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Abstract: At present, malware is still a major security threat to computer networks. However, only
a fraction of users with some security consciousness take security measures to protect computers
on their own initiative, and others who know the current situation through social networks usually
follow suit. This phenomenon is referred to as conformity psychology. It is obvious that more users
will take countermeasures to prevent computers from being infected if the malware spreads to a
certain extent. This paper proposes a deterministic nonlinear SEIQR propagation model to investigate
the impact of conformity psychology on malware propagation. Both the local and global stabilities of
malware-free equilibrium are proven while the existence and local stability of endemic equilibrium is
proven by using the central manifold theory. Additionally, some numerical examples and simulation
experiments based on two network datasets are performed to verify the theoretical analysis results.
Finally, the sensitivity analysis of system parameters is carried out.

Keywords: malware propagation; conformity psychology; stability analysis; numerical simulation;
sensitivity analysis

1. Introduction

Malware is a program that can obtain unauthorized access and perform malicious
tasks on a computer system [1]. In essence, malware can perform a sequence of operations
to obtain control of the operating system so it can interrupt system operations, spy on users,
and steal sensitive data [2]. With the development of modern malware programs, fileless
malware has been developed, which does not need traditional executables to perform its
operations. The fileless malware works directly within the memory of the target system
instead of the hard drive [3,4]. With the application of obfuscation techniques in malware
development, the detection of new malware will become even more difficult than ever
before [5–7].

Much effort has been made over recent years to deal with the threat of malware;
however, it is still a severe risk in cyberspace. For example, by the end of 2016, the Mirai
virus had infected more than 500,000 devices and performed Distributed Denial of Service
(DDoS) attacks against many corporations and governments, including the French data
service provider, the major Internet service of America, and a telecommunication service
provider in Liberia [8]. In 2017, the earliest version of WannaCry was discovered by
researchers from Fortinet [9]. It attacked more than 230,000 computers in over 150 countries
and organizations, ranging from the UK National Health Service, the Bank of China, the
Russian Interior Ministry, to FedEx [10]. Moreover, some viruses have been developed to
launch advanced persistent threats (APTs) on industrial control systems, such as Stuxnet,
Industroyer, and Triton [11,12]. In this context, it is extremely important to understand the
propagation behavior of malware and then propose efficient control strategies to prevent
its spread.
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In the classical propagation models, the susceptible-infected-recovered (SIR) [13,14]
and susceptible-exposed-infected-recovered (SEIR) [15–17] models are widely used, which
depict the basic propagation process clearly. In [18], the perturbation method was used
to obtain the asymptotic solution of the SEIR model. Bentaleb and Amine [19] used the
Lyapunov function to prove that the disease-free equilibrium is globally asymptotically
stable in the two-strain SEIR model. In [20], Khouzani et al. introduced the optimal control
strategy to control the spread of malware. To study the computer virus propagation, the
work [21] proposed a novel method that integrated the evolutionary computing paradigm
to analyze the nonlinear dynamical behaviors of the model. In [22], the authors carried
out numerical simulations on the trend of safety entropy creatively. Meanwhile, some
prototype SEIR models, such as the SLBS model, have been investigated [23,24].

Quarantine is an early intervention measure to control the population of infected
individuals [25]. In the study of malware propagation, some researchers have investigated
the quarantine strategy in the SEIR model [26,27]. During the propagation of malware,
one can quarantine the infected nodes by closing the connection between infected nodes
and other nodes [28]. In [29], Piqueira and Batistela used the numerical approach to obtain
the parameter conditions of two equilibria in both saturated and unsaturated cases of the
quarantine population, respectively. However, most existing work neglects the effect of
user awareness on malware propagation.

Individuals can be influenced by the behaviors of others and begin to imitate them,
which is referred to as conformity psychology [30]. In the early stage of malware distri-
bution, people will tell their friends what happened to them when their computers are
infected, and their friends will be more alert. When the malware starts to become known to
the general public, some people realize the threat of malware and will take some precau-
tions against malware; then more people will follow suit [31]. Thus, malware propagation
can be controlled by raising user security awareness. In [32], the authors proposed an SEIRS
with vaccination and quarantine states (SEIRS-QV) model considering the impacts of user
awareness, network delay, and diverse configuration of nodes. Moreover, many researchers
considered the impact of user awareness on the spread of malware (e.g., [33,34]). Moreover,
social networks as a carrier of information dissemination can affect user awareness by
sharing messages about malware. Thus, it is necessary to study the characteristics of social
networks in information transmission.

With more and more people chatting online, online social networks have become
an important part of people’s lives. The trust between online users allows information
to spread quickly through social networking applications [35,36]. Hence, disseminating
information about the spread of malware through social networks can make the public
recognize the risk level. Then, the public can consciously take some preventive measures
to avoid being infected, such as upgrading the firewall and running the security software.
Many researchers focused on the characteristics of social networks [37–39]. Jia et al. [40]
considered the heterogeneity of infection rates and proposed an HSID model to describe
the spread of viruses in social networks. Owing to the importance of describing the
information dissemination process of social networks, Du and Wang [41] studied a reaction–
diffusion malware propagation model with mixed delays. In [42], the authors investigated
a fear effect where information about the impact of the virus from different networks can
cause people to feel fear and confusion. Clearly, user awareness is an important factor in
preventing virus propagation.

This paper aims to explore the impact of conformity psychology on malware prop-
agation. Section 2 gives the description of the formulated model. In Section 3, the dy-
namic behavior of malware-free equilibrium and endemic equilibrium are explored. In
Sections 4–6, the numerical simulations, experimental analysis, and sensitivity analysis are
given, respectively. Section 7 presents conclusions to end this work.
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2. Assumptions and Model Formulation

In this section, we classify all the computers into five categories: susceptible, exposed,
infected, quarantined, and recovered computers. Susceptible computers mean they are
vulnerable to malware. Exposed computers represent a class of computers that have been
infected with malware but have not yet broken out and cannot infect others. An infected
computer can infect other susceptible computers. Quarantined computers mean computers
are disconnected but still alive. Quarantined computers will eventually be transferred to
the recovered state and become immune to current malware. Let S(t), E(t), I(t), Q(t), R(t)
represent their corresponding densities, respectively, and the equation S(t) + E(t) + I(t) +
Q(t) + R(t) = 1 at time t is valid.

In the modeling of malware propagation, the bilinear incidence rate βSI is used
to represent the rate of susceptible computers becoming exposed computers, which is
affected by the number of susceptible and infected computers. β is denoted as the rate
of malware contact transmission and infection. User awareness plays a significant role in
controlling the number of infected computers. So, β−mI is usually used to describe the
impact of psychology [43,44]. Here, m is a non-negative parameter to measure the impact
of information dissemination. The effects of information about the number of exposed,
infected, and quarantined computers are expressed as mE, mI , and mQ in social networks,
respectively. Hence, the effect of conformity is given by Me= e−mEE−mI I−mQQ.

Then, the following assumptions are made for this model.
(A1) Information is spread steadily and evenly on social networks. It is supposed that

exposed computers have a lower impact on user awareness than infected and quarantined
computers, since the more damage malware causes, the more people worry about the
malware.

(A2) Let φ represent the probability of people adopting quarantine to address the
problem of infected computers, and let γ denote the probability of quarantined computers
reconnecting to the network.

(A3) As computers can deteriorate over time and be physically damaged, the mortality
rate µ must be in the model. Suppose that the recruitment rate is equal to the mortality rate.

Remark 1. As the model will eventually reach a dynamic equilibrium, the total number of nodes will
eventually remain stable, which means that the recruitment rate is infinitely close to the mortality
rate. If not, the total number will keep decreasing or increasing with time t → ∞. Therefore, the
recruitment rate is required to equal the mortality rate in order to maintain the dynamic equilibrium
and be consistent with other existing efforts [28,45,46].

The state transition connection of nodes in the model is presented in Figure 1 and
the means of parameters are given in Table 1. Note that all parameters in this model are
non-negative constants.

E I QS R

Figure 1. The transfer diagram of the model.
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Table 1. Parameter interpretations.

Parameter Description Initial Value Source

α Rate of exposed computers becoming infected computers. 0.008 [26]
β Rate of susceptible computers becoming exposed computers. 0.053 [26]
φ Rate of infected computers being quarantined. 0.05 [26]
γ Rate of susceptible computers becoming exposed computers. 0.02 -
η Recovery rate for the exposed computers. 0.0008 [26]
ε Rate of quarantined computers becoming susceptible computers. 0.005 [26]
µ Recruitment and mortality rate. 0.001 -

mE, mI , mQ The impact of social networks corresponding to E, I, Q. 0.2, 0.3, 0.3 -

The corresponding ordinary differential equations are shown as:

dS
dt = µ + γQ− βe−mEE−mI I−mQQSI − µS,
dE
dt = βe−mEE−mI I−mQQSI − ηE− αE− µE,
dI
dt = αE− φI − µI,
dQ
dt = φI − γQ− εQ− µQ,
dR
dt = εQ + ηE− µR.

(1)

Thus, the feasible region Ψ of system (1) is defined as:

Ψ = {(S, E, I, Q, R) ∈ R+5|S + E + I + Q + R = 1},

which is a positively invariant set, and the system has been normalized. Due to the
equation S(t) + E(t) + I(t) + Q(t) + R(t) = 1, the system (1) can be written as:

dE
dt = βe−mEE−mI I−mQQ(1− E− I −Q− R)I − ηE− αE− µE,
dI
dt = αE− φI − µI,
dQ
dt = φI − γQ− εQ− µQ,
dR
dt = ηE + εQ− µR.

(2)

In the following parts, both the local and global asymptotic stabilities will be the focus
of our discussion.

3. Stability Analysis of the Equilibria

In this section, we will calculate the basic reproduction number R0 and explore the
local asymptotic stability and global asymptotic stability in the region Ψ.

3.1. Local Stability of the Equilibria

The malware-free equilibrium E0 = (1, 0, 0, 0, 0) is obtained from system (2) in the
original state. Here, matrix F and V represent the additional infection terms and the
transformation of other terms, respectively. So, we can obtain:

F =

e−mEE−mI I−mQQ(1− E− I −Q− R)I
0
0

,

V =


ηE + αE + µE
φI + µI − αE

γQ + εQ + µQ− φI
µR− εQ− ηE

.
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The Jacobian matrices of F and V at the malware-free equilibrium E0 are:

F =

0 β 0
0 0 0
0 0 0

,

V =

α + η + µ 0 0
−α φ + µ 0
0 −φ γ + ε + µ

.

According to the matrices F and V, the matrix J = FV−1 can be followed as:

J = FV−1 =


βα

(φ+µ)(η+α+µ)
β

φ+µ 0
0 0 0
0 0 0

.

The basic reproduction number R0 of system (2) is given exactly by the spectral radius
of the matrix:

R0 = ρ(FV−1) =
βα

(φ + µ)(η + α + µ)
. (3)

Theorem 1. E0 is locally asymptotically stable with respect to Ψ if R0 < 1.

Proof of Theorem 1. We can obtain the Jacobian matrix of system (2) with respect to
malware-free equilibrium:

J(E0) =


−α− η − µ β 0 0

α −φ− µ 0 0
0 φ −γ− ε− µ 0
η 0 ε −µ

.

The eigenvalue of J(E0) can be expressed as:

|λE− J(E0)| =

∣∣∣∣∣∣∣∣
λ + α + η + µ −β 0 0

−α λ + φ + µ 0 0
0 −φ λ + γ + ε + µ 0
−η 0 −ε λ + µ

∣∣∣∣∣∣∣∣,

and the characteristic equation is:

(λ2 + b1λ + b2)(λ + γ + ε + µ)(λ + µ) = 0,

where

b1 = α + η + φ + 2µ, b2 = βα(
1

R0
− 1).

According to the Vieta theorem, the roots of this characteristic equation are negative
real parts only if R0 < 1. The proof is completed.

3.2. Existence and Local Stability of Endemic Equilibrium

Theorem 2. System (2) has a unique endemic equilibrium E∗ if R0 ≥ 1.

Proof of Theorem 2. The endemic equilibrium (E∗, I∗, Q∗, R∗) of system (2) is shown as:

E∗ = a1 I∗, Q∗ = a2 I∗, R∗ = a3 I∗,
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where

a1 =
φ + µ

α
, a2 =

φ

γ + ε + µ
, a3 =

ηa1 + εa2

µ
,

a4 = 1 + a1 + a2 + a3,

and

m = mEa1 + mQa2 + mI .

The equation about I∗ is given by:

1− a4 I∗ =
emI∗

R0
. (4)

The Equation (4) can be divided into two equations:

y1 = 1− a4 I∗, (5)

y2 =
emI∗

R0
. (6)

Due to 0 ≤ I∗ ≤ 1, we can see that Equation (5) is monotonically decreasing, and its
maximum value is 1. Similarly, Equation (6) is monotonically increasing, and its minimum
value is 1

R0
. If and only if R0 ≥ 1, the curves of Equations (5) and (6) have one point of

intersection. It means that the endemic equilibrium exists if and only if R0 > 1.

Theorem 3. The endemic equilibrium E∗ of system (2) is locally asymptotically stable if R0 > 1.

Proof of Theorem 3. In the central manifold theory, we consider parameter β as a bifurca-
tion parameter [47]. When R0 = 1, the bifurcation parameter β is given by:

β0 =
(φ + µ)(η + α + µ)

α
.

It can be easily verified that Jacobian matrix J at β = β0 has a right eigenvector
(corresponding to the zero eigenvalue) given by W =(ω1, ω2, ω3, ω4)

T , where

ω1 = φ + µ, ω2 = α, ω3 =
αφ

γ + ε + µ
, ω4 =

η(φ + µ)(γ + ε + µ) + εφα

µ(γ + ε + µ)
.

Then, the left eigenvector (corresponding to the zero eigenvalue) is given by
V = (v1, v2, v3, v4). Meanwhile, according to the calculation of the equation of VJ = 0
and VW = 1, the solution of vector V can be easily obtained:

v1 =
1

φ + α + η + 2µ
, v2 =

η + α + µ

α(φ + α + η + 2µ)
, v3 = 0, v4 = 0.

Assume that x1 = E, x2 = I, x3 = Q, x4 = R. Hence, we have

f1 =
4

∑
i,j,k=1

vkwi
∂2 fk(0, 0)

∂xi∂xj
,

f2 =
4

∑
i,j,k=1

vkwi
∂2 fk(0, 0)

∂xi∂β
.
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All of the second-order derivatives are calculated at the malware-free equilibrium and
β = β0. Then, the solutions of f1 and f2 are:

f1 = −2βv1(w1w2(mE + 1) + 2w2
2(mE + 1) + w2w3(mQ + 1) + w2w4)

= −
2αβ(H + µαφ(mQ + 1) + γφα)

µ(φ + α + η + 2µ)(γ + ε + µ)
,

where

H = µ(γ + ε + µ)((φ + µ)(mE + 1) + 2α(mI + 1) + η(φ + µ)),

and

f2 = v1w2 =
α

φ + α + η + 2µ
.

After the above calculation, we can draw the conclusion that f1 < 0 and f2 > 0, a
transcritical bifurcation occurs at R0 = 1.

3.3. Global Stability of the Malware-Free Equilibrium

Theorem 4. The malware-free equilibrium E0 is globally asymptotically stable if R0 < 1.

Proof of Theorem 4. We use the theorem in [48] to prove the global stability of the malware-
free equilibrium. Let X = (R) and Z = (E, I, Q) denote the uninfected group and the
infected group, respectively, where X0 = (0) and Z0 = (0, 0, 0). U0 = (X0, Z0) denotes
the disease-free equilibrium of this system. Then, the conditions (H1) and (H2) should be
satisfied.

(H1) For dX
dt = F(X, 0), X0 is globally asymptotically stable;

(H2) G(X,Z) = AZ −Ĝ(X, Z), with Ĝ(X, Z) ≤ 0, f or (X, Z) ∈ Ω;
Then, the derivative of X is the following:

dX
dt

= F(X, Z) = εQ + ηE− µR.

At Z = Z0, G(X, 0) = 0. Now, dX
dt = F(X, 0) = −µX, as t → ∞, X → X0. Thus,

X = X0, and condition (H1) is satisfied. From system (2), we obtain:

dZ
dt

= G(X, Z) = AZ− Ĝ(X, Z),

where

A =

α + η + µ β 0
−α φ + µ 0
0 −φ γ + ε + µ

,

and

Ĝ(X, Z) =

βI(1− e−mEE−mI I−mQQS)
0
0

.

Due to I ≥ 0, 0 < e−mEE−mI I−mQQ ≤ 1 and 0 ≤ S ≤ 1, so Ĝ(X, Z) ≥ 0. As we know
that A is an M-matrix, both conditions (H1) and (H2) are satisfied. Hence, the malware-free
equilibrium E0 is globally asymptotically stable if R0 < 1.
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4. Numerical Simulations

In this section, we carry out a series of numerical simulations to demonstrate the
dynamic behavior of the SEIQR model and the impact of the parameters on the infected
nodes. Here, the initial densities of five components are given as S0 = 0.45, E0 = 0.2,
I0 = 0.15, Q0 = 0.12, and R0 = 0.08, respectively. The parameter values of the malware
propagation model are given in Table 1. Based on Equation (3) and parameters in Table 1,
we can obtain R0 = 0.8483 < 1.

In Figure 2, it is evident that different initial densities of five components converge to
the malware-free equilibrium with parameter values in Table 1 and the basic reproduction
number R0 = 0.8483 < 1. However, we further consider the case when malware infections
become more powerful (β = 0.1 and α = 0.1), so R0 = 1.9261 > 1. Then, all solutions
converge to the endemic equilibrium as shown in Figure 3. From these curves in Figures 2
and 3, it is obvious that the system is asymptotically stable.
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Figure 2. Different initial densities of susceptible, exposed, infected, quarantined, and recovered
nodes with respect time t under parameters in Table 1.
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Figure 3. Different initial densities of susceptible, exposed, infected, quarantined, and recovered
nodes with respect time t under parameters in Table 2.

Table 2. The initial parameter values in our simulations.

Parameter α β γ φ η ε µ mE mI mQ

Value 0.1 0.1 0.2 0.05 0.0008 0.005 0.001 0.2 0.3 0.3

The impact of conformity psychology plays a crucial role in the dynamic behavior of
infected nodes. However, the dissemination of information about malware is influenced
by social networks. Thus, we utilize the parameters mE, mI , and mQ to represent the
impact of social networks corresponding to exposed, infected, and quarantined computers,
respectively. Figure 4 shows the curves about the density of infected nodes, which is
influenced by different sets of values for mE, mI , and mQ. Figure 4a shows that the
conformity psychology contributes very little to reduce exposed nodes when the density
of infected nodes decreases and R0 < 1. It mean that most people do not care about the
malware when it has not infected enough nodes, especially if the malware is not contagious
enough. From these curves of Figure 4b, we can see that the density of infected nodes shows
a trend of increasing rapidly at the beginning of malware propagation. As the infected
nodes reach a certain size, many computer users hear information about malware through
social networks. Due to the conformity psychology, most users may take some proper
security measures to protect their computers. The bigger values of mE, mI , and mQ means
that the social network is more powerful in spreading information. Then, many people are
aware of the danger of malware and will strengthen the security of their own computers
and inform their acquaintances about the protection methods. After that, malware will no
longer infect computers on a large scale. In this context, conformity psychology works well
in limiting the spread of malware.
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Figure 4. The density of infected nodes over time under different values of mE, mI , and mQ for
R0 < 1 and R0 > 1.

In Figure 5, we set different values of the quarantine rate φ to study the effectiveness
of the quarantine measure. From Figure 5, we can draw a conclusion that the density of
infected nodes will decrease with the increase of the value of φ. The higher quarantine rate
will reduce the number of infected nodes to avoid more nodes being infected.
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Figure 5. The impact of the quarantined rate φ on the infected nodes with respect to time.

5. Experimental Analysis

In this section, we will perform a series of experiments based on two real datasets. The
one dataset consists of 55,863 nodes and 858,490 edges from Reddit hyperlink network [49].
The other dataset consists of 81,306 nodes and 1,768,149 edges from Twitter [50]. The
emulation program will be used to simulate the state transition of computers during
malware propagation.
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To compare with Section 4, S, E, I, Q, R indicate numerical simulation results, and
Sr, Er, Ir, Qr, Rr are the output results of Algorithm 1. The experiments (Examples 1 and 2)
will validate the theoretical results with real datasets and analyze the important parameters.
In Examples 1 and 2, we will use the Reddit and Twitter datasets to validate the model.

The main algorithm for validating this model is given below:

Algorithm 1: The state transformation of computers on the Internet
Input: Input the network G=(v,e) which is given by the set of data and the original

number of nodes per state
Output: Output the number of nodes in each state at time t∗

1 some description;
2 for t=0 to t∗ with the step of 1 do
3 new nodes will be born with probability µ and all in state S
4 if node(i) in the S state and alive then
5 if neighbor nodes of node(i) is I then
6 it will turn to E with probability βMe;
7 else
8 its state remains unchanged;
9 end

10 else if node(i) is in the E state and alive then
11 if neighbor nodes of node(i) is I then
12 it will turn to I with probability η ;
13 else
14 it will turn to R with probability α or its state remains unchanged;
15 end
16 else if node(i) is in the I state and alive then
17 it will turn to Q with probability φ or its state remains unchanged
18 else if node(i) is in the Q state and alive then
19 it will turn to R with probability ε, or turn to S with probability γ, or its

state remains unchanged;
20 else if node(i) is in the R state and alive then
21 its state remains unchanged;
22 else
23 each state of the node dies naturally with probability µ;
24 end
25 end

Example 1. System (1) will evolve with the parameters in Table 1, and the initial conditions on the
Reddit dataset are given as:
(E1) (S(0),E(0),Q(0),I(0),R(0)) = (5586,11173,16758,16758,5588),
(E2) (S(0),E(0),Q(0),I(0),R(0)) = (11173,16758,5585,11173,11174),
(E3) (S(0),E(0),Q(0),I(0),R(0)) = (16758,5586,11173,5588,16758).

Figure 6 demonstrates the progression of system (1) under the initial numbers of
Example 1 and the parameter values in Table 1.
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Figure 6. Trends of the numbers of different nodes for the Reddit dataset.
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From Figure 6, we can see that the real dataset and the numerical simulation results
are basically the same. With different initial values, the number of nodes in each state
eventually tends to stabilize. This means that the stability of the system is not affected by
the initial conditions as time passes. This proves the validity of the proposed model.

Example 2. System (1) will evolve with the parameters in Table 2 and the below initial conditions
on the Twitter dataset:
(F1) (S(0),E(0),Q(0),I(0),R(0)) = (8132,16261, 24391, 24391, 8131),
(F2) (S(0),E(0),Q(0),I(0),R(0)) = (16261, 24392, 8131, 16261, 16261),
(F3) (S(0),E(0),Q(0),I(0),R(0)) = (24391, 8131,16262, 8131, 24391).

Figure 7 depicts the evolution of the two kinds of simulations under Example 2, and
they both reach stability. This proves the feasibility of the model and the theoretical results
in Section 3. From these five plots, we can see that Figure 7a,b show a larger deviation than
the remaining three plots after reaching stability. One possible reason for this is that the
two are simulated in different ways.

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6
10

4

F1:S

F1:S
r

F2:S

F2:S
r

F3:S

F3:S
r

(a) Susceptible nodes

0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

2

2.5
10

4

F1:E

F1:E
r

F2:E

F2:E
r

F3:E

F3:E
r

(b) Exposed nodes

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.5

1

1.5

2

2.5
10

4

F1:I

F1:I
r

F2:I

F2:I
r

F3:I

F3:I
r

(c) Infected nodes

0 500 1000 1500 2000 2500 3000

0

0.5

1

1.5

2

2.5

3
10

4

F1:Q

F1:Q
r

F2:Q

F2:Q
r

F3:Q

F3:Q
r

(d) Quarantined nodes

Figure 7. Cont.



Axioms 2022, 11, 632 15 of 18

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.5

1

1.5

2

2.5

3

3.5
10

4

F1:R

F1:R
r

F2:R

F2:R
r

F3:R

F3:R
r

(e) Recovered nodes

Figure 7. Trends the numbers of different nodes for the Twitter dataset.

6. Sensitivity Analysis

R0 is an important parameter to determine whether the malware will die out after
its break-out. If R0 < 1, the number of infected computers will decrease to zero in a
period of time. If R0 > 1, we will reach the opposite conclusion. Hence, we have to
figure out how to reduce R0 below one by controlling system parameters. By calculating
various partial derivatives of R0, it is obvious that ∂R0

∂β , ∂R0
∂α > 0 and ∂R0

∂φ , ∂R0
∂µ , ∂R0

∂η , ∂R0
∂α < 0,

and we can obtain the relationship between R0 and the other parameters. R0 has an
increasing relationship with β and α, but R0 decreases along with the increase of φ, µ, η,
and α. Furthermore, we need the sensitivity of R0 about different parameters.

Sensitivity analysis is a method that can be used to study the sensitivity of R0 about
system parameters. The estimation of sensitive parameters should be performed with
caution because even slight changes in this parameter can result in significant quantitative
changes. Therefore, it is important to find out which parameters have a high impact on R0
through sensitivity analysis.

Definition 1. The normalized forward sensitivity index of the variable R0, whose value is dependent
on parameter xi, is defined by (see [51,52]):

ΥR0
xi =

∂R0

∂xi
× xi

R0
.

So, we can obtain:

ΥR0
β =

∂R0

∂β
× β

R0
= 1 > 0, (7)

ΥR0
α =

∂R0

∂α
× α

R0
=

η + µ

η + α + µ
> 0, (8)

ΥR0
η =

∂R0

∂η
× η

R0
= − η

η + α + µ
< 0, (9)

ΥR0
µ =

∂R0

∂µ
× µ

R0
= − η + α + φ + 2µ

(φ + µ)(η + α + µ)
< 0, (10)

ΥR0
φ =

∂R0

∂φ
× φ

R0
= − φ

φ + µ
< 0. (11)

A conclusion can be drawn from the above five equations. The increase of β and α will cause
R0 increases, while an increase in η, µ, and φ will lead to a decrease in R0. We set up five groups of
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parameters with different values in Table 3 to evaluate the sensitivity indices of R0. Calculating
these Equations (7)–(11) with these values of parameters, we can obtain Table 4.

Table 3. Five groups of parameters with different values.

Parameter β α η µ φ

Group 1 0.1 0.24 0.5 0.7 0.8
Group 2 0.3 0.45 0.6 0.9 0.1
Group 3 0.5 0.75 0.9 0.15 0.28
Group 4 0.7 0.8 0.28 0.4 0.53
Group 5 0.9 0.22 0.29 0.5 0.75

Table 4. The sensitivity indices of R0.

Parameter β α η µ φ

Case 1 +1.0000 +0.8333 −0.3472 −0.9528 −0.5333
Case 2 +1.0000 +0.7692 −0.3077 −1.3615 −0.1000
Case 3 +1.0000 +0.5833 −0.5000 −0.4322 −0.6512
Case 4 +1.0000 +0.4595 −0.1892 −0.7004 −0.5699
Case 5 +1.0000 +0.7822 −0.2871 −0.8950 −0.6000

The sensitivity indices of R0 in Table 4 show that R0 is most sensitive to β in Cases 1, 3,
4, 5, and µ in Case 2. Figure 8 is presented to describe the relationship between R0 and β, µ,
respectively.
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Figure 8. R0 with respect to β and µ.

7. Conclusions

In this paper, we briefly introduce malware and some of the damages it causes first.
Then, we describe some characteristics of conformity psychology, paving the way for us
to study how it affects malware transmission. A deterministic nonlinear SEIQR model
considering the conformity psychology in social networks is designed. We calculate the
basic reproduction number R0 and investigate the stability of the two equilibria. There is
only one malware-free equilibrium, E0, which is locally and globally stable when R0 < 1
and one endemic equilibrium which is locally stable when R0 > 1. The simulation results
show that conformity psychology plays a great role in preventing the spread of malware.
Through the result of sensitivity analysis, we can draw a conclusion that the basic repro-
duction number is sensitive to the parameters β and µ. Our future work will research more
effective methods to control the spread of malware. We are considering complex networks
to simulate malware propagation and solve the problems involved.
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