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Abstract: In this article, we propose the discrete version of the binomial exponential II distribution
for modelling count data. Some of its statistical properties including hazard rate function, mode,
moments, skewness, kurtosis, and index of dispersion are derived. The shape of the failure rate
function is increasing. Moreover, the proposed model is appropriate for modelling equi-, over-
and under-dispersed data. The parameter estimation through the classical point of view has been
done using the method of maximum likelihood, whereas, in the Bayesian framework, assuming
independent beta priors of model parameters, the Metropolis–Hastings algorithm within Gibbs
sampler is used to obtain sample-based Bayes estimates of the unknown parameters of the proposed
model. A detailed simulation study is carried out to examine the outcomes of maximum likelihood
and Bayesian estimators. Finally, two distinctive real data sets are analyzed using the proposed
model. These applications showed the flexibility of the new distribution.

Keywords: probability mass function; binomial exponential II; dispersion index; Bayesian technique;
simulation
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1. Introduction

Fitting a probability distribution to real data and synthesizing information from it
is a challenging task for statisticians/researchers. Data generated from day-to-day work
environments are more complex in nature nowadays, and consequently several lifetime
models have been proposed and studied in the literature to analyze these data. The well-
known exponential distribution is one of the basic continuous models used to examine
continuous data. However, Bakouch et al. [1] developed the binomial exponential II (BiExII)
distribution, an extended variant of the ordinary exponential distribution, to provide
additional flexibility. The BiExII model is constructed as a distribution of a random sum of
independent exponential (Ex) random variables when the sample size has a zero-truncated
binomial (Bi) distribution. The cumulative distribution function (CDF) of the BiExII model
can be written as

G(y; λ, θ) = 1−
(

1 +
λθy

2− θ

)
e−λy; y > 0, (1)
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where 0 ≤ θ ≤ 1 is the shape parameter and λ > 0 is the scale parameter. The probability
density function (PDF) corresponding to Equation (1) can be expressed as

g(y; λ, θ) = λ

(
1 +

(λy− 1)θ
2− θ

)
e−λy; y > 0. (2)

As we observe from Equation (1), the Ex distribution is a particular case for θ = 0,
whereas for θ = 1, the gamma model with shape parameter 2 and scale parameter λ is a
special case. Thus, Equation (2) can be written as

g(y; λ, θ) = wλe−λy + (1− w)λ2ye−λy; y > 0, (3)

where w = 2(1−θ)
2−θ . Habibi and Asgharzadeh [2] presented a power binomial exponential

distribution by applying the power transformation on BiExII random variable. The hazard
rate function of the proposed distribution portrays the decreasing, increasing, decreasing-
increasing-decreasing and unimodal shapes. Al-babtain et al. [3] developed a new ex-
tension of the BiExII model using the Marshall–Olkin (MO-G) family of distributions.
They have also discussed a simple type Copula-based construction to derive the bivariate-
and multivariate-type distributions. Recently, Zhang et al. [4] first reviewed the two-
parameter Poisson binomial-exponential 2 (PBE2) distribution, then they proposed a new
integer-valued auto-regressive (INAR) model with PBE2 innovations.

Sometimes reliability/survival experiments yield data which are discrete in nature
either due to limitations of measuring instruments or its inherent characteristic. For ex-
ample, in reliability engineering, the number of successful cycle prior to the failure when
device work in cycle, the number of times a device is switched on/off; in survival analysis,
the survival times for those suffering from the diseases such as lung cancer or period from
remission to relapse may be recorded as number of days/weeks, number of deaths/daily
cases due to COVID-19 pandemic observed over a specified duration, etc. Moreover,
in many practical problems, the count phenomenon occurs as, for example, the number
of occurrences of earthquakes in a calendar year, the number of absences, the number of
accidents, the number of kinds of species in ecology, the number of insurance claims, and so
on. Therefore, it is reasonable to model such situations by a suitable discrete distribution.

Discretization of continuous models can be done by utilizing various techniques.
The most widely used approach is the survival discretization method. One of the important
virtues of this methodology is that the developed discrete distribution retains the same
functional form of the survival function as that of its continuous counterpart. Due to this
feature many reliability characteristics of the distribution remain unchanged. According to
this method, for a given continuous random variable (RV) Y with survival function (SF)
SY(y) = P(Y ≥ y), the RV X = [Y] (largest integer less than or equal to Y) will have the
probability mass function

P(X = x) = SY(x)− SY(x + 1); x = 0, 1, 2, 3.... (4)

Many authors have used Equation (4) for generating the discrete analogue of the con-
tinuous distributions, for instance, discrete Rayleigh distribution (Roy [5]), discrete Burr and
Pareto distributions (Krishna and Pundir [6]), discrete gamma distribution (Chakraborty
and Chakravarty [7]), discrete modified Weibull distribution (Almalki and Nadarajah [8]),
discrete generalized exponential and exponentiated discrete Weibull distributions (Nek-
oukhou and Bidram [9,10]), discrete extended Weibull distribution (Jia et al. [11]), geometric-
zero truncated Poisson distribution (Akdogan et al. [12]), Poisson quasi-Lindley regression
model and Poisson–Bilal distribution (Altun [13,14]), discrete Burr–Hatke distribution (El-
Morshedy et al. [15]), discrete inverted Nadarajah–Haghighi distributions (Singh et al. [16]),
discrete Teissier distribution (Singh et al. [17]), and related references cited therein.

In view of the existing literature, we found that several discrete distributions have
been introduced over the past few decades. Yet there is much scope left to introduce new
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plausible discrete distributions that can adequately capture the diversity of real data. This
phenomenon motivates us to provide a flexible discrete model for fitting a wide spectrum
of discrete real-world data sets. Therefore, in this paper, we have proposed the discrete
analogue of the BiExII model, in the so-called discrete BiExII (DBiExII) distribution using
survival discretization method. An important motivation of the proposed study is that
the BiExII distribution has manageable and closed-form expressions for various important
distributional properties, including probability mass function, cumulative distribution
function, moments, etc. Furthermore, discrete data generated from many practical studies,
such as mortality experiments, industrial experiments, etc., show constant or increasing
failure rates, so the proposed distribution is useful for modelling monotonically increasing
failure rate data. Other motivations for developing the BiExII distribution include its ability
to analyze not only equi-, over-, and under-dispersed real data, but also a positively skewed,
or leptokurtic data set. A final motivation for the new distribution is that the proposed
distribution is capable of modelling count data as we will see later, and by this, it provides a
well alternative to several discrete distributions for modelling discrete data in applications.

The rest of the article is organized as follows. In Section 2, we have introduced
the DBiExII model. Different distributional characteristics are discussed in Section 3. In
Section 4, the model parameters are estimated by using maximum likelihood and Bayesian
methods. Simulation study is presented in Section 5. The two real data sets (COVID-19 and
larvae Pyrausta) are analyzed to show the flexibility of the DBiExII distribution in Section 6.
Finally, Section 7 provides some conclusions.

2. The DBiExII Distribution

Using the Equation (4), the probability mass function (PMF) of the DBiExII distribution
with positive parameters 0 < p < 1 and 0 ≤ θ ≤ 1, can be derived as

f (x; p, θ) =

(
1− p +

θ(px + p− x) ln p
2− θ

)
px; x ∈ N0, (5)

where p = e−λ and N0 = {0, 1, 2, 3, ...}. The cumulative distribution function (CDF)
corresponding to Equation (5) can be expressed as

F(x; p, θ) = f (X ≤ x; p, θ) =
x

∑
i=0

f (i; p, θ) = 1−
(

1− θ(x + 1) ln p
2− θ

)
px+1; x ∈ N0. (6)

The behavior of the CDF of the DBiExII distribution can be described as

F(x; p, θ) =


−pθ(ln p + 1) + 2p + θ − 2

θ − 2 ; x −→ 0,
1− px+1; θ −→ 0,

px+1(x ln p + ln p− 1) + 1; θ −→ 1.
(7)

The behavior of the PMF is given by

f (x; p, θ) =


−pθ(ln p + 1) + 2p + θ − 2

θ − 2 ; x −→ 0,
px(1− p); θ −→ 0,

px[(px + p− x) ln p− p + 1]; θ −→ 1.
(8)

The PMF in Equation (5) is log-concave, where f (x + 1;p,θ)
f (x;p,θ) is a decreasing function

in x for all values of the model parameters, and consequently the PMF is unimodal and
right-skewed. Figure 1 shows the PMF plots for different values of the parameters.
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Figure 1. The PMF for the DBiExII model.

The PMF can take unimodal or decreasing-shaped. Assume X has a DBiExII distribu-
tion with parameters p and θ. Then, the PMFs of Z = X2 and U = X + a can be formulated,
respectively, as

fz(z; p, θ) =
1

2
√

z

(
1− p +

θ(p
√

z + p−
√

z) ln p
2− θ

)
p
√

z; z ∈ {0, 1, 4, 9, 16, ...} (9)

and

fu(u; p, θ) =

(
1− p +

θ(p(u− a) + p− u + a) ln p
2− θ

)
pu−a; u ∈ {a, a + 1, a + 2, ...}, (10)

where a is a positive integer number. The hazard rate function (HRF) of the DBiExII model
can be expressed as

h(x; p, θ) =
(2− θ)(1− p) + θ(px + p− x) ln p

2− θ(1 + x ln p)
; x ∈ N0, (11)

where h(x; p, θ) = f (x;p,θ)
1 − F(x − 1;p,θ) . The behavior of the HRF is given by

h(x; p, θ) =


−pθ(1 + ln p) + 2p + θ − 2

θ − 2 ; x −→ 0,
1− p; x −→ ∞,
1− p; θ −→ 0,

−(px + p − x) ln p + p − 1
x ln p − 1 ; θ −→ 1.

(12)
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Based on the log-concavity properties, the DBiExII distribution has increasing failure
rate. For more details around the log-concave function (Gupta and Balakrishnan [18]).
Figure 2 shows the HRF plots for different values of the parameters.
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Figure 2. The HRF for the DBiExII model.

It is observed that the HRF takes increasing shape. The second rate of failure (SRF) is
given by

h∗(x; p, θ) = log
(

θx ln p + θ − 2
p[θx ln p + θ ln p + θ − 2]

)
, (13)

where h∗(x; p, θ) = log
(

1 − F(x − 1;p,θ)
1 − F(x;p,θ)

)
. The behavior of the SRF is given by

h∗(x; p, θ) =


log
(

θ − 2
p[θ ln p + θ − 2]

)
; x −→ 0,

ln 1
p ; x −→ ∞,

ln 1
p ; θ −→ 0,

log
(

x ln p − 1
p[x ln p + ln p − 1]

)
; θ −→ 1.

(14)

For more details about the difference between the HRF and SRF, we can refer to
(Xie et al. [19]).

3. Distributional Statistics
3.1. Mode

If X has a DBiExII model, then the mode can be obtained by solving the following
non-linear equation

[(1− p)(2− θ) + θ(px + p− x) ln p]px ln p + θ(p− 1)px ln p = 0. (15)

Then, the mode of the DBiExII model is given by

M(X) = − θp(ln p + 2)− 2(p + θ − 2)
θ(p− 1) ln p

. (16)
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3.2. Moments, Skewness, Kurtosis and Index of Dispersion

Suppose the RV X follows DBiExII distribution. Then, the probability generating
function (PGF) can be formulated in an explicit form as

ΠX(t; p, θ) =
pθ(t− 1) ln p + (p− 1)(pt− 1)(θ − 2)

(pt− 1)2(θ − 2)
, (17)

where ΠX(t; p, θ) = ∑∞
x=0 tx f (x; p, θ). On Replacing t by et in Equation (17), we get the

moment generating function (MGF). Thus, the MGF can be proposed as

Π∗X(t; p, θ) =
pθ(et − 1) ln p + (p− 1)(pet − 1)(θ − 2)

(pet − 1)2(θ − 2)
. (18)

The first four derivatives of the MGF, with respect to t at t = 0, yield the first four
moments about the origin. So, the first four moments of the DBiExII model are

E(X) = −p
−θ ln p + (p− 1)(θ − 2)

(p− 1)2(θ − 2)
, (19)

E(X2) = p
(−3p− 1)θ ln p + p2θ − 2p2 − θ + 2

(p− 1)3(θ − 2)
, (20)

E(X3) = −p
(−7p2θ − 10pθ − θ) ln p + (θ − 2)(p− 1)(p2 + 4p + 1)

(p− 1)4(θ − 2)
(21)

and

E(X4) = p
−150(p3 + 11

3 p2 + 5
3 p + 1

15 ) ln p + (p2 + 10p + 1)(p2 − 1)(θ − 2)
(p− 1)5(θ − 2)

. (22)

The variance of the DBiExII model can be calculated by using Var(X) = E(X2) −
(E(X))2. Using well-known relations, it is also simple to compute the skewness and
kurtosis measures of the DBiExII model. The shape characteristics for both mean and
variance of the DBiExII distribution can be formulated, respectively, as

E(X) =

{ p
1 − p ; θ −→ 0,

p( − ln p − p + 1)
p2 − 2p + 1 ; θ −→ 1

(23)

and

Variance(X) =


p

p2 − 2p + 1 ; θ −→ 0,
(p3 − p2 ln p − p) ln p + p3 − 2p2 + p

p4 − 4p3 + 6p2 − 4p + 1 ; θ −→ 1,
(24)

The index of dispersion (IxD, for short) is defined as variance to mean ratio, it indicates
whether a certain model is suitable for under or over-dispersed data sets. If IxD < (> 1),
the model is under- (over-) dispersed. If X has a DBiExII model, then the behavior of the
IxD is given by

IxD =


1

1 − p ; θ −→ 0,
(p ln p − p2 + 1) ln p − p2 + 2p − 1

(p2 − 2p + 1) ln p + p3 − 3p2 + 3p − 1 ; θ −→ 1,
(25)

In order to provide a numerical illustration of the pattern of the moments and associ-
ated features, we have calculated these properties for a variety of values of the parameters,
and the results can be found in Table 1.
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Table 1. Some descriptive statistics for the DBiExII distribution.

Parameter Measure

p θ Mean Variance Skewness Kurtosis IxD

0.01

0.01 0.010337 0.010443 9.987279 104.743575 1.010326
0.1 0.012573 0.012719 9.072254 87.147341 1.011601
0.3 0.018392 0.018593 7.493631 60.338393 1.010916
0.5 0.025763 0.025936 6.293304 43.140116 1.006720
0.7 0.035401 0.035374 5.310417 31.192865 0.999238
0.9 0.048544 0.047945 4.457520 22.420924 0.987655

0.99 0.056157 0.055068 4.100374 19.193921 0.980612

0.1

0.01 0.112539 0.125201 3.462044 16.984848 1.112503
0.1 0.126072 0.141519 3.308182 15.870692 1.122521
0.3 0.161276 0.182253 2.946320 13.237950 1.130068
0.5 0.205867 0.230291 2.575399 10.759760 1.118638
0.7 0.264179 0.287110 2.201012 8.584148 1.086800
0.9 0.343695 0.353631 1.819239 6.743941 1.028908

0.99 0.3897517 0.386376 0.386376 6.031577 0.991341

0.3

0.01 0.432275 0.619110 2.369474 10.613745 1.432212
0.1 0.467367 0.682789 2.322009 10.336483 1.460926
0.3 0.558652 0.836902 2.161759 9.330162 1.498074
0.5 0.674280 1.008188 1.954587 8.141058 1.495206
0.7 0.825485 1.191830 1.721058 7.001209 1.443793
0.9 1.031674 1.368560 1.478955 6.065819 1.326542

0.99 1.151101 1.432036 1.376903 5.765703 1.244058

0.5

0.01 1.006966 2.020850 2.119947 9.493563 2.006869
0.1 1.072962 2.213565 2.095548 9.340058 2.063039
0.3 1.244640 2.674071 1.982932 8.611448 2.148469
0.5 1.462098 3.172759 1.819516 7.675631 2.170004
0.7 1.746466 3.682186 1.630544 6.767094 2.108364
0.9 2.134240 4.116220 1.447103 6.071141 1.928658

0.99 2.358842 4.230074 1.386767 5.901186 1.793283

0.9

0.01 9.047650 90.90308 2.002601 9.009693 10.04714
0.1 9.499076 99.23336 1.988878 8.906269 10.44663
0.3 10.67337 118.9939 1.899065 8.295979 11.14866
0.5 12.16081 140.0647 1.757718 7.474355 11.51770
0.7 14.10593 160.9421 1.592996 6.674835 11.40953
0.9 16.75836 177.2167 1.445560 6.099409 10.57482

0.99 18.29467 180.2078 1.413765 5.998139 9.850289

0.99

0.01 99.49999 9999.247 2.000707 9.470644 100.49496
0.1 104.23675 10914.68 1.985322 8.289761 104.71048
0.3 116.55852 13085.84 1.896061 8.306480 112.26846
0.5 132.16610 15400.08 15400.08 6.596502 116.52070
0.7 152.57602 17691.24 1.593731 9.967532 115.95033
0.9 180.40772 19472.97 1.444991 17.831995 107.93868

0.99 196.52806 19796.40 1.409224 −9.710393 100.73070

From Table 1, it is clear that the DBiExII distribution is appropriate for modelling
under-, equi-, and over-dispersed data sets. Moreover, the proposed model can be used for
modelling positively skewed and leptokurtic data sets.

4. Parameter Estimation

Here, we discuss the point and interval estimation of the unknown parameters of
DBiExII distribution using classical and Bayesian estimation.
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4.1. Point Estimation through Maximum Likelihood Approach

In this section, we determine the maximum likelihood estimates (MLEs) of the model
parameters based on complete sample. Let X1, X2, · · ·Xn be a random sample of size n
from the DBiExII model. Then, the likelihood function (L) is given by

L(x; p, θ) = p∑n
i=1 xi

n

∏
i=1

(
1− p +

θ(pxi + p− xi) ln p
2− θ

)
, (26)

and the respective log-likelihood function (l) is

l(x; p, θ) = ln(p)
n

∑
i=1

xi +
n

∑
i=1

ln
[

1− p +
θ[p(xi + 1)− xi] ln(p)

2− θ

]
. (27)

By differentiating Equation (27) with respect to the parameters p and θ, respectively,
we get the non-linear likelihood equations as follows

1
p̂

n

∑
i=1

xi +
n

∑
i=1

θ̂ − 2 + θ̂
[
(xi + 1) ln( p̂) + (xi + 1)− xi

p̂

]
(1− p̂)(2− θ̂) + θ̂[ p̂(xi + 1)− xi] ln( p̂)

= 0 (28)

and
n

∑
i=1

2[ p̂(xi + 1)− xi] ln( p̂)

(2− θ̂)
[
(1− p̂)(2− θ̂) + θ̂[ p̂(xi + 1)− xi] ln( p̂)

] = 0. (29)

Equations (28) and (29) cannot be solved analytically; therefore, the suggested sys-
tem needs an iterative procedure such as Newton-Raphson to solve these two equations
numerically.

4.2. Asymptotic Confidence Interval

Unfortunately, the MLE of the unknown parameter vector Λ = (p, θ)T has no closed-
form expression, so it is not possible to develop the exact confidence interval (CIs) for the
parameter vector Λ. Hence, we derived the asymptotic confidence interval (ACI) for Λ by
utilizing its asymptotic distribution. For this purpose, let Λ̂ = ( p̂, θ̂)T be the estimate of
Λ = (p, θ)T and the parameter vector Λ has the following Fisher’s information matrix,

I(Λ) = −E

 ∂2l
∂p2

∂2l
∂p∂θ

∂2l
∂θ∂p

∂2l
∂θ2

.

Thus, under some regularity conditions with large n,
√

n(Λ̂−Λ) follows bivariate
normal distribution with zero mean vector and variance-covariance matrix as I−1(Λ).
Here, I−1(Λ) is the inverse of the expected Fisher’s information matrix I(Λ) . Due to the
complexity of the PMF of the random variable X, the expected values in I(Λ) is not easily
obtainable, therefore we utilized the estimated observed Fisher’s information matrix that
can be symbolized as

I(Λ̂) ≈

 − ∂2l
∂p2

∣∣∣
( p̂,θ̂)

− ∂2l
∂p∂θ

∣∣∣
( p̂,θ̂)

− ∂2l
∂θ∂p

∣∣∣
( p̂,θ̂)

− ∂2l
∂θ2

∣∣∣
( p̂,θ̂)

,

where, p̂ and θ̂ are the MLEs of p and θ, respectively. The expressions for second order
partial derivatives used in above observed Fisher’s information matrix are as follows

∂2l
∂p2 = − 1

p2

n

∑
i=1

xi +
n

∑
i=1

 θ[(1− p)(2− θ) + θ[p(xi + 1)− xi] ln(p)]
(

xi+1
p + xi

p

)
− {(2− θ)− θ[(xi + 1)(1 + ln(p))− (xi/p)]}2

[(1− p)(2− θ) + θ[p(xi + 1)− xi] ln(p)]2

,



Axioms 2022, 11, 646 9 of 24

∂2l
∂θ2 = 4

n

∑
i=1

[
[p(xi + 1)− xi] ln(p){(1− p)(2− θ)− (1− θ)[p(xi + 1)− xi] ln(p)}

{(2− θ)[(1− p)(2− θ) + θ[p(xi + 1)− xi] ln(p)]}2

]
,

and
∂2l

∂p∂θ
= 2

n

∑
i=1

[
(1− p)[p(xi + 1)− xi]

/
p + ln(p)

[(1− p)(2− θ) + θ[p(xi + 1)− xi] ln(p)]2

]
.

Hence, (1− γ)× 100% ACI for parameters Λi; i = 1, 2 is given by(
Λ̂i − Z1−γ/2

√
Var(Λ̂i), Λ̂i − Z1−γ/2

√
Var(Λ̂i)

)
; i = 1, 2,

where Var(Λ̂i) is the (i, i)th diagonal element of I−1(Λ) and Z1−γ/2 is the (1− γ/2)th

quantile of the standard normal distribution.

4.3. Bayesian Estimation

Over the past few decades, the importance of Bayesian statistics has increased im-
mensely, not only because Bayesian estimators have become much easier to calculate,
but also because it is one of the most satisfactory ways of calculating estimates for complex
models. In this context, the present section is devoted to the Bayesian estimation of the
unknown parameters of DBiExII distribution. Let the prior beliefs regarding the unknown
parameters, p and θ are represented through the independent priors as beta distribution of
first kind with respective densities as

π1(p) ∝ pa1−1 (1− p)b1−1, 0 < p < 1, (30)

π2(θ) ∝ θa2−1 (1− θ)b2−1, 0 < θ < 1, (31)

where the shape parameters a1, b1, a2 and b2 are known and non-negative. These parameters
are also named as hyper parameters which can be adjusted to indicate the prior information
about the unknown parameters of the model. The joint prior distribution of p and θ is

π12(p, θ) ∝ pa1−1 (1− p)b1−1θa2−1 (1− θ)b2−1, 0 < p < 1, 0 < θ < 1. (32)

Combining the likelihood function in Equation (26) and the joint prior distribution in
Equation (32) using Bayes’ theorem, the joint posterior distribution of p and θ given data is
derived as

π0(p, θ|x) ∝ p∑n
i=1 xi+a1−1 (1− p)b1−1θa2−1 (1− θ)b2−1

n

∏
i=1

(
1− p +

θ(px + p− x) ln(p)
2− θ

)
. (33)

In theBayesian scenario, a correct statistical decision depends not only on the choice of
prior distribution, but it also relies on the selection of appropriate loss function. Therefore,
to draw Bayesian inferences on unknown parameters p and θ, we should take care of the
question of which type of loss function will be used. Here, we use the most common
symmetric loss function, which is as popular as the squared error loss function (SELF). It is
symmetric in the sense that it equally penalizes overestimation and underestimation. If κ̂ is
an estimator of κ, then we can define the SELF as

Loss(κ̂, κ) = (κ̂ − κ)2. (34)

Thus, in our case, the Bayes estimator (BE) of any function of parameters p and θ , say
φ(p, θ) under SELF with informative priors (IPs) is obtained as

φ̂(p, θ|x) = Ep,θ|x(φ(p, θ)) =
∫ 1

0

∫ 1

0
φ(p, θ) π0(p, θ|x)dpdθ. (35)

Here, it can be easily observed that the integral in Equation (35) cannot solved analyti-
cally, this is because of the complex form of joint posterior distribution in Equation (33).
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Therefore, we use popular Markov Chain Monte Carlo (MCMC) technique known as Gibbs
sampler (Geman and Geman [20]). The biggest virtue of this algorithm is that it allows us
to generate posterior samples for all the parameters using their full conditional posterior
distribution. In this context, the full conditional posterior distributions of the parameters p
and θ can be written as

W(p|θ, x) ∝ p∑n
i=1 xi+a1−1 (1− p)b1−1

n

∏
i=1

(
1− p +

θ(px + p− x) ln(p)
2− θ

)
(36)

and

V(θ|p, x) ∝ θa2−1 (1− θ)b2−1
n

∏
i=1

(
1− p +

θ(px + p− x) ln(p)
2− θ

)
. (37)

Here, it is notable that the generation of parameters draws on p and θ from their
respective posterior densities (36) and (37) are not possible through conventional methods of
generating samples, therefore we used the Metropolis–Hastings (MH) algorithm advocated
by (Devroye [21]). We utilized the following steps of Gibbs sampling algorithm:

1. Plug in with the initial values of p and θ, as (p(0), θ(0)) .
2. Start with j = 1.
3. Generate p(j) from the conditional posterior distribution in Equation (36), through

MH algorithm with normal proposal distribution.
4. Generate θ(j) from the conditional posterior density in Equation (37) using MH

algorithm with normal proposal distribution.
5. Set j = j + 1.
6. Repeat the steps 3–5, a large number of times, say N times, and obtain p(j) and θ(j),

j = 1, 2, 3, · · · , N.

To ensure convergence and avoid the effect of selecting initial values, the first M draws
are eliminated. Then, the remaining values p(j) and θ(j), j = M+ 1, M+ 2, · · · , N, represent
the required posterior samples, which can be utilized to draw the Bayesian conclusions
about the unknown population constraints. Hence, the Bayes estimates of p and θ under
SELF, respectively, obtained as

p̂BE =
1

N −M

N

∑
j=M+1

p(j) and θ̂BE =
1

N −M

N

∑
j=M+1

θ(j). (38)

If a prior distribution provides limited or no information about the parameter, it is
called a non-informative prior (NIP). The reasoning for utilizing NIPs is often said to be ‘to
let the data speak for themselves,’ so that posterior inferences are ineffective by information
external to the sample data. However, finding a suitable prior distribution for a parameter is
a daunting task. Although there is a vast literature on how to select an appropriate prior for
a parameter of interest (Berger [22]; Bernado and Smith [23]), the choice of priors remains
a challenging issue. Various NIPs are available in the existing literature, but uniform (or
flat) prior are widely applied in practice. As suggested by an honourable reviewer, here,
we use non-informative uniform priors for p and θ and they can be obtained by putting
a1 = b1 = a2 = b2 = 1 in Equations (30) and (31). Hence, proceeding similarly as we do in
the case of IPs, we can obtain the Bayes estimators with SELF under NIPs.

4.4. Highest Posterior Density (HPD) Credible Interval

A Bayesian counterpart of the classical confidence interval is called a credible or
probability interval and it can be explained in a probabilistic manner. This differs from a
traditional confidence interval, which can only be expressed in terms of coverage probability.
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We can easily obtain an equal-tail credible interval (αL, αU) for a parameter α by simplifying
the following equations:∫ αL

0
π(α|x)dα = γ

2 and
∫ αU

0
π(α|x)dα = 1− γ

2 ,

where π(α|x) denotes the posterior distribution of the unknown parameter α and γ rep-
resents the level of significance. We can construct several such credible intervals, but to
derive the best among them, we select the interval with the smallest width. The shortest
interval, let us say (αh

L, αh
U), is the credible interval that fulfills the following two conditions:

(i).
∫ αh

U

αh
L

π(α|x)dα = 1− γ. (ii). For any α1 ∈ (αh
L, αh

U) and α2 /∈ (αh
L, αh

U) we have π(α1|x) > π(α2|x).

This type of credible interval is called the highest posterior density (HPD) credible
interval. Since, the mathematical derivation of the HPD credible intervals for the unknown
parameters of DBiExII distribution is difficult to obtain due to the non-closure form of the
posterior distributions, therefore, we use an algorithm suggested by Chen and Shao [24].
For this purpose, consider the MCMC samples, p(j) and θ(j), j = M + 1, M + 2, · · · , N,
generated in the previous section. Now, ordered these generated values as p(M+1) <
p(M+2) < ... < p(N) and θ(M+1) < θ(M+2) < ... < θ(N) . Thus, the (1− γ)× 100% HPD
credible intervals for p and θ are respectively given as(

p(M+j∗), p(M+j∗+[(1−γ)(N−M)])

)
and

(
θ(M+j∗∗), θ(M+j∗∗+[(1−γ)(N−M)])

)
,

where j∗ and j∗∗ are respectively chosen so that

p(M+j∗+[(1−γ)(N−M)]) − p(M+j∗) = min
M≤j≤(N−M)−[(1−γ)(N−M)]

(
p(M+j+[(1−γ)(N−M)]) − p(M+j)

)
and

θ(M+j∗∗+[(1−γ)(N−M)]) − θ(M+j∗∗) = min
M≤j≤(N−M)−[(1−γ)(N−M)]

(
θ(M+j+[(1−γ)(N−M)]) − θ(M+j)

)
.

5. Numerical Illustration through Simulated Data

In this section, we conduct a Monte Carlo simulation analysis to evaluate the behavior
of classical and Bayesian procedures for estimating the unknown parameters of the DBiExII
distribution. This study consists of the following steps:

Step 1. Generate 10,000 samples of size n ∈{20, 40, 60, 100} from DBiExII distribution using
Equation (6) with the arbitrary sets of parameters (p, θ) ∈{(0.3, 0.3), (0.3, 0.8), (0.8,
0.3), (0.5, 0.5), (0.8, 0.8)}.

Step 2. Compute the MLEs, Bayes estimates (with NIPs and IPs), 95% asymptotic and
HPD confidence intervals for each of the 10,000 samples.
In the case of Bayesian estimation, it is important to note that we have calculated
the Bayes estimates with IPs and NIPs under SELF. In IPs, the prior densities for
the parameters p and θ are taken to be Beta1(a1, b1) and Beta1(a2, b2) distributions,
respectively. The hyper-parameters in these prior densities have been selected in
such a manner that the mean of a parameter’s prior density is almost equal to the
corresponding assumed value of that parameter, whereas, all hyper-parameters
are set to 1 for Bayes estimation under NIPs. Using the algorithm described in
Section 4.3, we produced 21,000 realizations of the Markov chain of p and θ from
their full conditional posterior distributions in order to calculate the required
Bayesian quantities. To counteract the impact of the parameters beginning values,
the first 1000 burn-in values for each chain have been eliminated. Additionally, we
have stored every tenth observation to reduce the autocorrelation between draws.
By plotting MCMC runs, posterior densities, and the autocorrelation function for
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each pair of true parameters, the convergence of the produced chains is investigated.
For the sake of simplicity, we have only included these graphs for (p, θ) = (0.3, 0.3)
in Figure 3. After the convergence testing, we have utilized simulated posterior
samples to compute Bayes estimates and HPD intervals.

Step 3. Compute the average estimate (AE), root mean squared error (RMSE), and average
absolute bias (AB) for MLEs and Bayes estimates (with SELF under IPs and NIPs),
whereas for 95% asymptotic and HPD confidence intervals, we calculate average
lower confidence limit (ALCL), average upper confidence limit (AUCL), average
width (AW), and coverage probability (CP).
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Figure 3. MCMC diagnostics plots for DBiExII(0.3,0.3) distribution.

All the calculations have been done with R software. The outcomes of the simulation
study are given in Tables 2–7. From these tables, the following important conclusions can
be drawn:

i. The RMSE of both estimators decreases with increasing sample size. This validates
the consistency property of the estimators. Moreover, as the value of n increases,
the absolute bias decreases toward zero.

ii. Bayes estimators obtained under IPs show smaller RMSE as compared to the MLEs
and Bayes estimators with NIPs.

iii. Under NIPs, the Bayesian method becomes the first choice of estimation in the absence
of prior information. This is due to the fact that the Bayes estimates under NIPs have
the smallest estimation errors when compared to the MLEs.

iv. The average width of classical and Bayesian intervals becomes smaller as the sample
size increases. Moreover, the HPD interval with IPs outperforms asymptotic and HPD
intervals under NIPs in terms of the width of the intervals. The CPs are close to the
corresponding nominal levels in both classical and Bayesian intervals.

v. In both estimation processes, the estimation of θ is more sensitive than the estimation
of p since it results in more estimation error relative to the other parameter.
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Table 2. Simulation results based on MLEs.

(p, θ) n AE(p) RMSE(p) AB(p) AE(θ) RMSE(θ) AB(θ)

(0.3, 0.3)

25 0.2504 0.1169 0.0978 0.4972 0.4472 0.3982

50 0.2673 0.0960 0.0791 0.4282 0.3878 0.3420

100 0.2812 0.0774 0.0643 0.3693 0.3278 0.2900

200 0.2916 0.0620 0.0523 0.3271 0.2755 0.2440

(0.3, 0.8)

25 0.3072 0.0924 0.0734 0.7318 0.3242 0.2404

50 0.3065 0.0741 0.0578 0.7522 0.2702 0.1951

100 0.3033 0.0557 0.0432 0.7772 0.1987 0.1435

200 0.3014 0.0393 0.0308 0.7899 0.1342 0.1003

(0.8, 0.3)

25 0.7696 0.0682 0.0521 0.4364 0.3751 0.3348

50 0.7806 0.0511 0.0400 0.3852 0.3287 0.2949

100 0.7900 0.0380 0.0308 0.3361 0.2816 0.2536

200 0.7958 0.0297 0.0247 0.3001 0.2447 0.2183

(0.5, 0.5)

25 0.4734 0.1072 0.0874 0.5325 0.3600 0.3194

50 0.4895 0.0844 0.0699 0.4624 0.3235 0.2780

100 0.4985 0.0663 0.0546 0.4691 0.2802 0.2297

200 0.5031 0.0533 0.0431 0.4907 0.2389 0.1857

(0.8, 0.8)

25 0.7991 0.0419 0.0330 0.7361 0.2762 0.1899

50 0.7991 0.0315 0.0248 0.7667 0.2127 0.1435

100 0.7990 0.0223 0.0174 0.7863 0.1376 0.0958

200 0.8001 0.0153 0.0121 0.7906 0.0894 0.0663

Table 3. Simulation results based on asymptotic confidence intervals.

(p, θ) n ALCL(p) AUCL(p) AW(p) CP(p) ALCL(θ) AUCL(θ) AW(θ) CP(θ)

(0.3, 0.3)

25 0.0182 0.5754 0.5572 0.9014 0.0463 0.9963 0.9501 0.9107

50 0.0422 0.5385 0.4963 0.9493 0.0775 0.9892 0.9117 0.9431

100 0.0785 0.5095 0.4310 0.9577 0.0808 0.9779 0.8971 0.9555

200 0.1175 0.4815 0.3640 0.9584 0.0746 0.9644 0.8898 0.9632

(0.3, 0.8)

25 0.0739 0.5565 0.4827 0.9237 0.2095 0.9997 0.7902 0.9495

50 0.1343 0.4814 0.3471 0.9386 0.3320 0.9993 0.6673 0.9586

100 0.1856 0.4215 0.2358 0.9323 0.4398 0.9997 0.5598 0.9585

200 0.2225 0.3804 0.1579 0.9561 0.5386 0.9950 0.4564 0.9462

(0.8, 0.3)

25 0.5989 0.9095 0.3106 0.9033 0.0966 0.9739 0.8773 0.9487

50 0.6464 0.8962 0.2498 0.9305 0.1191 0.9883 0.8691 0.9383

100 0.6818 0.8863 0.2045 0.9446 0.1378 0.9954 0.8577 0.9682

200 0.7093 0.8757 0.1664 0.9645 0.0836 0.9180 0.8344 0.9783



Axioms 2022, 11, 646 14 of 24

Table 3. Cont.

(p, θ) n ALCL(p) AUCL(p) AW(p) CP(p) ALCL(θ) AUCL(θ) AW(θ) CP(θ)

(0.5, 0.5)

25 0.2060 0.7288 0.5228 0.9302 0.1591 0.9978 0.8387 0.9542

50 0.2715 0.6981 0.4266 0.9231 0.1609 0.9947 0.8337 0.9681

100 0.3275 0.6642 0.3367 0.9425 0.1619 0.9905 0.8286 0.9592

200 0.3735 0.6298 0.2563 0.9592 0.1796 0.9499 0.7703 0.9536

(0.8, 0.8)

25 0.6981 0.8908 0.1927 0.9655 0.3656 0.9997 0.6341 0.9359

50 0.7332 0.8624 0.1292 0.9571 0.4697 0.9996 0.5298 0.9448

100 0.7552 0.8423 0.0871 0.9564 0.5557 0.9972 0.4415 0.9569

200 0.7701 0.8301 0.0600 0.9546 0.6251 0.9559 0.3309 0.9607

Table 4. Simulation results based on Bayes estimates with non-informative priors.

(p, θ) n AE(p) RMSE(p) AB(p) AE(θ) RMSE(θ) AB(θ)

(0.3, 0.3)

25 0.2998 0.0118 0.0095 0.2998 0.0089 0.0072

50 0.2999 0.0110 0.0090 0.2998 0.0078 0.0063

100 0.3002 0.0093 0.0074 0.3001 0.0065 0.0052

200 0.3006 0.0076 0.0061 0.3005 0.0051 0.0041

(0.3, 0.8)

25 0.2981 0.0117 0.0094 0.8064 0.0161 0.0126

50 0.2987 0.0114 0.0091 0.8057 0.0141 0.0111

100 0.2988 0.0106 0.0085 0.8062 0.0124 0.0099

200 0.2994 0.0086 0.0069 0.8055 0.0107 0.0086

(0.8, 0.3)

25 0.7986 0.0122 0.0097 0.2962 0.0064 0.0051

50 0.7989 0.0116 0.0094 0.2963 0.0061 0.0049

100 0.7992 0.0116 0.0093 0.2998 0.0057 0.0046

200 0.7993 0.0098 0.0078 0.3012 0.0056 0.0046

(0.5, 0.5)

25 0.4995 0.0115 0.0092 0.4999 0.0115 0.0090

50 0.4997 0.0115 0.0091 0.4999 0.0099 0.0079

100 0.5000 0.0098 0.0079 0.5002 0.0084 0.0067

200 0.5005 0.0081 0.0065 0.5004 0.0065 0.0053

(0.8, 0.8)

25 0.7988 0.0123 0.0099 0.8054 0.0190 0.0151

50 0.7990 0.0123 0.0099 0.8051 0.0154 0.0123

100 0.7992 0.0107 0.0086 0.8035 0.0124 0.0106

200 0.7992 0.0090 0.0073 0.8033 0.0097 0.0086
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Table 5. Simulation results based on HPD intervals with non-informative priors.

(p, θ) n ALCL(p) AUCL(p) AW(p) CP(p) ALCL(θ) AUCL(θ) AW(θ) CP(θ)

(0.3, 0.3)

25 0.2543 0.3462 0.0919 0.9231 0.2132 0.3868 0.1736 0.9061

50 0.2561 0.3438 0.0877 0.9389 0.2133 0.3859 0.1725 0.9394

100 0.2601 0.3411 0.0809 0.9469 0.2151 0.3860 0.1709 0.9482

200 0.2640 0.3358 0.0718 0.9604 0.2156 0.3843 0.1687 0.9597

(0.3, 0.8)

25 0.2552 0.3451 0.0899 0.8974 0.7150 0.8856 0.1706 0.8968

50 0.2574 0.3420 0.0846 0.9151 0.7162 0.8833 0.1671 0.9289

100 0.2615 0.3383 0.0768 0.9394 0.7179 0.8803 0.1624 0.949

200 0.2662 0.3336 0.0673 0.9451 0.7216 0.8772 0.1556 0.9679

(0.8, 0.3)

25 0.7596 0.8386 0.0789 0.9341 0.2133 0.3868 0.1736 0.9281

50 0.7647 0.8333 0.0686 0.9409 0.2132 0.3863 0.1731 0.9326

100 0.7703 0.8271 0.0569 0.9498 0.2136 0.3863 0.1727 0.9649

200 0.7758 0.8212 0.0454 0.9562 0.2142 0.3856 0.1714 0.9585

(0.5, 0.5)

25 0.4545 0.5454 0.0909 0.9457 0.4139 0.5865 0.1726 0.9149

50 0.4568 0.5427 0.0859 0.9462 0.4145 0.5854 0.1709 0.9446

100 0.4614 0.5396 0.0783 0.9574 0.4162 0.5845 0.1683 0.9527

200 0.4652 0.5338 0.0687 0.9656 0.4173 0.5820 0.1648 0.9533

(0.8, 0.8)

25 0.7620 0.8361 0.0742 0.9346 0.7153 0.8848 0.1694 0.9353

50 0.7671 0.8303 0.0632 0.9451 0.7171 0.8825 0.1654 0.9492

100 0.7730 0.8247 0.0516 0.9563 0.7200 0.8788 0.1587 0.9560

200 0.7787 0.8196 0.0409 0.9512 0.7259 0.8745 0.1486 0.9512

Table 6. Simulation results based on Bayes estimates with informative priors.

(p, θ) n AE(p) RMSE(p) AB(p) AE(θ) RMSE(θ) AB(θ)

(0.3, 0.3)

25 0.2982 0.0110 0.0093 0.2963 0.0088 0.0071

50 0.2989 0.0107 0.0086 0.2966 0.0076 0.0063

100 0.2991 0.0091 0.0073 0.2967 0.0060 0.0047

200 0.2992 0.0073 0.0059 0.2968 0.0049 0.0038

(0.3, 0.8)

25 0.2997 0.0111 0.0089 0.7993 0.0153 0.0122

50 0.2997 0.0111 0.0089 0.7996 0.0136 0.0109

100 0.2999 0.0104 0.0084 0.7998 0.0116 0.0093

200 0.3001 0.0084 0.0068 0.8003 0.0089 0.0072

(0.8, 0.3)

25 0.7996 0.0115 0.0091 0.2999 0.0058 0.0046

50 0.7998 0.0112 0.0089 0.3001 0.0050 0.0040

100 0.8005 0.0111 0.0089 0.3005 0.0049 0.0039

200 0.8007 0.0096 0.0077 0.3002 0.0044 0.0035
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Table 6. Cont.

(p, θ) n AE(p) RMSE(p) AB(p) AE(θ) RMSE(θ) AB(θ)

(0.5, 0.5)

25 0.4998 0.0110 0.0084 0.4997 0.0110 0.0088

50 0.5120 0.0107 0.0075 0.4991 0.0092 0.0073

100 0.4995 0.0091 0.0069 0.5001 0.0080 0.0065

200 0.5022 0.0074 0.0060 0.5002 0.0065 0.0051

(0.8, 0.8)

25 0.7991 0.0120 0.0096 0.7998 0.0184 0.0146

50 0.7992 0.0120 0.0096 0.7999 0.0151 0.0120

100 0.8056 0.0106 0.0084 0.8002 0.0112 0.0098

200 0.8009 0.0088 0.0070 0.8008 0.0091 0.0077

Table 7. Simulation results based on HPD intervals with informative priors.

(p, θ) n ALCL(p) AUCL(p) AW(p) CP(p) ALCL(θ) AUCL(θ) AW(θ) CP(θ)

(0.3, 0.3)

25 0.2534 0.3445 0.0911 0.9172 0.2129 0.3807 0.1678 0.9179

50 0.2548 0.3418 0.0870 0.9320 0.2129 0.3796 0.1666 0.9460

100 0.2591 0.3394 0.0803 0.9501 0.2143 0.3794 0.1651 0.9548

200 0.2636 0.3349 0.0713 0.9486 0.2152 0.3785 0.1632 0.9665

(0.3, 0.8)

25 0.2543 0.3435 0.0892 0.9061 0.7245 0.8883 0.1639 0.9082

50 0.2563 0.3402 0.0838 0.9282 0.7250 0.8859 0.1610 0.9222

100 0.2607 0.3368 0.0761 0.9584 0.7277 0.8842 0.1565 0.9444

200 0.2662 0.3328 0.0666 0.9696 0.7300 0.8800 0.1501 0.9589

(0.8, 0.3)

25 0.7613 0.8396 0.0783 0.9321 0.2125 0.3802 0.1678 0.9292

50 0.7666 0.8346 0.0680 0.9401 0.2127 0.3799 0.1672 0.9431

100 0.7713 0.8277 0.0564 0.9562 0.2131 0.3796 0.1665 0.9448

200 0.7772 0.8222 0.0450 0.9574 0.2136 0.3792 0.1657 0.9620

(0.5, 0.5)

25 0.4546 0.5448 0.0902 0.9437 0.4163 0.5833 0.1670 0.9264

50 0.4563 0.5416 0.0853 0.9500 0.4162 0.5819 0.1657 0.9364

100 0.4608 0.5385 0.0778 0.9699 0.4184 0.5817 0.1634 0.9549

200 0.4657 0.5338 0.0682 0.9662 0.4200 0.5802 0.1601 0.9686

(0.8, 0.8)

25 0.7626 0.8362 0.0737 0.9112 0.7238 0.8864 0.1626 0.9394

50 0.7678 0.8305 0.0627 0.9422 0.7255 0.8842 0.1587 0.9459

100 0.7734 0.8247 0.0513 0.9570 0.7267 0.8793 0.1526 0.9417

200 0.7790 0.8196 0.0406 0.9760 0.7311 0.8745 0.1434 0.9639

6. Data Analysis

In this section, we illustrate the flexibility of the DBiExII distribution for modelling
various types of data sets generated from different fields. We have compared the fits of
the DBiExII model with some well-known existing models having one or two parameters
and these are reported in Table 8. The fitted models are compared using famous criteria,
namely, −l (Negative log-likelihood), Akaike information criterion (AIC) “AIC = 2c− 2L”,
with its corrected value (CAIC) “CAIC = [2nc/(n− c− 1)]− 2L”, and Chi-square (χ2)
statistic with associated P-value, where L is the maximized likelihood function evaluated
at MLEs, n is the sample size, and c is the number of parameters in the model.
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Table 8. The competitive models.

Distribution Abbreviation Author(s)

Discrete Exponential (Geometric) DEx -
Generalized Discrete Exponential GDEx Gómez-Déniz [25]
Discrete generalized exponential type II DGExII Nekoukhou et al. [26]
Discrete Rayleigh DR Roy [5]
Discrete inverse Rayleigh DIR Hussain and Ahmad [27]
Discrete Bilal DBe Eliwa et al. [28]
Discrete Burr–Hatke DBH El-Morshedy et al. [15]
Discrete Pareto DPa Krishna and Pundir [9]
Discrete inverse Weibull DIW Jazi et al. [29]
Discrete Burr type II DBX-II Para and Jan [30]
Discrete log-logistic DLogL Para and Jan [31]

6.1. Data Set I: COVID-19

The data are reported in (https://www.worldometers.info/coronavirus/country/
south-korea/, 5 February to 13 June 2022) and represents the daily new deaths in South
Korea country. The MLEs with their corresponding standard errors (Std-er), confidence
interval (C. I) for the parameter(s) and goodness of fit statistic for data set I are listed in
Tables 9–11.

Table 9. The MLEs with their corresponding Std-ers and C. I for data set I.

Parameter→ p θ

Model ↓ MLE Std-er C. I MLE Std-er C. I

DBiExII 0.5966 0.0429 [0.5123, 0.6808] 0.6436 0.1674 [0.3155, 0.9718]
DEx 0.7039 0.0225 [0.6598, 0.7479] − − −

GDEx 0.6449 0.0439 [0.5588, 0.7309] 1.6124 0.5023 [0.6274, 2.5969]
DGExII 0.6739 0.0336 [0.6079, 0.7398] 1.2149 0.1947 [0.8333, 1.5966]

DR 0.9306 0.0061 [0.9186, 0.9426] − − −
DIR 0.1768 0.0329 [0.1122, 0.2414] − − −
DBe 0.7487 0.0143 [0.7206, 0.7767] − − −
DBH 0.9315 0.0269 [0.8789, 0.9842] − − −
DPa 0.4152 0.0332 [0.3500, 0.4803] − − −
DIW 0.2338 0.0381 [0.1591, 0.3086] 1.2658 0.1134 [1.0436, 1.4879]

DB-XII 0.6225 0.0487 [0.5271, 0.7179] 2.3359 0.3772 [1.5967, 3.0751]
DLogL 2.0210 0.1890 [1.6505, 2.3915] 1.7457 0.1523 [1.4472, 2.0443]

From Tables 10 and 11, the DBiExII model is the best distribution among all tested
models. Figure 4 shows the profile of the log-likelihood function for data set I and this
figure announces that the parameters are unimodal functions.

Figure 4. The profile of l function for the model parameters based on data set I.

https://www.worldometers.info/coronavirus/country/south-korea/
https://www.worldometers.info/coronavirus/country/south-korea/
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Table 10. The goodness of fit statistic for data set I.

No. Observed Expected Frequency

X Frequency DBiExII DEx DR DIR DBe DBH DPa

0 32 31.3801 36.1263 8.4645 21.5662 19.2478 65.1759 55.6679
1 27 25.9175 25.4287 22.0300 57.5405 30.7382 21.5347 19.8889
2 17 19.7549 17.8988 27.6341 21.5260 25.5994 10.6342 10.3779
3 14 14.3464 12.5987 25.2606 8.8444 17.8606 6.2813 6.4241
4 8 10.0864 8.8679 18.3967 4.3528 11.4844 4.1105 4.3897
5 7 6.9287 6.2420 11.0489 2.4366 7.0553 2.8746 3.2002
6 6 4.6771 4.3937 5.5663 1.4943 4.2138 2.1058 2.4424
7 5 3.1145 3.0926 2.3750 0.9801 2.4707 1.5963 1.9288
8 5 2.0515 2.1768 0.8635 0.6767 1.4305 1.2423 1.5640
9 1 3.7429 5.1745 0.3604 2.5824 1.8993 6.4444 16.1161

Total 122 122 122 122 122 122 122 122

−l 249.0626 250.3056 279.9239 278.0657 255.5355 277.0495 279.8059
AIC 502.1251 502.6112 561.8477 558.1313 513.0710 556.0990 561.6119

CAIC 502.2260 502.6445 561.8811 558.1647 513.1043 556.1323 561.6452

χ2 2.2108 8.4698 89.7303 57.2829 18.5571 43.5311 64.2454
p-value 0.8193 0.2057 <0.0001 <0.0001 0.0023 <0.0001 <0.0001

Table 11. The goodness of fit statistic for data set I “Contin”.

No. Observed Expected Frequency

X Frequency DBiExII GDEx DGExII DIW DB-XII DLogL

0 32 31.3801 31.0604 31.2734 28.5245 34.1655 27.6305
1 27 25.9175 25.7405 27.2030 38.1383 35.8539 32.81328
2 17 19.7549 19.8882 19.7995 18.3045 17.0802 20.7934
3 14 14.3464 14.5504 13.8789 9.9187 9.0893 12.3449
4 8 10.0864 10.2257 9.5696 6.0537 5.5023 7.6045
5 7 6.9287 6.9849 6.5406 4.0199 3.6500 4.9354
6 6 4.6771 4.6791 4.4475 2.8368 2.5837 3.3619
7 5 3.1145 3.0936 3.0147 2.0949 1.9183 2.3864
8 5 2.0515 2.0277 2.0393 1.6026 1.4770 1.7534
9 1 3.7429 3.7495 4.2335 10.5061 10.6798 8.3763

Total 122 122 122 122 122 122 122

−l 249.0626 249.2000 249.5807 262.3222 263.5383 256.7394
AIC 502.1251 502.3999 503.1614 528.6444 531.0766 517.4788

CAIC 502.2260 502.5008 503.2622 528.7453 531.1774 517.5796

χ2 2.2108 2.3634 2.3941 12.3012 14.1272 5.5044
p-value 0.8193 0.7969 0.7924 0.0152 0.0069 0.2393

Figure 5 shows the estimated PMFs for data set I.
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Figure 5. The estimated PMFs for data set I.

Table 12 lists some information about data set I based on the DBiExII model.

Table 12. Some descriptive statistics for data set I.

Type ↓Measures→ Mean Variance IxD Skewness Kurtosis

Theoretical 2.37742 6.41498 2.69829 1.66410 6.95252

Empirical 2.37705 5.757485 2.42211 0.98615 3.07782

From Table 12, the empirical mean, variance, IxD are close to theoretical ones. Data set
I suffers from overdispersion phenomena, and most of the distribution is at the left with
leptokurtic character.

6.2. Data Set II: Larvae Pyrausta

This data set is the biological experiment data which represents the number of Euro-
pean corn borer larvae Pyrausta in field (Holt et al. [32]). The MLEs with their correspond-
ing Std-ers, confidence intervals (C. Is) for the parameter(s) and goodness of fit statistic for
data set II are listed in Tables 13–15.



Axioms 2022, 11, 646 20 of 24

Table 13. The MLEs with their corresponding Std-ers and C. Is for data set II.

Parameter→ p θ

Model ↓ MLE Std-er C. I MLE Std-er C. I

DBiExII 0.2576 0.0377 [0.1837, 0.3315] 0.6439 0.1472 [0.3556, 0.9324]

DEx 0.3933 0.0211 [0.3518, 0.4347] − − −
GDEx 0.3179 0.0407 [0.2375, 0.3971] 1.5917 0.3804 [0.8462, 2.3373]

DGExII 0.3379 0.0366 [0.2661, 0.4096] 1.3317 0.2231 [0.8943, 1.7690]

DR 0.6216 0.0175 [0.5873, 0.6559] − − −
DIR 0.5747 0.0274 [0.5209, 0.6285] − − −
DBe 0.4809 0.0149 [0.4516, 0.5102] − − −
DBH 0.6555 0.0356 [0.5877, 0.7232] − − −
DPa 0.1913 0.0182 [0.1556, 0.2271] − − −
DIW 0.5744 0.0276 [0.5202, 0.6285] 2.0178 0.1672 [1.6902, 2.3455]

DB-XII 0.2858 0.0267 [0.2335, 0.3381] 2.0128 0.1892 [1.6419, 2.3836]

DLogL 0.8846 0.0466 [0.7933, 0.9759] 2.2880 0.1786 [1.9379, 2.6381]

Table 14. The goodness of fit statistic for data set II.

No. Observed Expected Frequency

X Frequency DBiExII DEx DR DIR DBe DBH DPa

0 188 186.7622 196.5842 122.5868 186.2094 171.2839 217.8157 221.0309
1 83 88.0289 77.3084 153.0275 95.8946 108.7492 59.7847 50.3079
2 36 32.9622 30.4022 43.8937 22.5578 32.8374 23.5898 19.9369
3 14 11.1415 11.9559 4.3308 8.3142 8.4488 10.8491 10.0986
4 2 3.5529 4.7018 0.1589 3.9247 2.0489 5.4276 5.8896
5 1 1.5523 3.0475 0.0023 7.0993 0.6318 6.5331 16.7361

Total 324 324 324 324 324 324 324 324

−l 355.9001 357.8779 404.4854 366.2275 360.5431 369.7014 387.8939
AIC 715.8001 717.7558 810.9708 734.4551 723.0862 741.4027 777.7877

CAIC 715.8375 717.7682 810.9832 734.4675 723.0986 741.4152 777.8001

Ø2 2.1769 5.0847 67.3905 16.1573 11.1293 27.3908 57.9946
p value 0.3367 0.1657 <0.0001 0.0011 0.0038 <0.0001 <0.0001

From Tables 14 and 15, the DBiExII distribution is the best model among all tested
models. Figure 6 shows the profile of the log-likelihood function for data set II, and from
this figure, it is clear that the parameters are unimodal functions.

Figure 6. The profile of l function for the model parameters based on data set II.
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Table 15. The goodness of fit statistic for data set II “Contin”.

No. Observed Expected Frequency

X Frequency DBiExII GDEx DGExII DIW DsB-XII DLogL

0 188 186.7622 186.2301 187.1074 186.0956 188.0009 184.5744
1 83 88.0289 88.7678 88.5925 96.4464 93.2129 96.0252
2 36 32.9622 32.8333 31.7641 22.4638 24.9509 24.7251
3 14 11.1415 10.9727 10.9246 8.2235 8.7052 8.7293
4 2 3.5529 3.5407 3.7126 3.8629 3.7882 3.9026
5 1 1.5523 1.6554 1.8988 6.9078 5.3419 6.0434

Total 324 324 324 324 324 324 324

−l 355.9001 356.0700 356.4021 366.2218 362.6942 363.8550
AIC 715.8001 716.1400 716.8042 736.4436 729.3883 731.7100

CAIC 715.8375 716.1774 716.8416 736.4810 729.4257 731.7474

Ø2 2.1769 2.4604 3.0032 19.7147 10.5252 12.0788
p value 0.3367 0.2922 0.2228 <0.0001 0.0052 0.0024

Figure 7 shows the estimated PMFs for data set II.
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Figure 7. The estimated PMFs for data set II.

Table 16 lists some information around data set II under the DBiExII model.

Table 16. Some descriptive statistics for data set II.

Type ↓Measures→ Mean Variance IxD Skewness Kurtosis

Theoretical 0.64798 0.88666 1.36834 1.83365 7.44446

Empirical 0.64814 0.84795 1.30828 1.52091 5.23804
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From Table 16, the theoretical mean, variance, IxD and skewness are close to empirical
ones. Data set II suffers from overdispersion phenomena, and most of the distribution is at
the left with leptokurtic character.

6.3. Bayesian Estimation for Data Sets I and II

In this sub-section, we calculate Bayes estimates and HPD credible intervals for the
unknown parameters of DBiExII distribution under the real data set I and II. Due to the lack
of prior information on these parameters for the given data sets, we assume the uniform
NIPs for the unknown parameters of the model. Doing the same as we did in the simulation
study in Section 5, we have computed the Bayes estimates with their associated posterior
standard errors (PStd-ers) and HPD credible intervals for the unknown parameters p and θ
under the data sets I and II. The resulted values are tabulated in Table 17.

Table 17. Bayes estimates for data sets I and II.

Data Set
p θ

Estimate (PStd-er) HPD (Width) Estimate (PStd-er) HPD (Width)

Data set I 0.5970 (0.0179) [0.5626, 0.6326] (0.0700) 0.6423 (0.0425) [0.5639, 0.7278] (0.1638)

Data set II 0.2578 (0.0159) [0.2251, 0.2876] (0.0624) 0.6443 (0.0412) [0.5662, 0.7278] (0.1616)

For both data sets, when we have compared the Bayes estimates with the results
of MLEs, we found that both methods work well, but Bayesian estimation with NIPs is
superior than method of maximum likelihood in terms of estimation errors and length of
the confidence intervals.

7. Conclusions

The present article introduced a new two-parameter discrete model, called discrete
binomial exponential II distribution. We have discussed several important properties of the
proposed model. One of the key advantages of this newly developed model is that it can
model a variety of data (over-, equi-, and under-dispersed, positively skewed, leptokurtic,
and increasing failure time data). Two well-known estimation techniques, the method of
maximum likelihood and Bayesian estimation, have been used to derive the point and
interval estimators of the unknown parameters of the DBiExII distribution.

A detailed Monte Carlo simulation study has been performed to test the behaviour of
different point and interval estimators with respect to sample size and parametric values.
The results of this numerical study show that both estimation methods work satisfactorily,
but Bayesian estimation under beta priors dominates the method of maximum likelihood
in terms of estimation errors. In the end, the usefulness of the new distribution is illustrated
by means of two real data sets to prove its versatility in practical applications. We, therefore,
believe that the DBiExII distribution may be a better alternative to some popular existing
discrete models and may be widely applicable for modelling real-life data sets in various
fields. With regard to future work, the researchers may use the new model to propose a
bi-variate distribution based on the shock model approach for modelling bi-variate data.
In addition, a regression model and a first-order integer-valued auto-regressive process can
be studied in detail.
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