 10−5 0.0008 0.1073 1.5002 0.0002 0.0007

4. Real-World Exemplifications

In this section, two applications adopting the AU distribution with real-world issues
are exemplified. The first case is related to the dynamics of the Chilean inflation in the
post-military dictatorship period. The second case pertains to the relative humidity of the
air in the northern Chilean city of Copiapó (Atacama region).

The Chilean inflation data are recorded annually, whose values considered the range
from 1992 to 2021. These are based on the period after the military dictatorship of 1973–1990.
It was analyzed the dynamics of the inflation data (in %), which were standardized by
min-max transformation, resulting in a unit response variable (value between zero and
one). The years 1990 and 1991 were excluded, since they are considered to be a period of
transition. Then, the total amount of observations was of 30 years (from 1992 to 2021).

On the other hand, the relative air humidity data cover the period from February 2015
to October 2022, with a one-hour recording format (104,415 observations). Then, this data
set was transformed into daily maximum observation (6226 observations).

4.1. Chilean Inflation (Post-Military Era)

Figure 3 presents the dynamics of the Chilean inflation in the post-military dictatorship
period, demonstrating stability between the years of 1999 and 2008. The right panel displays
the time series of inflation, in which time is measured in years, from year 1 (1992) to year
30 (2021). The left panel depicts the accumulation of the values throughout the time series,
in which a predominant trend is shown around 0.1 of the inflation rate.

Once the empirical dynamics of these data was analyzed, the most common unit
distributions, presented in the statistical literature, were fitted. The upper panel of Figure 4
illustrates the histogram for the inflation data, in which it is compared with different
fitted densities based on the MLE: AU, beta (BE), Kumaraswamy (KUM), logit-normal
(LOGITNO), simplex (SIMPLEX), unit-half-normal (UHN), and unit-Lindley (ULINDLEY).
The lower panel of the same figure presents the fitted CDFs superimposed to the empirical
CDF (ECDF).
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Figure 3. Chilean inflation in the period 1992–2021 (post-military era). The histogram on the left
presents a skewness of the data. The dynamics is represented in the right panel, in which a disturbance
(outlier) is observed in the year 2008 (observation #17).

Figure 4. Estimated densities superimposed to the histogram (top-chart), and estimated CDFs
superimposed to the ECDF (bottom-chart) (Chilean inflation data).

In order to quantify the performance of the fitted models, the Akaike Information
Criterion (AIC) [25] and the Bayesian (or Schwarz) Information Criterion (BIC) [26] were
analyzed. The obtained results (see Table 2) indicated the AU model as the best-fitted
model to this data set. In addition, it is possible to make an inference about the average
of the phenomenon, that is, the expectation of the AU(α̂ = 1.2059) model, resulting in
E[XInflation] = 0.1948. In other words, the average Chilean inflation, in post-military era, is
of 19.49%.

In the following subsection, it is illustrated the performance of the AU model when
adopting a high-frequency data set originated from the relative humidity from a city located
in the Atacama Desert.
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Table 2. Parameter estimates, AIC and BIC values (Chilean inflation data). S.E. = standard error.

Model Parameter Estimate (S.E.) AIC BIC

AU(α) α̂ = 1.205943 (0.008079) −47.89 −46.49

BE(µ, σ)
µ̂ = 0.185857 (0.000496)

−44.58 −41.78σ̂ = 0.314688 (0.001304)

KUM(µ, σ)
µ̂ = 1.370127 (0.045522)

−43.63 −40.83σ̂ = 7.968427 (7.750459)

LOGITNO(µ, σ)
µ̂ = 0.150323 (0.000457)

−46.23 −43.43σ̂ = 0.916938 (0.014013)

SIMPLEX(µ, σ)
µ̂ = 0.182462 (0.000584)

−43.17 −40.37σ̂ = 2.854833 (0.135834)

UHN(σ) σ̂ = 0.413894 (0.002855) −33.62 −32.22

ULINDLEY(µ) µ̂ = 0.186834 (0.000575) −41.99 −40.58

4.2. Water Monitoring in Air Humidity

The hydrological regime of the main rivers of Atacama is characterized by ice sources:
water flows from the peaks following the melting of snowfall, glaciers, and permafrost
located in the upper parts of the Andes range. In the context of climate change, it is,
therefore, essential to understand the hydrological cycle of these regions, in order to set up
a sustainable management policy to them. Understanding the hydrological cycle requires
the implementation of tools for forecasting river flows, relative humidity, groundwater
reservoirs, or any other water-related quantity monitoring, which inevitably demands an in-
depth knowledge with respect to the physical phenomena that rule the entire hydrological
cycle and, more precisely, the complex interaction between atmosphere, climate, landforms,
ice, snow and river flows.

Additionally, a unique phenomenon called Camanchaca happens, which consists in
a fog passing by the Copiapó city, recurrent only between midnight to around 10 a.m.
Here, we demonstrate the variation of the relative humidity of Copiapó city, proposing
a methodology that can be efficient, adjustable to these data. Using the daily maximum
relative humidity, six different unit distributions were compared: AU, BE, KUM, LOGITNO,
SIMPLEX, and UHN, as shown in Figure 5.

After comparing the commonly used unit models, we demonstrate the advantage
of fitting the AU model over others (visually). Table 3 confirms the best fit of the AU
model, based on information criteria (AIC and BIC), as well as depicts the estimation of the
parameter(s) of each model.

Table 3. Parameter estimates, AIC and BIC values (relative air humidity data).

Model Parameter Estimate (S.E.) AIC BIC

AU(α) α̂ = 0.1092 (3.1902× 10−7) −14,023.49 −14,016.76

BE(µ, σ)
µ̂ = 0.8476 (1.2027× 10−6)

−13,927.89 −13,914.41
σ̂ = 0.2410 (4.1119× 10−6)

KUM(µ, σ)
µ̂ = 9.4004 (0.0141)

−13,605.90 −13,592.43σ̂ = 2.3882 (0.0019)

LOGITNO(µ, σ)
µ̂ = 0.8693 (3.1376× 10−6)

−7600.43 −7586.95
σ̂ = 1.2299 (1.2148× 10−4)

SIMPLEX(µ, σ)
µ̂ = 0.9735 (1.2959× 10−6)

32,477.13 32,490.61σ̂ = 94.0480 (0.7103)

UHN(σ) σ̂ = 99.9900 (6.5334× 10−7) 5,101,018,733.13 5,101,018,739.86
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Figure 5. Estimated densities superimposed to the histogram (top-chart), and estimated CDFs
superimposed to the ECDF (bottom-chart) (relative air humidity data).

After obtaining the parameter estimate for α, the AU model (best-fitted model) was
used to construct a Statistical Process Control (SPC) chart [27], by calculating a tolerance
upper-lower bound. Moreover, the Highest Density Interval (HDI) was adopted, consider-
ing a confidence degree of 99%, to monitor the daily maximum relative humidity records
(as displayed by Figure 6).

Figure 6. SPC control chart, considering a 99% of tolerance based on the AU model fitted to the
daily maximum relative humidity of Copiapó city, Chile, from 1 February 2015 to 4 October 2022.
It is observed that 193 days (3.1%) presented anomaly values (out-of-control signals). The obtained
control limits were: LCL = 68.56% and UCL = 97.73%.
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The expected daily maximum water relative humidity is of 84.23% (based on the fitted
AU model). The obtained control limits, considering a confidence (or tolerance) level of
99%, were: LCL = 68.56% and UCL = 97.73%. Thus, the control chart based on the AU
model (AU control chart) is another exciting and valuable alternative to some well-known
SPC tools, which enlightens the forecasting and opens new doors to discuss extreme events
in the Atacama water particles monitored by probabilistic reasoning.

5. Conclusions

This study showed the competitiveness of the developed Theorem 1 (Equation (1)),
which enables for a great class of distributions that belong all to the exponential family.
As an exemplification, we adopted the special case for k = 1, which is equivalent to the
moment of order two of the standard normal distribution, and after some transformations,
we developed the Alpha-Unit (AU) distribution. Also, we dedicated to the unit range,
given the importance of this stochasticity representation.

Unit distributions are useful for values that oscillate between zero and one, such as
fractions, proportions and rates, among others, or for a set of values in which there is
a minimum or maximum limitation, resorting to standardization through the min-max
transformation. Most distributions of this type come from transforming a random variable
with certain distribution so that it takes values between zero and one, as in the case of
unit-Lindley distribution [9], which comes from the Lindley distribution [28,29].

There are numerous studies based on (e.g., unit) distributions, by extending a model
and applying it to several areas [11,14,16]. In this study, we introduced and showed the
competitiveness of the AU distribution, especially for data with a range greater than 0.4,
or which present high asymmetry and low decay. Further studies shall investigate this
hypothesis in a wider amount of data sets (through different sorts of wide data range).
Additionally, an implementation of this model adopting hierarchical estimation and spatio-
temporal dependence would be useful for forecast/predictable problems.
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Appendix A

This appendix shows the proof that for a random variable

X ∼ BN(k) → X2 ∼ χ2
2k+1.

Then,

FX2(x) = P
(

X2 ≤ x
)
= P

(
−
√

x ≤ X ≤
√

x
)
= 2P

(
X ≤

√
x
)
− 1 = 2FX

(√
x
)
− 1.

https://github.com/ProfNascimento/AlphaUnit
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It follows that

fX2(x) = 2 fX
(√

x
) 1

2
√

x
=

1
c
(√

x
)2k

φ(
√

x)
1√
x
=

1

∏k
j=1(2j− 1)

(√
x
)2k−1 1√

2π
e−

x
2 .

Knowing that Γ
(

2k+1
2

)
= ∏k

j=1(2j− 1)
√

π
2k , then

fX2(x) =
1

∏k
j=1(2j− 1)

x
2k−1

2
1√
2π

e−
x
2 =

√
π

2kΓ
(

2k+1
2

) x
2k−1

2

21/2
√

π
e−

x
2

=
1

Γ
(

2k+1
2

)
2

2k+1
2

x
2k−1

2 e−
x
2 .

Therefore, X2 ∼ χ2
2k+1.

Besides that, complementation can be taken into account by saying that, considering
W2 ∼ χ2

2k+1 and P(W1 = ±1) = 1/2, then B = W1
√

W2 ∼ BN(k).
Let b ≥ 0, then

FB(b) = P(B ≤ b) = P
(

W1
√

W2 ≤ b
)

= P
(

W1
√

W2 ≤ b |W1 = 1
)
P(W1 = 1) + P

(
W1
√

W2 ≤ b |W1 = −1
)
P(W1 = −1)

ind.
= P

(
(1)
√

W2 ≤ b
)1

2
+ P

(
(−1)

√
W2 ≤ b

)1
2

.

Since b ≥ 0, then P
(
(−1)

√
W2 ≤ b

)
= 1 :

= P
(√

W2 ≤ b
)1

2
+

1
2
= P

(
|W2| ≤ b2

)1
2
+

1
2
= P

(
−b2 ≤W2 ≤ b2

)1
2
+

1
2

=
1
2

[
P
(

X ≤ b2
)
− P

(
X ≤ −b2

)
︸ ︷︷ ︸

0

]
+

1
2
=

1
2
P
(

X ≤ b2
)
+

1
2
=

1
2

FX

(
b2
)
+

1
2

Therefore,

fB(b) =
dFB(b)

db
=

1
2

fX

(
b2
)

2b = b fX

(
b2
)
= b

1

Γ
(

2k+1
2

)
2

2k+1
2

(
b2
) 2k+1

2 −1
e−

b2
2

= b
1

Γ
(

2k+1
2

)
2

2k+1
2

b2k−1e−
b2
2 =

1
√

π ∏k
j=1(2j−1)

2k 2
2k+1

2

b2ke−
b2
2

=
1

∏k
j=1(2j− 1)

b2k
√

2π
e−

b2
2 =

1
k

∏
j=1

(2j− 1)︸ ︷︷ ︸
c

b2kφ(b).

Analogously, it is proved for b < 0.

Appendix B

The proposed theorem (Theorem 1) will be illustrated considering k = 1, to show the
origin of the random numbers that generate the AU distribution.

Proposition A1. If X ∼ BN(1), then fX(x) = x2φ(x) is a bimodal density function.
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Proof. If fX(x) is bimodal, it would have two maxima, to which the first and second
derivative criteria would be applied:

d fX(x)
dx

= 0 ⇒

d
(

x2φ(x)
)

dx
= 2xφ(x) + x2[−xφ(x)] = 2xφ(x)− x3φ(x) = xφ(x)

(
2− x2

)
= 0.

Then, it can be seen that the solutions for the previous equation would be: x1 = 0,
x2 =

√
2, x3 = −

√
2. Hence, by applying the second derivative criterion:

d2 fX(x)
dx2 < 0 ⇒

d
(

xφ(x)
(
2− x2))

dx
= φ(x)

(
2− x2

)
+ x[−xφ(x)]

(
2− x2

)
+ xφ(x)(−2x).

Reducing algebraically, we get to:

d2 fX(x)
dx2 = φ(x)

(
2− 5x2 + x4

)
< 0.

The only solutions that satisfy the previous inequality are: x2 =
√

2, x3 = −
√

2.
Therefore, there are two maxima and the BN distribution is bimodal.

Definition A1 (Bimodal Half-Normal distribution). Let Y ∼ BN(1). If Q = α|Y|, with α > 0,
then we say that Q is distributed according to a Bimodal Half-Normal (BHN) distribution with
parameter α, and we denote it by Q ∼ BHN(α).

Proposition A2. If Q ∼ BHN(α), then the PDF of Q is given by

fQ(q | α) =
2
α

( q
α

)2
φ
( q

α

)
, q > 0.

Proof. Since Q = α|Y|, with Y ∼ BN(1), then

FQ(q) = P(Q ≤ q) = P(α|Y| ≤ q) = P
(
− q

α
≤ Y ≤ q

α

)
= 2P

(
Y ≤ q

α

)
− 1 = 2FY

( q
α

)
− 1.

Hence, by deriving the previous expression, one has that

fQ(q) = 2 fY

( q
α

) 1
α
=

2
α

( q
α

)2
φ
( q

α

)
.

Proposition A3. If Q ∼ BHN(α), then

X = e−Q ∼ AU(α).

Proof. Let X = e−Q, 0 < x ≤ 1, then

FX(x) = P(X ≤ x) = P
(

e−Q ≤ x
)
= P(−Q ≤ ln(x)) = P(Q ≥ − ln(x))

= 1− P(Q ≤ − ln(x)) = 1− FQ(− ln(x)).
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By deriving the previous expression, we have:

fX(x) = fQ(− ln(x))
1
x
=

2
α

(
− ln(x)

α

)2

φ

(
− ln(x)

α

)
1
x
=

2
αx

(
ln(x)

α

)2

φ

(
ln(x)

α

)
.
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