New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials

Mucahit Buyankara ${ }^{1(\mathbb{D}}$, Murat Çağlar ${ }^{2}$ (D) and Luminiţa-Ioana Cotîrlă ${ }^{3, *}$ ©
1 Vocational School of Social Sciences, Bingöl University, Bingöl 12000, Türkiye
2 Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Türkiye
3 Department of Mathematics, Technical University of Cluj-Napoca, 400020 Cluj-Napoca, Romania
* Correspondence: luminita.cotirla@math.utcluj.ro

Citation: Buyankara, M.; Çağlar, M.; Cotîrlă, L.-I. New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials. Axioms 2022, 11, 652. https://doi.org/10.3390/ axioms11110652

Academic Editors: Juan J. Nieto and Sevtap Sümer Eker

Received: 11 October 2022
Accepted: 15 November 2022
Published: 17 November 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper, we introduce and investigate new subclasses of bi-univalent functions with respect to the symmetric points in $U=\{z \in \mathbb{C}:|z|<1\}$ defined by Bernoulli polynomials. We obtain upper bounds for Taylor-Maclaurin coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ and Fekete-Szegö inequalities $\left|a_{3}-\mu a_{2}^{2}\right|$ for these new subclasses.

Keywords: Fekete-Szegö inequality; Bernoulli polynomial; analytic and bi-univalent functions; subordination; symmetric points

MSC: 30C45; 30C50

1. Introduction

Let the class of analytic functions in $U=\{z \in \mathbb{C}:|z|<1\}$, denoted by A, contain all the functions of the type

$$
\begin{equation*}
l(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad(z \in U) \tag{1}
\end{equation*}
$$

which satisfy the usual normalization condition $l(0)=l^{\prime}(0)-1=0$.
Let S be the subclass of A consisting of all functions $l \in A$, which are also univalent in U. The Koebe one quarter theorem [1] ensures that the image of U under every univalent function $l \in A$ contains a disk of radius $\frac{1}{4}$. Thus, every univalent function l has an inverse l^{-1} satisfying

$$
l^{-1}(l(z))=z,(z \in U) \text { and } l\left(l^{-1}(\omega)\right)=\omega,\left(|\omega|<r_{0}(l), r_{0}(l) \geq \frac{1}{4}\right)
$$

If l and l^{-1} are univalent in U, then $l \in A$ is said to be bi-univalent in U, and the class of bi-univalent functions defined in the unit disk U is denoted by Σ. Since $l \in \Sigma$ has the Maclaurin series given by (1), a computation shows that $m=l^{-1}$ has the expansion

$$
\begin{equation*}
m(\omega)=l^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}+\cdots \tag{2}
\end{equation*}
$$

The expression Σ is a non-empty class of functions, as it contains at least the functions

$$
l_{1}(z)=-\frac{z}{1-z^{\prime}}, l_{2}(z)=\frac{1}{2} \log \frac{1+z}{1-z}
$$

with their corresponding inverses

$$
l_{1}^{-1}(\omega)=\frac{\omega}{1+\omega}, \quad l_{2}^{-1}(\omega)=\frac{e^{2 \omega}-1}{e^{2 \omega}+1}
$$

In addition, the Koebe function $l(z)=\frac{z}{(1-z)^{2}} \notin \Sigma$.
The study of analytical and bi-univalent functions is reintroduced in the publication of [2] and is then followed by work such as [3-8]. The initial coefficient constraints have been determined by several authors who have also presented new subclasses of bi-univalent functions (see [2-4,6,9-11]).

Consider α and β to be analytic functions in U. We say that α is subordinate to β, if a Schwarz function w exists that is analytic in U with $w(0)=0$ and $|w(z)|<1,(z \in U)$ such that

$$
\alpha(z)=\beta(w(z)), \quad(z \in U) .
$$

This subordination is denoted by $\alpha \prec \beta$ or $\alpha(z) \prec \beta(z),(z \in U)$. Given that β is a univalent function in U, then

$$
\alpha(z) \prec \beta(z) \Leftrightarrow \alpha(0)=\beta(0) \text { and } \alpha(U) \subset \beta(U) .
$$

Using Loewner's technique, the Fekete-Szegö problem for the coefficients of $l \in S$ in [6] is

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right) \text { for } 0 \leq \mu<1
$$

The elementary inequality $\left|a_{3}-a_{2}^{2}\right| \leq 1$ is obtained as $\mu \rightarrow 1$. The coefficient functional

$$
F_{\mu}(l)=a_{3}-\mu a_{2}^{2}
$$

on the normalized analytic functions l in the open unit disk U also has a significant impact on geometric function theory. The Fekete-Szegö problem is known as the maximization problem for functional $\left|F_{\mu}(l)\right|$.

Researchers were concerned about several classes of univalent functions (see [12-15]) due to the Fekete-Szegö problem, proposed in 1933 ([16]); therefore, it stands to reason that similar inequalities were also discovered for bi-univalent functions, and fairly recent publications can be cited to back up the claim that the subject still yields intriguing findings [17-19].

Because of their importance in probability theory, mathematical statistics, mathematical physics, and engineering, orthogonal polynomials have been the subject of substantial research in recent years from a variety of angles. The classical orthogonal polynomials are the orthogonal polynomials that are most commonly used in applications (Hermite polynomials, Laguerre polynomials, Jacobi polynomials, and Bernoulli). We point out [17,18,20-24] as more recent examples of the relationship between geometric function theory and classical orthogonal polynomials.

Fractional calculus, a classical branch of mathematical analysis whose foundations were laid by Liouville in an 1832 paper and is currently a very active research field [25], is one of many special functions that are studied. This branch of mathematics is known as the Bernoulli polynomials, named after Jacob Bernoulli (1654-1705). A novel approximation method based on orthonormal Bernoulli's polynomials has been developed to solve fractional order differential equations of the Lane-Emden type [26], whereas in [27-29], Bernoulli polynomials are utilized to numerically resolve Fredholm fractional integrodifferential equations with right-sided Caputo derivatives.

The Bernoulli polynomials $B_{n}(x)$ are often defined (see, e.g., [30]) using the generating function:

$$
\begin{equation*}
F(x, t)=\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} t^{n},|t|<2 \pi, \tag{3}
\end{equation*}
$$

where $B_{n}(x)$ are polynomials in x, for each nonnegative integer n.

The Bernoulli polynomials are easily computed by recursion since

$$
\begin{equation*}
\sum_{j=0}^{n-1}\binom{n}{j} B_{j}(x)=n x^{n-1}, n=2,3, \cdots \tag{4}
\end{equation*}
$$

The initial few polynomials of Bernoulli are

$$
\begin{equation*}
B_{0}(x)=1, B_{1}(x)=x-\frac{1}{2}, B_{2}(x)=x^{2}-x+\frac{1}{6}, B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x, \cdots . \tag{5}
\end{equation*}
$$

Sakaguchi [31] introduced the class S_{s}^{*} of functions starlike with respect to symmetric points, which consists of functions $l \in S$ satisfying the condition

$$
\operatorname{Re}\left\{\frac{z l^{\prime}(z)}{l(z)-l(-z)}\right\}>0, \quad(z \in U)
$$

In addition, Wang et al. [32] introduced the class C_{s} of functions convex with respect to symmetric points, which consists of functions $l \in S$ satisfying the condition

$$
\operatorname{Re}\left\{\frac{\left[z l^{\prime}(z)\right]^{\prime}}{[l(z)-l(-z)]^{\prime}}\right\}>0, \quad(z \in U)
$$

In this paper, we consider two subclasses of Σ : the class $S_{s}^{\Sigma}(x)$ of functions bi-starlike with respect to the symmetric points and the relative class $C_{s}^{\Sigma}(x)$ of functions bi-convex with respect to the symmetric points associated with Bernoulli polynomials. The definitions are as follows:

Definition 1. $l \in S_{S}^{\Sigma}(x)$, if the next subordinations hold:

$$
\begin{equation*}
\frac{2 z l^{\prime}(z)}{l(-z)-l(z)} \prec F(x, z), \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 \omega m^{\prime}(\omega)}{m(\omega)-m(-\omega)} \prec F(x, \omega), \tag{7}
\end{equation*}
$$

where $z, \omega \in U, F(x, z)$ is given by (3), and $m=l^{-1}$ is given by (2).
Definition 2. $l \in C_{s}^{\Sigma}(x)$, if the following subordinations hold:

$$
\begin{equation*}
\frac{2\left[z l^{\prime}(z)\right]^{\prime}}{[l(z)-l(-z)]^{\prime}} \prec F(x, z), \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2\left[\omega m^{\prime}(\omega)\right]^{\prime}}{[m(\omega)-m(-\omega)]^{\prime}} \prec F(x, \omega), \tag{9}
\end{equation*}
$$

where $z, \omega \in U, F(x, z)$ is given by (3), and $m=l^{-1}$ is given by (2).
Lemma 1 ([33], p. 172). Suppose that $c(z)=\sum_{n=1}^{\infty} c_{n} z^{n},|c(z)|<1, z \in U$, is an analytic function in U. Then,

$$
\left|c_{1}\right| \leq 1,\left|c_{n}\right| \leq 1-\left|c_{1}\right|^{2}, n=2,3, \cdots .
$$

2. Coefficients Estimates for the Class $S_{s}^{\Sigma}(x)$

We obtain upper bounds of $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions belonging to the class $S_{s}^{\Sigma}(x)$.

Theorem 1. If $l \in S_{s}^{\Sigma}(x)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq\left|B_{1}(x)\right| \sqrt{6\left|B_{1}(x)\right|} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}(x)}{2}+\frac{\left[B_{1}(x)\right]^{2}}{4} \tag{11}
\end{equation*}
$$

Proof. Let $l \in S_{s}^{\Sigma}(x)$ and $m=l^{-1}$. From definition in (6) and (7), we have

$$
\begin{equation*}
\frac{2 l^{\prime}(z) z}{l(z)-l(-z)}=F(x, \varphi(z)), \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 \omega m^{\prime}(\omega)}{m(\omega)-m(-\omega)}=F(x, \chi(\omega)) \tag{13}
\end{equation*}
$$

where φ and χ are analytic functions in U given by

$$
\begin{gather*}
\varphi(z)=r_{1} z+r_{2} z^{2}+\cdots \tag{14}\\
\chi(\omega)=s_{1} \omega+s_{2} \omega^{2}+\cdots \tag{15}
\end{gather*}
$$

and $\varphi(0)=\chi(0)=0$, and $|\varphi(z)|<1,|\chi(\omega)|<1, z, \omega \in U$.
As a result of Lemma 1,

$$
\begin{equation*}
\left|r_{k}\right| \leq 1 \text { and }\left|s_{k}\right| \leq 1, k \in \mathbb{N} . \tag{16}
\end{equation*}
$$

If we replace (14) and (15) in (12) and (13), respectively, we obtain

$$
\begin{equation*}
\frac{2 z l^{\prime}(z)}{l(z)-l(-z)}=B_{0}(x)+B_{1}(x) \varphi(z)+\frac{B_{2}(x)}{2!} \varphi^{2}(z)+\cdots, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 \omega m^{\prime}(\omega)}{m(\omega)-m(-\omega)}=B_{0}(x)+B_{1}(x) \chi(\omega)+\frac{B_{2}(x)}{2!} \chi^{2}(\omega)+\cdots \tag{18}
\end{equation*}
$$

In view of (1) and (2), from (17) and (18), we obtain

$$
1+2 a_{2} z+2 a_{3} z^{2}+\cdots=1+B_{1}(x) r_{1} z+\left[B_{1}(x) r_{2}+\frac{B_{2}(x)}{2!} r_{1}^{2}\right] z^{2}+\cdots
$$

and

$$
1-2 a_{2} \omega+\left(4 a_{2}^{2}-2 a_{3}\right) \omega^{2}+\cdots=1+B_{1}(x) s_{1} \omega+\left[B_{1}(x) s_{2}+\frac{B_{2}(x)}{2!} s_{1}^{2}\right] \omega^{2}+\cdots
$$

which yields the following relations:

$$
\begin{gather*}
2 a_{2}=B_{1}(x) r_{1}, \tag{19}\\
2 a_{3}=B_{1}(x) r_{2}+\frac{B_{2}(x)}{2!} r_{1}^{2} \tag{20}
\end{gather*}
$$

and

$$
\begin{gather*}
-2 a_{2}=B_{1}(x) s_{1} \tag{21}\\
4 a_{2}^{2}-2 a_{3}=B_{1}(x) s_{2}+\frac{B_{2}(x)}{2!} s_{1}^{2} . \tag{22}
\end{gather*}
$$

From (19) and (21), it follows that

$$
\begin{equation*}
r_{1}=-s_{1}, \tag{23}
\end{equation*}
$$

and

$$
\begin{align*}
& 8 a_{2}^{2}=\left[B_{1}(x)\right]^{2}\left(r_{1}^{2}+s_{1}^{2}\right) \\
& a_{2}^{2}=\frac{\left[B_{1}(x)\right]^{2}\left(r_{1}^{2}+s_{1}^{2}\right)}{8} . \tag{24}
\end{align*}
$$

Adding (20) and (22), using (24), we obtain

$$
\begin{equation*}
a_{2}^{2}=\frac{\left[B_{1}(x)\right]^{3}\left(r_{2}+s_{2}\right)}{4\left(\left[B_{1}(x)\right]^{2}-B_{2}(x)\right)} . \tag{25}
\end{equation*}
$$

Using relation (5), from (16) for r_{2} and s_{2}, we get (10).
Using (23) and (24), by subtracting (22) from relation (20), we get

$$
\begin{align*}
a_{3} & =\frac{B_{1}(x)\left(r_{2}-s_{2}\right)+\frac{B_{2}(x)}{2!}\left(r_{1}^{2}-s_{1}^{2}\right)}{4}+a_{2}^{2} \\
& =\frac{B_{1}(x)\left(r_{2}-s_{2}\right)+\frac{B_{2}(x)}{2!}\left(r_{1}^{2}-s_{1}^{2}\right)}{4}+\frac{\left[B_{1}(x)\right]^{2}\left(r_{1}^{2}+s_{1}^{2}\right)}{8} \tag{26}
\end{align*}
$$

Once again applying (23) and using (5), for the coefficients $r_{1}, s_{1}, r_{2}, s_{2}$, we deduce (11).

3. The Fekete-Szegö Problem for the Function Class $S_{s}^{\Sigma}(x)$

We obtain the Fekete-Szegö inequality for the class $S_{s}^{\Sigma}(x)$ due to the result of Zaprawa; see [19].

Theorem 2. If l given by (1) is in the class $S_{s}^{\Sigma}(x)$ where $\mu \in \mathbb{R}$, then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cll}
\frac{B_{1}(x)}{2}, & \text { if } & |h(\mu)| \leq \frac{1}{4}, \\
2 B_{1}(x)|h(\mu)|, & \text { if } & |h(\mu)| \geq \frac{1}{4},
\end{array}\right.
$$

where

$$
h(\mu)=3(1-\mu)\left[B_{1}(x)\right]^{2} .
$$

Proof. If $l \in S_{s}^{\Sigma}(x)$ is given by (1), from (25) and (26), we have

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{B_{1}(x)\left(r_{2}-s_{2}\right)}{4}+(1-\mu) a_{2}^{2} \\
& =\frac{B_{1}(x)\left(r_{2}-s_{2}\right)}{4}+\frac{(1-\mu)\left[B_{1}(x)\right]^{3}\left(r_{2}+s_{2}\right)}{4\left(\left[B_{1}(x)\right]^{2}-B_{2}(x)\right)} \\
& =B_{1}(x)\left[\frac{r_{2}}{4}-\frac{s_{2}}{4}+\frac{(1-\mu)\left[B_{1}(x)\right]^{2} r_{2}}{4\left(\left[B_{1}(x)\right]^{2}-B_{2}(x)\right)}+\frac{(1-\mu)\left[B_{1}(x)\right]^{2} s_{2}}{4\left(\left[B_{1}(x)\right]^{2}-B_{2}(x)\right)}\right] \\
& =B_{1}(x)\left[\left(h(\mu)+\frac{1}{4}\right) r_{2}+\left(h(\mu)-\frac{1}{4}\right) s_{2}\right]
\end{aligned}
$$

where

$$
h(\mu)=\frac{(1-\mu)\left[B_{1}(x)\right]^{2}}{4\left(\left[B_{1}(x)\right]^{2}-B_{2}(x)\right)}
$$

Now, by using (5)

$$
a_{3}-\mu a_{2}^{2}=\left(x-\frac{1}{2}\right)\left[\left(h(\mu)+\frac{1}{4}\right) r_{2}+\left(h(\mu)-\frac{1}{4}\right) s_{2}\right],
$$

where

$$
h(\mu)=3(1-\mu)\left(x-\frac{1}{2}\right)^{2}
$$

Therefore, given (5) and (16), we conclude that the necessary inequality holds.

4. Coefficients Estimates for the Class $C_{s}^{\Sigma}(x)$

We will obtain upper bounds of $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions belonging to a class $C_{S}^{\Sigma}(x)$.

Theorem 3. If $l \in C_{s}^{\Sigma}(x)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\left|B_{1}(x)\right| \sqrt{\left|B_{1}(x)\right|}}{\sqrt{\left|6\left[B_{1}(x)\right]^{2}-8 B_{2}(x)\right|}}, \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}(x)}{6}+\frac{\left[B_{1}(x)\right]^{2}}{16} \tag{28}
\end{equation*}
$$

Proof. Let $l \in C_{s}^{\Sigma}(x)$ and $m=l^{-1}$. From (8) and (9), we get

$$
\begin{equation*}
\frac{2\left[z l^{\prime}(z)\right]^{\prime}}{[l(z)-l(-z)]^{\prime}}=F(x, \varphi(z)), \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2\left[\omega m^{\prime}(\omega)\right]^{\prime}}{[m(\omega)-m(-\omega)]^{\prime}}=F(x, \chi(\omega)) \tag{30}
\end{equation*}
$$

where φ and χ are analytic functions in U given by

$$
\begin{align*}
\varphi(z) & =r_{1} z+r_{2} z^{2}+\cdots \tag{31}\\
\chi(\omega) & =s_{1} \omega+s_{2} \omega^{2}+\cdots \tag{32}
\end{align*}
$$

where $\varphi(0)=\chi(0)=0$, and $|\varphi(z)|<1,|\chi(\omega)|<1, z, \omega \in U$.
As a result of Lemma 1,

$$
\begin{equation*}
\left|r_{k}\right| \leq 1 \text { and }\left|s_{k}\right| \leq 1, k \in \mathbb{N} . \tag{33}
\end{equation*}
$$

If we replace (31) and (32) in (29) and (30), respectively, we obtain

$$
\begin{equation*}
\frac{2\left[z l^{\prime}(z)\right]^{\prime}}{[l(z)-l(-z)]^{\prime}}=B_{0}(x)+B_{1}(x) \varphi(z)+\frac{B_{2}(x)}{2!} \varphi^{2}(z)+\cdots \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2\left[\omega m^{\prime}(\omega)\right]^{\prime}}{[m(\omega)-m(-\omega)]^{\prime}}=B_{0}(x)+B_{1}(x) \chi(\omega)+\frac{B_{2}(x)}{2!} \chi^{2}(\omega)+\cdots \tag{35}
\end{equation*}
$$

In view of (1) and (2), from (34) and (35), we obtain

$$
1+4 a_{2} z+6 a_{3} z^{2}+\cdots=1+B_{1}(x) r_{1} z+\left[B_{1}(x) r_{2}+\frac{B_{2}(x)}{2!} r_{1}^{2}\right] z^{2}+\cdots
$$

and

$$
1-4 a_{2} \omega+\left(12 a_{2}^{2}-6 a_{3}\right) \omega^{2}+\cdots=1+B_{1}(x) s_{1} \omega+\left[B_{1}(x) s_{2}+\frac{B_{2}(x)}{2!} s_{1}^{2}\right] \omega^{2}+\cdots
$$

which yields the following relations:

$$
\begin{gather*}
4 a_{2}=B_{1}(x) r_{1} \tag{36}\\
6 a_{3}=B_{1}(x) r_{2}+\frac{B_{2}(x)}{2!} r_{1}^{2} \tag{37}
\end{gather*}
$$

and

$$
\begin{gather*}
-4 a_{2}=B_{1}(x) s_{1} \tag{38}\\
12 a_{2}^{2}-6 a_{3}=B_{1}(x) s_{2}+\frac{B_{2}(x)}{2!} s_{1}^{2} . \tag{39}
\end{gather*}
$$

From (36) and (38), it follows that

$$
\begin{equation*}
r_{1}=-s_{1}, \tag{40}
\end{equation*}
$$

and

$$
\begin{gather*}
32 a_{2}^{2}=\left[B_{1}(x)\right]^{2}\left(r_{1}^{2}+s_{1}^{2}\right) \\
a_{2}^{2}=\frac{\left[B_{1}(x)\right]^{2}\left(r_{1}^{2}+s_{1}^{2}\right)}{32} . \tag{41}
\end{gather*}
$$

Adding (37) and (39), using (41), we obtain

$$
\begin{equation*}
a_{2}^{2}=\frac{\left[B_{1}(x)\right]^{3}\left(r_{2}+s_{2}\right)}{4\left(3\left[B_{1}(x)\right]^{2}-4 B_{2}(x)\right)} \tag{42}
\end{equation*}
$$

Using relation (5), from (33) for r_{2} and s_{2}, we get (27). Using (40) and (41), by subtracting (39) from relation (37), we get

$$
\begin{align*}
a_{3} & =\frac{B_{1}(x)\left(r_{2}-s_{2}\right)+\frac{B_{2}(x)}{2!}\left(r_{1}^{2}-s_{1}^{2}\right)}{12}+a_{2}^{2} \tag{43}\\
& =\frac{B_{1}(x)\left(r_{2}-s_{2}\right)+\frac{B_{2}(x)}{2!}\left(r_{1}^{2}-s_{1}^{2}\right)}{12}+\frac{\left[B_{1}(x)\right]^{2}\left(r_{1}^{2}+s_{1}^{2}\right)}{32} .
\end{align*}
$$

Once again applying (40) and using (5), for the coefficients $r_{1}, s_{1}, r_{2}, s_{2}$, we deduce (28).

5. The Fekete-Szegö Problem for the Function Class $C_{s}^{\Sigma}(x)$

We obtain the Fekete-Szegö inequality for the class $C_{s}^{\Sigma}(x)$ due to the result of Zaprawa; see [19].

Theorem 4. If l given by (1) is in the class $C_{s}^{\Sigma}(x)$ where $\mu \in \mathbb{R}$, then, we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cll}
\frac{B_{1}(x)}{6}, & \text { if } & |h(\mu)| \leq \frac{1}{12}, \\
2 B_{1}(x)|h(\mu)|, & \text { if } & |h(\mu)| \geq \frac{1}{12},
\end{array}\right.
$$

where

$$
h(\mu)=\frac{(1-\mu)\left[B_{1}(x)\right]^{2}}{4\left(3\left[B_{1}(x)\right]^{2}-4 B_{2}(x)\right)} .
$$

Proof. If $l \in C_{s}^{\Sigma}(x)$ is given by (1), from (42) and (43), we have

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{B_{1}(x)\left(r_{2}-s_{2}\right)}{12}+(1-\mu) a_{2}^{2} \\
& =\frac{B_{1}(x)\left(r_{2}-s_{2}\right)}{12}+\frac{(1-\mu)\left[B_{1}(x)\right]^{3}\left(r_{2}+s_{2}\right)}{4\left(3 B_{1}(x)^{2}-4 B_{2}(x)\right)} \\
& =B_{1}(x)\left[\frac{r_{2}-s_{2}}{12}+\frac{(1-\mu)\left[B_{1}(x)\right]^{2} r_{2}}{4\left(3\left[B_{1}(x)\right]^{2}-4 B_{2}(x)\right)}+\frac{(1-\mu)\left[B_{1}(x)\right]^{2} s_{2}}{4\left(3\left[B_{1}(x)\right]^{2}-4 B_{2}(x)\right)}\right] \\
& =B_{1}(x)\left[\left(h(\mu)+\frac{1}{12}\right) r_{2}+\left(h(\mu)-\frac{1}{12}\right) s_{2}\right]
\end{aligned}
$$

where

$$
h(\mu)=\frac{(1-\mu)\left[B_{1}(x)\right]^{2}}{4\left(3\left[B_{1}(x)\right]^{2}-4 B_{2}(x)\right)}
$$

Now, by using (5)

$$
a_{3}-\mu a_{2}^{2}=\left(x-\frac{1}{2}\right)\left[\left(h(\mu)+\frac{1}{12}\right) r_{2}+\left(h(\mu)-\frac{1}{12}\right) s_{2}\right],
$$

where

$$
h(\mu)=\frac{(1-\mu)\left[x-\frac{1}{2}\right]^{2}}{4\left(3\left(x-\frac{1}{2}\right)^{2}-4\left(x^{2}-x+\frac{1}{6}\right)\right)} .
$$

Therefore, given (5) and (33), we conclude that the required inequality holds.

6. Conclusions

We introduce and investigate new subclasses of bi-univalent functions in U associated with Bernoulli polynomials and satisfying subordination conditions. Moreover, we obtain upper bounds for the initial Taylor-Maclaurin coeffcients $\left|a_{2}\right|,\left|a_{3}\right|$ and Fekete-Szegö problem $\left|a_{3}-\mu a_{2}^{2}\right|$ for functions in these subclasses.

The approach employed here has also been extended to generate new bi-univalent function subfamilies using the other special functions. The researchers may carry out the linked outcomes in practice.

Author Contributions: Conceptualization, M.B., M.Ç. and L.-I.C.; methodology, M.Ç. and L.-I.C.; software, M.B., M.Ç. and L.-I.C.; validation, M.Ç. and L.-I.C.; formal analysis, M.B., M.Ç. and L.-I.C.; investigation, M.B., M.Ç. and L.-I.C.; resources, M.B., M.Ç. and L.-I.C.; data curation, M.B., M.Ç. and L.-I.C.; writing-original draft preparation, M.B., M.Ç. and L.-I.C.; writing-review and editing, M.B., M.Ç. and L.-I.C.; visualization, M.B., M.Ç. and L.-I.C.; supervision, M.Ç. and L.-I.C.; project administration, M.Ç. and L.-I.C.; funding acquisition, L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding: The research was partially funded by the project 38PFE, which was part of the PDI-PFE-CDI-2021 program.

Data Availability Statement: Not applicable.
Acknowledgments: We thank the referees for their insightful suggestions and comments to improve this paper in its present form.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften Series, 259; Springer: New York, NY, USA, 1983.
2. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188-1192. [CrossRef]
3. Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of starlike functions. Canad. J. Math. 1970, 22, 476-485. [CrossRef]
4. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70-77.
5. Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569-1573. [CrossRef]
6. Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63-68. [CrossRef]
7. Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495-1504.
8. Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch. Ration. Mech. Anal. 1969, 32, 100-112.
9. Cotîrlă, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642-10651. [CrossRef]
10. Oros, G.I.; Cotîrlă, L.I. Coefficient Estimates and the Fekete-Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions. Mathematics 2022, 10, 129 .
11. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693-706. [CrossRef]
12. Dziok, J. A general solution of the Fekete-Szegö problem. Bound. Value Probl. 2013, 2013, 98. [CrossRef]
13. Kanas, S. An unified approach to the Fekete-Szegö problem. Appl. Math. Comput. 2012, 218, 8453-8461. [CrossRef]
14. Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S. Coefficient inequalities of functions associated with Petal type domains. Mathematics 2018, 6, 298. [CrossRef]
15. Wanas, A.K.; Cotîrlă, L.I. Initial coefficient estimates and Fekete-Szegö inequalities for new families of bi-univalent functions governed by ($p-q$)-Wanas operator. Symmetry 2021, 13, 2118. [CrossRef]
16. Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85-89. [CrossRef]
17. Al-Hawary, T.; Amourah, A.; Frasin, B.A. Fekete-Szegö inequality for bi-univalent functions by means of Horadam polynomials. Bol. Soc. Mat. Mex. 2021, 27, 79. [CrossRef]
18. Amourah, A.; Frasin, B.A.; Abdeljaward, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673.
19. Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169-178. [CrossRef]
20. Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Pales. J. Math. 2021, 10, 625-632.
21. Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 2022, 14, 147. [CrossRef]
22. Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comp. Appl. Math. 2003, 153, 273-282. [CrossRef]
23. Tomar, G.; Mishra, V.N. Maximum term of transcendental entire function and Spider's web. Math. Slovaca 2020, 70, 81-86. [CrossRef]
24. Wanas, A.K.; Cotîrlă, L.I. New applications of Gegenbauer polynomials on a new family of bi-Bazilevic functions governed by the q-Srivastava-Attiya operator. Mathematics 2022, 10, 1309. [CrossRef]
25. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140-1153. [CrossRef]
26. Sahu, P.K.; Mallick, B. Approximate solution of fractional order Lane-Emden type differential equation by orthonormal Bernoulli's polynomials. Int. J. Appl. Comput. Math. 2019, 5, 89. [CrossRef]
27. Cãtinaş, T. An iterative modification of Shepard-Bernoulli Operator. Results Math. 2016, 69, 387-395. [CrossRef]
28. Dell'Accio, F.; Di Tommaso, F.; Nouisser, O.; Zerroudi, B. Increasing the approximation order of the triangular Shepard method. Appl. Numerical Math. 2018, 126, 78-91. [CrossRef]
29. Loh, J.R.; Phang, C. Numerical solution of Fredholm fractional integro-differential equation with right-sided Caputo's derivative using Bernoulli polynomials operational matrix of fractional derivative. Mediterr. J. Math. 2019, 16, 28. [CrossRef]
30. Natalini, P.; Bernardini, A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 2003, 794908. [CrossRef]
31. Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72-75. [CrossRef]
32. Wang, Z.G.; Gao, C.Y.; Yuan, S.M. On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points. J. Math. Anal. Appl. 2006, 322, 97-106. [CrossRef]
33. Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952.
