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Abstract: In this paper, we introduce and investigate new subclasses of bi-univalent functions with
respect to the symmetric points in U = {z ∈ C : |z| < 1} defined by Bernoulli polynomials. We obtain
upper bounds for Taylor–Maclaurin coefficients |a2|, |a3| and Fekete–Szegö inequalities

∣∣a3 − µa2
2
∣∣

for these new subclasses.
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1. Introduction

Let the class of analytic functions in U = {z ∈ C : |z| < 1}, denoted by A, contain all
the functions of the type

l(z) = z +
∞

∑
k=2

akzk, (z ∈U), (1)

which satisfy the usual normalization condition l(0) = l′(0)− 1 = 0.
Let S be the subclass of A consisting of all functions l ∈ A, which are also univalent in

U. The Koebe one quarter theorem [1] ensures that the image of U under every univalent
function l ∈ A contains a disk of radius 1

4 . Thus, every univalent function l has an inverse
l−1 satisfying

l−1(l(z)) = z, (z ∈ U) and l
(

l−1(ω)
)
= ω, (|ω| < r0(l), r0(l) ≥

1
4
).

If l and l−1 are univalent in U, then l ∈ A is said to be bi-univalent in U, and the class
of bi-univalent functions defined in the unit disk U is denoted by Σ. Since l ∈ Σ has the
Maclaurin series given by (1), a computation shows that m = l−1 has the expansion

m(ω) = l−1(ω) = ω− a2ω2 +
(

2a2
2 − a3

)
ω3 + · · · . (2)

The expression Σ is a non-empty class of functions, as it contains at least the functions

l1(z) = −
z

1− z
, l2(z) =

1
2

log
1 + z
1− z

,

with their corresponding inverses

l−1
1 (ω) =

ω

1 + ω
, l−1

2 (ω) =
e2ω − 1
e2ω + 1

.
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In addition, the Koebe function l(z) = z
(1−z)2 /∈ Σ.

The study of analytical and bi-univalent functions is reintroduced in the publication
of [2] and is then followed by work such as [3–8]. The initial coefficient constraints have
been determined by several authors who have also presented new subclasses of bi-univalent
functions (see [2–4,6,9–11]).

Consider α and β to be analytic functions in U. We say that α is subordinate to β, if
a Schwarz function w exists that is analytic in U with w(0) = 0 and |w(z)| < 1, (z ∈ U)
such that

α(z) = β(w(z)), (z ∈ U).

This subordination is denoted by α ≺ β or α(z) ≺ β(z), (z ∈ U). Given that β is a
univalent function in U, then

α(z) ≺ β(z)⇔ α(0) = β(0) and α(U) ⊂ β(U).

Using Loewner’s technique, the Fekete–Szegö problem for the coefficients of l ∈ S
in [6] is ∣∣∣a3 − µa2

2

∣∣∣ ≤ 1 + 2 exp
(
−2µ

1− µ

)
for 0 ≤ µ < 1.

The elementary inequality
∣∣a3 − a2

2

∣∣ ≤ 1 is obtained as µ→ 1. The coefficient functional

Fµ(l) = a3 − µa2
2

on the normalized analytic functions l in the open unit disk U also has a significant impact
on geometric function theory. The Fekete–Szegö problem is known as the maximization
problem for functional

∣∣Fµ(l)
∣∣.

Researchers were concerned about several classes of univalent functions
(see [12–15]) due to the Fekete–Szegö problem, proposed in 1933 ([16]); therefore, it stands
to reason that similar inequalities were also discovered for bi-univalent functions, and fairly
recent publications can be cited to back up the claim that the subject still yields intriguing
findings [17–19].

Because of their importance in probability theory, mathematical statistics, mathemati-
cal physics, and engineering, orthogonal polynomials have been the subject of substantial
research in recent years from a variety of angles. The classical orthogonal polynomials are
the orthogonal polynomials that are most commonly used in applications (Hermite polyno-
mials, Laguerre polynomials, Jacobi polynomials, and Bernoulli). We point out [17,18,20–24]
as more recent examples of the relationship between geometric function theory and classical
orthogonal polynomials.

Fractional calculus, a classical branch of mathematical analysis whose foundations
were laid by Liouville in an 1832 paper and is currently a very active research field [25], is
one of many special functions that are studied. This branch of mathematics is known as
the Bernoulli polynomials, named after Jacob Bernoulli (1654–1705). A novel approxima-
tion method based on orthonormal Bernoulli’s polynomials has been developed to solve
fractional order differential equations of the Lane–Emden type [26], whereas in [27–29],
Bernoulli polynomials are utilized to numerically resolve Fredholm fractional integro-
differential equations with right-sided Caputo derivatives.

The Bernoulli polynomials Bn(x) are often defined (see, e.g., [30]) using the generating
function:

F(x, t) =
text

et − 1
=

∞

∑
n=0

Bn(x)
n!

tn, |t| < 2π, (3)

where Bn(x) are polynomials in x, for each nonnegative integer n.
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The Bernoulli polynomials are easily computed by recursion since

n−1

∑
j=0

(
n
j

)
Bj(x) = nxn−1, n = 2, 3, · · · . (4)

The initial few polynomials of Bernoulli are

B0(x) = 1, B1(x) = x− 1
2

, B2(x) = x2 − x +
1
6

, B3(x) = x3 − 3
2

x2 +
1
2

x, · · · . (5)

Sakaguchi [31] introduced the class S∗s of functions starlike with respect to symmetric
points, which consists of functions l ∈ S satisfying the condition

Re
{

zl′(z)
l(z)− l(−z)

}
> 0, (z ∈ U).

In addition, Wang et al. [32] introduced the class Cs of functions convex with respect
to symmetric points, which consists of functions l ∈ S satisfying the condition

Re

{
[zl′(z)]′

[l(z)− l(−z)]′

}
> 0, (z ∈ U).

In this paper, we consider two subclasses of Σ: the class SΣ
s (x) of functions bi-starlike

with respect to the symmetric points and the relative class CΣ
s (x) of functions bi-convex

with respect to the symmetric points associated with Bernoulli polynomials. The definitions
are as follows:

Definition 1. l ∈ SΣ
s (x), if the next subordinations hold:

2zl′(z)
l(−z)− l(z)

≺ F(x, z), (6)

and
2ωm′(ω)

m(ω)−m(−ω)
≺ F(x, ω), (7)

where z, ω ∈ U, F(x, z) is given by (3), and m = l−1 is given by (2).

Definition 2. l ∈ CΣ
s (x), if the following subordinations hold:

2[zl′(z)]′

[l(z)− l(−z)]′
≺ F(x, z), (8)

and
2[ωm′(ω)]′

[m(ω)−m(−ω)]′
≺ F(x, ω), (9)

where z, ω ∈ U, F(x, z) is given by (3), and m = l−1 is given by (2).

Lemma 1 ([33], p. 172). Suppose that c(z) = ∑∞
n=1 cnzn, |c(z)| < 1, z ∈ U, is an analytic

function in U. Then,
|c1| ≤ 1, |cn| ≤ 1− |c1|2, n = 2, 3, · · · .

2. Coefficients Estimates for the Class SΣ
s (x)

We obtain upper bounds of |a2| and |a3| for the functions belonging to the class SΣ
s (x).
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Theorem 1. If l ∈ SΣ
s (x), then

|a2| ≤ |B1(x)|
√

6|B1(x)|, (10)

and

|a3| ≤
B1(x)

2
+

[B1(x)]2

4
. (11)

Proof. Let l ∈ SΣ
s (x) and m = l−1. From definition in (6) and (7), we have

2l′(z)z
l(z)− l(−z)

= F(x, ϕ(z)), (12)

and
2ωm′(ω)

m(ω)−m(−ω)
= F(x, χ(ω)), (13)

where ϕ and χ are analytic functions in U given by

ϕ(z) = r1z + r2z2 + · · · , (14)

χ(ω) = s1ω + s2ω2 + · · · , (15)

and ϕ(0) = χ(0) = 0, and |ϕ(z)| < 1, |χ(ω)|< 1, z, ω ∈ U.
As a result of Lemma 1,

|rk| ≤ 1 and |sk| ≤ 1, k ∈ N. (16)

If we replace (14) and (15) in (12) and (13), respectively, we obtain

2zl′(z)
l(z)− l(−z)

= B0(x) + B1(x)ϕ(z) +
B2(x)

2!
ϕ2(z) + · · · , (17)

and
2ωm′(ω)

m(ω)−m(−ω)
= B0(x) + B1(x)χ(ω) +

B2(x)
2!

χ2(ω) + · · · . (18)

In view of (1) and (2), from (17) and (18), we obtain

1 + 2a2z + 2a3z2 + · · · = 1 + B1(x)r1z +
[

B1(x)r2 +
B2(x)

2!
r2

1

]
z2 + · · ·

and

1− 2a2ω + (4a2
2 − 2a3)ω

2 + · · · = 1 + B1(x)s1ω +

[
B1(x)s2 +

B2(x)
2!

s2
1

]
ω2 + · · · ,

which yields the following relations:

2a2 = B1(x)r1, (19)

2a3 = B1(x)r2 +
B2(x)

2!
r2

1, (20)

and
− 2a2 = B1(x)s1, (21)

4a2
2 − 2a3 = B1(x)s2 +

B2(x)
2!

s2
1. (22)
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From (19) and (21), it follows that

r1 = −s1, (23)

and
8a2

2 = [B1(x)]2
(

r2
1 + s2

1

)
a2

2 =
[B1(x)]2

(
r2

1 + s2
1
)

8
. (24)

Adding (20) and (22), using (24), we obtain

a2
2 =

[B1(x)]3(r2 + s2)

4([B1(x)]2 − B2(x))
. (25)

Using relation (5), from (16) for r2 and s2, we get (10).
Using (23) and (24), by subtracting (22) from relation (20), we get

a3 =
B1(x)(r2 − s2) +

B2(x)
2! (r2

1 − s2
1)

4
+ a2

2

=
B1(x)(r2 − s2) +

B2(x)
2! (r2

1 − s2
1)

4
+

[B1(x)]2
(
r2

1 + s2
1
)

8
. (26)

Once again applying (23) and using (5), for the coefficients r1, s1, r2, s2, we deduce
(11).

3. The Fekete–Szegö Problem for the Function Class SΣ
s (x)

We obtain the Fekete–Szegö inequality for the class SΣ
s (x) due to the result of Zaprawa;

see [19].

Theorem 2. If l given by (1) is in the class SΣ
s (x) where µ ∈ R, then we have

∣∣∣a3 − µa2
2

∣∣∣ ≤ { B1(x)
2 , if |h(µ)| ≤ 1

4 ,
2B1(x)|h(µ)|, if |h(µ)| ≥ 1

4 ,

where
h(µ) = 3(1− µ)[B1(x)]2.

Proof. If l ∈ SΣ
s (x) is given by (1), from (25) and (26), we have

a3 − µa2
2 =

B1(x)(r2 − s2)

4
+ (1− µ)a2

2

=
B1(x)(r2 − s2)

4
+

(1− µ)[B1(x)]3(r2 + s2)

4([B1(x)]2 − B2(x))

= B1(x)

[
r2

4
− s2

4
+

(1− µ)[B1(x)]2r2

4([B1(x)]2 − B2(x))
+

(1− µ)[B1(x)]2s2

4([B1(x)]2 − B2(x))

]

= B1(x)
[(

h(µ) +
1
4

)
r2 +

(
h(µ)− 1

4

)
s2

]
,

where

h(µ) =
(1− µ)[B1(x)]2

4([B1(x)]2 − B2(x))
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Now, by using (5)

a3 − µa2
2 =

(
x− 1

2

)[(
h(µ) +

1
4

)
r2 +

(
h(µ)− 1

4

)
s2

]
,

where

h(µ) = 3(1− µ)

(
x− 1

2

)2
.

Therefore, given (5) and (16), we conclude that the necessary inequality holds.

4. Coefficients Estimates for the Class CΣ
s (x)

We will obtain upper bounds of |a2| and |a3| for the functions belonging to a class
CΣ

S (x).

Theorem 3. If l ∈ CΣ
s (x), then

|a2| ≤
|B1(x)|

√
|B1(x)|√∣∣∣6[B1(x)]2 − 8B2(x)

∣∣∣ , (27)

and

|a3| ≤
B1(x)

6
+

[B1(x)]2

16
. (28)

Proof. Let l ∈ CΣ
s (x) and m = l−1. From (8) and (9), we get

2[zl′(z)]′

[l(z)− l(−z)]′
= F(x, ϕ(z)), (29)

and
2[ωm′(ω)]′

[m(ω)−m(−ω)]′
= F(x, χ(ω)) (30)

where ϕ and χ are analytic functions in U given by

ϕ(z) = r1z + r2z2 + · · · , (31)

χ(ω) = s1ω + s2ω2 + · · · , (32)

where ϕ(0) = χ(0) = 0, and |ϕ(z)| < 1, |χ(ω)| < 1, z, ω ∈ U.
As a result of Lemma 1,

|rk| ≤ 1 and |sk| ≤ 1, k ∈ N. (33)

If we replace (31) and (32) in (29) and (30), respectively, we obtain

2[zl′(z)]′

[l(z)− l(−z)]′
= B0(x) + B1(x)ϕ(z) +

B2(x)
2!

ϕ2(z) + · · · , (34)

and
2[ωm′(ω)]′

[m(ω)−m(−ω)]′
= B0(x) + B1(x)χ(ω) +

B2(x)
2!

χ2(ω) + · · · . (35)

In view of (1) and (2), from (34) and (35), we obtain

1 + 4a2z + 6a3z2 + · · · = 1 + B1(x)r1z +
[

B1(x)r2 +
B2(x)

2!
r1

2
]

z2 + · · ·
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and

1− 4a2ω +
(

12a2
2 − 6a3

)
ω2 + · · · = 1 + B1(x)s1ω +

[
B1(x)s2 +

B2(x)
2!

s1
2
]

ω2 + · · · ,

which yields the following relations:

4a2 = B1(x)r1, (36)

6a3 = B1(x)r2 +
B2(x)

2!
r2

1, (37)

and
− 4a2 = B1(x)s1, (38)

12a2
2 − 6a3 = B1(x)s2 +

B2(x)
2!

s2
1. (39)

From (36) and (38), it follows that

r1 = −s1, (40)

and
32a2

2 = [B1(x)]2
(

r2
1 + s2

1

)
a2

2 =
[B1(x)]2

(
r2

1 + s2
1
)

32
. (41)

Adding (37) and (39), using (41), we obtain

a2
2 =

[B1(x)]3(r2 + s2)

4(3[B1(x)]2 − 4B2(x))
. (42)

Using relation (5), from (33) for r2 and s2, we get (27). Using (40) and (41), by subtract-
ing (39) from relation (37), we get

a3 =
B1(x)(r2 − s2) +

B2(x)
2!
(
r2

1 − s2
1
)

12
+ a2

2 (43)

=
B1(x)(r2 − s2) +

B2(x)
2!
(
r2

1 − s2
1
)

12
+

[B1(x)]2
(
r2

1 + s2
1
)

32
.

Once again applying (40) and using (5), for the coefficients r1, s1, r2, s2, we deduce
(28).

5. The Fekete–Szegö Problem for the Function Class CΣ
s (x)

We obtain the Fekete–Szegö inequality for the class CΣ
s (x) due to the result of Zaprawa;

see [19].

Theorem 4. If l given by (1) is in the class CΣ
s (x) where µ ∈ R, then, we have

∣∣∣a3 − µa2
2

∣∣∣ ≤ { B1(x)
6 , if |h(µ)| ≤ 1

12 ,
2B1(x)|h(µ)|, if |h(µ)| ≥ 1

12 ,

where

h(µ) =
(1− µ)[B1(x)]2

4(3[B1(x)]2 − 4B2(x))
.
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Proof. If l ∈ CΣ
s (x) is given by (1), from (42) and (43), we have

a3 − µa2
2 =

B1(x)(r2 − s2)

12
+ (1− µ)a2

2

=
B1(x)(r2 − s2)

12
+

(1− µ)[B1(x)]3(r2 + s2)

4(3B1(x)2 − 4B2(x))

= B1(x)

[
r2 − s2

12
+

(1− µ)[B1(x)]2r2

4(3[B1(x)]2 − 4B2(x))
+

(1− µ)[B1(x)]2s2

4(3[B1(x)]2 − 4B2(x))

]

= B1(x)
[(

h(µ) +
1

12

)
r2 +

(
h(µ)− 1

12

)
s2

]
,

where

h(µ) =
(1− µ)[B1(x)]2

4(3[B1(x)]2 − 4B2(x))
.

Now, by using (5)

a3 − µa2
2 =

(
x− 1

2

)[(
h(µ) +

1
12

)
r2 +

(
h(µ)− 1

12

)
s2

]
,

where

h(µ) =
(1− µ)

[
x− 1

2

]2

4(3
(

x− 1
2

)2
− 4(x2 − x + 1

6 ))
.

Therefore, given (5) and (33), we conclude that the required inequality holds.

6. Conclusions

We introduce and investigate new subclasses of bi-univalent functions in U associ-
ated with Bernoulli polynomials and satisfying subordination conditions. Moreover, we
obtain upper bounds for the initial Taylor–Maclaurin coeffcients |a2|, |a3| and Fekete–Szegö
problem

∣∣a3 − µa2
2

∣∣ for functions in these subclasses.
The approach employed here has also been extended to generate new bi-univalent

function subfamilies using the other special functions. The researchers may carry out the
linked outcomes in practice.
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27. Cãtinaş, T. An iterative modification of Shepard–Bernoulli Operator. Results Math. 2016, 69, 387–395. [CrossRef]
28. Dell’Accio, F.; Di Tommaso, F.; Nouisser, O.; Zerroudi, B. Increasing the approximation order of the triangular Shepard method.

Appl. Numerical Math. 2018, 126, 78–91. [CrossRef]
29. Loh, J.R.; Phang, C. Numerical solution of Fredholm fractional integro-differential equation with right-sided Caputo’s derivative

using Bernoulli polynomials operational matrix of fractional derivative. Mediterr. J. Math. 2019, 16, 28. [CrossRef]
30. Natalini, P.; Bernardini, A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 2003, 794908. [CrossRef]
31. Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [CrossRef]
32. Wang, Z.G.; Gao, C.Y.; Yuan, S.M. On certain subclasses of close-to-convex and quasi-convex functions with respect to k -symmetric

points. J. Math. Anal. Appl. 2006, 322, 97–106. [CrossRef]
33. Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952.

http://dx.doi.org/10.4153/CJM-1970-055-8
http://dx.doi.org/10.1016/j.aml.2011.03.048
http://dx.doi.org/10.1090/S0002-9939-1967-0206255-1
http://dx.doi.org/10.3934/math.2021618
http://dx.doi.org/10.1007/s13370-016-0478-0
http://dx.doi.org/10.1186/1687-2770-2013-98
http://dx.doi.org/10.1016/j.amc.2012.01.070
http://dx.doi.org/10.3390/math6120298
http://dx.doi.org/10.3390/sym13112118
http://dx.doi.org/10.1112/jlms/s1-8.2.85
http://dx.doi.org/10.1007/s40590-021-00385-5
http://dx.doi.org/10.36045/bbms/1394544302
http://dx.doi.org/10.3390/sym14010147
http://dx.doi.org/10.1016/S0377-0427(02)00642-8
http://dx.doi.org/10.1515/ms-2017-0333
http://dx.doi.org/10.3390/math10081309
http://dx.doi.org/10.1016/j.cnsns.2010.05.027
http://dx.doi.org/10.1007/s40819-019-0677-0
http://dx.doi.org/10.1007/s00025-015-0498-3
http://dx.doi.org/10.1016/j.apnum.2017.12.006
http://dx.doi.org/10.1007/s00009-019-1300-7
http://dx.doi.org/10.1155/S1110757X03204101
http://dx.doi.org/10.2969/jmsj/01110072
http://dx.doi.org/10.1016/j.jmaa.2005.08.060

	Introduction
	Coefficients Estimates for the Class Ss(x) 
	The Fekete–Szegö Problem for the Function Class Ss(x) 
	Coefficients Estimates for the Class  Cs(x) 
	The Fekete–Szegö Problem for the Function Class  Cs(x) 
	Conclusions
	References

