Multiterm Impulsive Caputo–Hadamard Type Differential Equations of Fractional Variable Order
Abstract
:1. Introduction
2. Auxiliary Results
- 1.
- Λ is uniformly bounded.
- 2.
- Λ is équicontinuous.
3. Main Existence and Uniqueness Results
- (A1)
- Let be a partition of the interval (with ) and let be a piecewise constant function with respect to and , i.e.,
- (A2)
- For , the function is continuous and there exist constants , such that, for any and .
- (A3)
- For any , and , there exists such that,
- (A4)
- For , there exists such that, for any and,
4. Ulam–Hyers Stability
5. An Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, A.; Hazarika, B.; Parvaneh, V.; Mursaleen, M. Solvability of generalized fractional order integral equations via measures of noncompactness. Math. Sci. 2021, 15, 241–251. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, 1st ed.; Springer: Beijing, China, 2015; ISBN 978-3-642-14003-7. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 1st ed.; World Scientific: Singapore, 2012; ISBN 978-981-4355-20-9. [Google Scholar]
- Magin, R. Fractional Calculus in Bioengineering, 1st ed.; Begell House: Redding, CA, USA, 2006; ISBN 978-1567002157. [Google Scholar]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier: New York, NY, USA, 2006; ISBN 9780444518323. [Google Scholar]
- Petráš, I. Fractional-Order Nonlinear Systems, 1st ed.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; ISBN 978-3-642-18101-6. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications, 1st ed.; Gordon and Breach: Yverdon, Switzerland, 1993; ISBN 9782881248641. [Google Scholar]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-94005-2. [Google Scholar]
- Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Stamov, G.; Stamova, I. On the solutions of a quadratic integral equation of the Urysohn type of fractional variable order. Entropy 2022, 24, 886. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, S.; Hu, L. Approximate solutions to initial value problem for differential equation of variable order. J. Fract. Calc. Appl. 2018, 9, 93–112. [Google Scholar]
- Benkerrouche, A.; Souid, M.S.; Sitthithakerngkiet, K.; Hakem, A. Implicit nonlinear fractional differential equations of variable order. Bound. Value Probl. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Fractional variational calculus of variable order. In Advances in Harmonic Analysis and Operator Theory. Operator Theory: Advances and Applications, 1st ed.; Almeida, A., Castro, L., Speck, F.O., Eds.; Birkhäuser: Basel, Switzerland, 2013; Volume 229, pp. 291–301. [Google Scholar]
- Sarwar, S. On the existence and stability of variable order Caputo type fractional differential equations. Fractal Fract. 2022, 6, 51. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Karapinar, E.; Hakem, A. On the boundary value problems of Hadamard fractional differential equations of variable order. Math. Methods Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative study on solutions of a Hadamard variable order boundary problem via the Ulam-Hyers-Rassias stability. Fractal Fract. 2021, 5, 108. [Google Scholar] [CrossRef]
- Refice, A.; Souid, M.S.; Stamova, I. On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [Google Scholar] [CrossRef]
- Samko, S. Fractional integration and differentiation of variable order: An overview. Nonlinear Dyn. 2013, 71, 653–662. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Chen, Y.Q. Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Valerio, D.; Costa, J.S. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011, 91, 470–483. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A 2020, 476, 20190498. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gohar, M.; Li, C.; Yin, C. On Caputo–Hadamard fractional differential equations. Int. J. Comput. Math. 2020, 97, 1459–1483. [Google Scholar] [CrossRef]
- Green, C.W.H.; Liu, Y.; Yan, Y. Numerical methods for Caputo– Hadamard fractional differential equations with graded and non-uniform meshes. Mathematics 2021, 9, 2728. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Lu, Z. On Caputo–Hadamard uncertain fractional differential equations. Chaos Solitons Fract. 2021, 146, 110894. [Google Scholar] [CrossRef]
- Almeida, R. Caputo–Hadamard fractional derivatives of variable order. Numer. Funct. Anal. Optim. 2017, 38, 1–19. [Google Scholar] [CrossRef][Green Version]
- Almeida, R.; Torres, D.F.M. Computing Hadamard type operators of variable fractional order. Appl. Math. Comput. 2015, 257, 74–88. [Google Scholar] [CrossRef][Green Version]
- Benchohra, M.; Henderson, J.; Ntouyas, S. Impulsive Differential Equations and Inclusions, 1st ed.; Hindawi Publishing Corporation: New York, NY, USA, 2006; ISBN 9789775945501. [Google Scholar]
- Li, X.; Song, S. Impulsive Systems with Delays: Stability and Control, 1st ed.; Science Press & Springer: Singapore, 2022; ISBN 978-981-16-4687-4. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Applied Impulsive Mathematical Models, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 978-3-319- 28060-8; 978-3-319-28061-5. [Google Scholar]
- Yang, X.; Peng, D.; Lv, X.; Li, X. Recent progress in impulsive control systems. Math. Comput. Simul. 2019, 155, 244–268. [Google Scholar] [CrossRef]
- Kalidass, M.; Zeng, S.; Yavuz, M. Stability of fractional-order quasi-linear impulsive integro-differential systems with multiple delays. Axioms 2022, 11, 308. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Arul, R. Uniqueness and stability results for non-local impulsive implicit Hadamard fractional differential equations. J. Appl. Nonlinear Dyn. 2020, 9, 23–29. [Google Scholar] [CrossRef]
- Kumar, V.; Kostić, M.; Malik, M.; Debouche, A. Controllability of switched Hilfer neutral fractional dynamic systems with impulses. IMA J. Math. Control Inf. 2022, 39, 807–836. [Google Scholar] [CrossRef]
- Kumar, V.; Malik, M.; Debouche, A. Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses. Appl. Math. Comput. 2021, 391, 125633. [Google Scholar] [CrossRef]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2017; ISBN 9781498764834. [Google Scholar]
- Wang, J.; Feckan, M.; Zhou, Y. A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2016, 19, 806–831. [Google Scholar] [CrossRef]
- Benchohra, M.; Seba, D. Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 2009, 8, 1–14. [Google Scholar] [CrossRef]
- Duc, T.M.; Hoa, N.V. Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller. Chaos Solitons Fract. 2021, 153, 111525. [Google Scholar] [CrossRef]
- Zhang, X. The general solution of differential equations with Caputo–Hadamard fractional derivatives and impulsive effect. Adv. Differ. Equ. 2015, 2015, 215. [Google Scholar] [CrossRef][Green Version]
- Zhao, K.; Ma, S. Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Math. 2021, 7, 3169–3185. [Google Scholar] [CrossRef]
- Ivady, P. A note on a gamma function inequality. J. Math. Inequal. 2009, 3, 227–236. [Google Scholar] [CrossRef][Green Version]
- An, J.; Chen, P. Uniqueness of solutions to initial value problem of fractional differential equations of variable-order. Dyn. Syst. Appl. 2019, 28, 607–623. [Google Scholar]
- O’Regan, D.; Cho, Y.J.; Chen, Y.Q. Topological Degree Theory and Applications, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2006; ISBN 978-1-58488-648-8. [Google Scholar]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, X.; Li, Y.; Wen, S.; Shi, K.; Tang, Y. Extended analysis on the global Mittag-Leffler synchronization problem for fractional-order octonion-valued BAM neural networks. Neural Netw. 2022, 154, 491–507. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benkerrouche, A.; Souid, M.S.; Stamov, G.; Stamova, I. Multiterm Impulsive Caputo–Hadamard Type Differential Equations of Fractional Variable Order. Axioms 2022, 11, 634. https://doi.org/10.3390/axioms11110634
Benkerrouche A, Souid MS, Stamov G, Stamova I. Multiterm Impulsive Caputo–Hadamard Type Differential Equations of Fractional Variable Order. Axioms. 2022; 11(11):634. https://doi.org/10.3390/axioms11110634
Chicago/Turabian StyleBenkerrouche, Amar, Mohammed Said Souid, Gani Stamov, and Ivanka Stamova. 2022. "Multiterm Impulsive Caputo–Hadamard Type Differential Equations of Fractional Variable Order" Axioms 11, no. 11: 634. https://doi.org/10.3390/axioms11110634