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Abstract: The present paper deals with a new differential operator denoted by Fδ,n,b,c,m,β
p,t , whose

certain properties are deduced by using well-known earlier studies regarding differential inequalities
and the Caratheodory function. The new introduced operator is defined by making use of a linear
combination of the binomial series and confluent hypergeometric function. In addition, by using
special values of the parameters, we establish certain results concretized in specific corollaries, which
provide useful inequalities. Studying these properties by using various types of operators is a
technique that is widely used.
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1. Introduction, Definition, and Preliminaries

When L. de Branges employed hypergeometric functions in the proof of the famous
Bieberbach conjecture [1], interest in the study of hypergeometric functions and their con-
nection to the theory of univalent functions resurfaced. Recently, the Confluent (Kummer)
hypergeometric function was studied from numerous angles. An analytical study on
Mittag–Leffler confluent hypergeometric functions was made in [2] using a fractional inte-
gral operator. Conditions related to univalence of the Confluent (Kummer) hypergeometric
function were established in [3] and its applications on certain classes of univalent functions
are shown in [4]. These operators have been shown to be particularly beneficial in a wide
range of applicability by modeling various phenomena and processes.

In order to develop the present study, the usual definitions are used.
Let Ap denote the class of functions of the form:

F (ζ) = ζ p +
∞

∑
k=p+1

akζk, (p ∈ N = {1, 2, . . . }, ζ ∈ ∆), (1)

which are analytic and p-valent in the unit disc ∆ = {ζ : |ζ| < 1} and let the function
Ω ∈ Ap be given by:

Ω(ζ) := ζ p +
∞

∑
k=p+1

ψkζk, ζ ∈ ∆. (2)
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The Hadamard (or convolution) product of F and Ω is defined by:

(F ∗Ω)(ζ) := ζ p +
∞

∑
k=p+1

akψkζk, ζ ∈ ∆.

The confluent hypergeometric function of the first kind is given by the power series

F(b; c; ζ) = 1 +
b
c

ζ +
b (b + 1)
c (c + 1)

ζ2

2!
+ . . .

=
∞

∑
k=0

(b)k
(c)k (1)k

ζk, (b ∈ C, c ∈ C \ {0,−1,−2, . . . }),

where (b)k is the Pochhammer symbol defined in terms of the Gamma function by

(b)k =
Γ(b + k)

Γ(b)
=

{
1, if k = 0,
b(b + 1) . . . (b + k− 1), if k ∈ N ={1, 2, . . . },

which is convergent for all finite values of ζ (see [5]). It can be written otherwise as:

F(b; c; m) =
∞

∑
k=0

(b)k
(c)k (1)k

mk, (b ∈ C, c ∈ C \ {0,−1,−2, . . . }),

which is convergent for b, c, m > 0.
Very recently, Porwal and Kumar [4] (see also [6–8]) introduced the confluent hyperge-

ometric distribution (CHD) whose probability mass function is

P(k) =
(b)k

(c)k k!F(b; c; m)
mk, (b, c, m > 0, k = 0, 1, 2, . . . ).

We introduce a series Ip(b; c; m; ζ p) whose coefficients are probabilities of the confluent
hypergeometric distribution

Ip(b; c; m; ζ p) = ζ p +
∞

∑
k=p+1

(b)k−pmk−p

(c)k−p (k− p)!F(b; c; m)
ζk, (b, c, m > 0), (3)

and defined a linear operator Qb;c;m
p F : Ap → Ap as follows

Qb;c;m
p F (ζ) = Ip(b; c; m; ζ p) ∗ F (ζ)

= ζ p +
∞

∑
k=p+1

(b)k−pmk−p

(c)k−p (k− p)!F(b; c; m)
ak ζk, (b, c, m > 0).

Making use of the binomial series,

(1− δ)t =
t

∑
i=0

(
t
i

)
(−1)i δi (t ∈ N).

For F ∈ Ap, we introduced the linear differential operator as follows:

Dδ,0,b,c,m
p,t F (ζ) = Qb;c;m

p F (ζ),
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Dδ,1,b,c,m
p,t F (ζ) = Dδ,b;c;m

p,t F (ζ) =
[
1− (1− δ)t

]
Qb;c;m

p F (ζ) + ζ
p (1− δ)t

(
Qb;c;m

p F
)′
(ζ)

= ζ p +
∞
∑

k=p+1

[
1 +

(
k
p − 1

)
ct(δ)

][
(b)k−pmk−p

(c)k−p (k−p)!F(b;c;m)

]
ak ζk

.

.

.
Dδ,n,b,c,m

p,t F (ζ) = Dδ,b;c;m
p,t

(
Dδ,n−1,b,c,m

p,t F (ζ)
)

=
[
1− (1− δ)t

]
Dδ,n−1,b,c,m

p,t F (ζ) + ζ
p (1− δ)t

(
Dδ,n−1,b,c,m

p,t F (ζ)
)′

= ζ p +
∞
∑

k=p+1

[
1 +

(
k
p − 1

)
ct(δ)

]n
[

(b)k−pmk−p

(c)k−p (k−p)!F(b;c;m)

]
ak ζk

= ζ p +
∞
∑

k=p+1
ψkak ζk,

(δ > 0; b, c, m > 0; t ∈ N; n ∈ N0 = N∪ {0}),

(4)

where

ψk =

[
1 +

(
k
p
− 1
)

ct(δ)

]n[
(b)k−pmk−p

(c)k−p (k−p)!F(b;c;m)

]
, (5)

and

ct(δ) =
t

∑
i=1

(
t
i

)
(−1)i δi (t ∈ N). (6)

From (4), we obtain that

ct(δ) ζ
(
Dδ,n,b,c,m

p,t F (ζ)
)′

= pDδ,n+1,b,c,m
p,t F (ζ)− p

[
1− ct(δ)

]
Dδ,n,b,c,m

p,t F (ζ). (7)

Definition 1. We define a function Fδ,n,b,c,m,β
p,t as follows

Fδ,n,b,c,m,β
p,t (ζ) = (1− β)Dδ,n,b,c,m

p,t F (ζ) + βDδ,n+1,b,c,m
p,t F (ζ)

(F ∈ Ap; p, t ∈ N; n ∈ N0; δ > 0; b, c, m > 0 and β ∈ C).
(8)

Remark 1. Putting n = 0 in Definition 1, we define a function Eb,c,m,β
p as follows

Eb,c,m,β
p (ζ) = (1− β)Qb;c;m

p F (ζ) + β ζ
p

(
Qb;c;m

p F (ζ)
)′

(F ∈ Ap; p ∈ N; b, c, m > 0 and β ∈ C).
(9)

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that:
p, t ∈ N; n ∈ N0; δ > 0; b, c, m > 0 and β ∈ C.
In order to prove our main results, we recall here the following lemma.

Lemma 1 ([9,10]). Let Φ(u, v) be a complex valued function, Φ : D → C, D ⊂ C× C (C
is the complex plane) and let u = u1 + iu2, v = v1 + iv2. Suppose that Φ(u, v) satisfies the
following conditions:

(i) Φ(u, v) is continuous in D;
(ii) (1, 0) ∈ D and <{Φ(1, 0)} > 0;
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(iii) <{Φ(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ D and such that v1 ≤ −
(1 + u2

2)

2
.

Let q(ζ) = 1+ q1ζ + q2ζ2 + . . . be regular in the unit disc ∆ such that (q(ζ), ζq
′
(ζ)) ∈ D

for all ζ ∈ ∆. If

<
{

Φ(q(ζ), ζq
′
(ζ))

}
> 0 (ζ ∈ ∆),

then
<{q(ζ)} > 0 (ζ ∈ ∆).

Applying Lemma 1, we derive the following theorem.

Theorem 2. Let a function Fδ,n,b,c,m,β
p,t be defined by (8) and F ∈ Ap. If

<

 Fδ,n,b,c,m,β
p,t (ζ)

ζ p

 > α (0 ≤ α < 1; <(β) ≥ 0),

then

<

D
δ,n,b,c,m
p,t F (ζ)

ζ p

 >
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
(ζ ∈ ∆),

where ct(δ) is given by (6).

Proof. Defining the function q(ζ) by

Dδ,n,b,c,m
p,t F (ζ)

ζ p = γ + (1− γ)q(ζ) (10)

with

γ =
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
,

we see that q(ζ) = 1 + q1ζ + q2ζ2 + . . . is regular in the unit disc ∆. Then by using (7),
we have

Fδ,n,b,c,m,β
p,t (ζ)

ζ p = (1− β)
Dδ,n,b,c,m

p,t F (ζ)
ζ p + β

Dδ,n+1,b,c,m
p,t F (ζ)

ζ p

= γ + (1− γ)q(ζ) + βct(δ)
p (1− γ)ζq

′
(ζ).

(11)

It follows from (10) and (11) that

<
{

Fδ,n,b,c,m,β
p,t (ζ)

ζ p − α

}

= <
{

γ− α + (1− γ)q(ζ) + βct(δ)
p (1− γ)ζq

′
(ζ)
}
> 0.

(12)

Let

Φ(u, v) = γ− α + (1− γ)u +
βct(δ)

p
(1− γ)v (13)

with q(ζ) = u = u1 + i u2 and ζq
′
(ζ) = v = v1 + i v2. Then

(i) Φ(u, v) is continuous in D = C2;

(ii) (1, 0) ∈ D and <{Φ(1, 0)} = 1− α > 0;
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(iii) for all (iu2, v1) ∈ D such that v1 ≤ −
(1 + u2

2)

2
,

<{Φ(iu2, v1)} = γ− α +
ct(δ)(1− γ)v1

p
<(β)

≤ γ− α−
ct(δ)(1− γ)(1 + u2

2)

2p
<(β) ≤ 0.

Therefore, the function Φ(u, v) satisfies the conditions in Lemma 1. Thus, we have
<{q(ζ)} > 0 (ζ ∈ ∆), that is,

<

D
δ,n,b,c,m
p,t F (ζ)

ζ p

 > γ =
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
.

This completes the proof of Theorem 2.

Putting n = 0 in Theorem 2, we obtain the following corollary:

Corollary 1. Let a function Eb,c,m,β
p be defined by (9) and F ∈ Ap. If

<
{

Eb,c,m,β
p (ζ)

ζ p

}
> α (0 ≤ α < 1; <(β) ≥ 0),

then

<
{

Qb;c;m
p F (ζ)

ζ p

}
>

2pα +<(β)

2p +<(β)
(ζ ∈ ∆).

Theorem 3. Let a function Fδ,n,b,c,m,β
p,t be defined by (8) and F ∈ Ap. If

<

 Fδ,n,b,c,m,β
p,t (ζ)

ζ p

 < α (α > 1; <(β) ≥ 0),

then

<

D
δ,n,b,c,m
p,t F (ζ)

ζ p

 <
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
(ζ ∈ ∆),

where ct(δ) is given by (6).

Proof. Defining the function q(ζ) by

Dδ,n,b,c,m
p F (ζ)

ζ p = γ + (1− γ)q(ζ)

with

γ =
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
> 1.

Then we oserve that q(ζ) = 1 + q1ζ + q2ζ2 + . . . is regular in the unit disc ∆, and

<
{

α−
Fδ,n,b,c,m,β

p,t (ζ)

ζ p

}

= <
{

α− γ− (1− γ)q(ζ)− βct(δ)
p (1− γ)ζq

′
(ζ)
}
> 0.

(14)
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Let

Φ(u, v) = α− γ− (1− γ)u− βct(δ)

p
(1− γ)v, (15)

with q(z) = u = u1 + iu2 and ζq
′
(ζ) = v = v1 + iv2. Then it follows from (15) that

(i) Φ(u, v) is continuous in D = C2;
(ii) (1, 0) ∈ D and <{Φ(1, 0)} = α− 1 > 0;

(iii) for all (iu2, v1) ∈ D such that v1 ≤ −
(1 + u2

2)

2
,

<{Φ(iu2, v1)} = α− γ− ct(δ)v1(1− γ)

p
<(β)

≤ α− γ +
ct(δ)(1− γ)(1 + u2

2)

2p
<(β) ≤ 0.

Therefore, the function Φ(u, v) satisfies the conditions in Lemma 1. Thus, we have
<{q(ζ)} > 0 (ζ ∈ ∆), that is,

<

D
δ,n,b,c,m
p,t F (ζ)

ζ p

 < γ =
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
.

This completes the proof of Theorem 3.

Putting n = 0 in Theorem 3, we obtain the following corollary:

Corollary 2. Let a function Eb,c,m,β
p be defined by (9) and F ∈ Ap. If

<
{

Eb,c,m,β
p (ζ)

ζ p

}
< α (α > 1; <(β) ≥ 0),

then

<
{

Qb;c;m
p F (ζ)

ζ p

}
<

2pα +<(β)

2p +<(β)
(ζ ∈ ∆).

Theorem 4. Let a function Fδ,n,b,c,m,β
p,t be defined by (8) and F ∈ Ap. If

<


(

Fδ,n,b,c,m,β
p,t (ζ)

)′
pζ p−1

 > α (0 ≤ α < 1; <(β) ≥ 0),

then

<


(
Dδ,n,b,c,m

p,t F (ζ)
)′

pζ p−1

 >
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
(ζ ∈ ∆),

where ct(δ) is given by (6).

Proof. Replace F (ζ) by
ζF ′(ζ)

p
in the proof of Theorem 2, we define the function q(ζ) by

Dδ,n,b,c,m
p,t

(
ζF ′ (ζ)

p

)
ζ p = γ + (1− γ)q(ζ), (16)
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is equivalent to

1
p

(
Dδ,n,b,c,m

p,t F (ζ)
)′

ζ p−1 = γ + (1− γ)q(ζ), (17)

with

γ =
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
,

we see that q(ζ) = 1 + q1ζ + q2ζ2 + . . . is regular in the unit disc ∆. Then by using (7) and

replace F (ζ) by
ζF ′(ζ)

p
, we have

(
Fδ,n,b,c,m,β

p,t (ζ)
)′

pζ p−1 = (1−β)
p

(
Dδ,n,b,c,m

p,t F (ζ)
)′

ζ p−1 + β
p

(
Dδ,n+1,b,c,m

p,t F (ζ)
)′

ζ p−1

= γ + (1− γ)q(ζ) + βct(δ)
p (1− γ)ζq

′
(ζ).

(18)

It follows from (17) and (18) that

<


(

Fδ,n,b,c,m,β
p,t (ζ)

)′
pζ p−1 − α


= <

{
γ− α + (1− γ)q(ζ) + βct(δ)

p (1− γ)ζq
′
(ζ)
}
> 0.

(19)

Let

Φ(u, v) = γ− α + (1− γ)u +
βct(δ)

p
(1− γ)v

with q(ζ) = u = u1 + i u2 and ζq
′
(ζ) = v = v1 + i v2. Then

(i) Φ(u, v) is continuous in D = C2;

(ii) (1, 0) ∈ D and <{Φ(1, 0)} = 1− α > 0;

(iii) for all (iu2, v1) ∈ D such that v1 ≤ −
(1 + u2

2)

2
,

<{Φ(iu2, v1)} = γ− α +
ct(δ)(1− γ)v1

p
<(β)

≤ γ− α−
ct(δ)(1− γ)(1 + u2

2)

2p
<(β) ≤ 0.

Therefore, the function Φ(u, v) satisfies the conditions in Lemma 1. Thus, we have
<{q(ζ)} > 0 (ζ ∈ ∆), that is,

<

 1
p

(
Dδ,n,b,c,m

p,t F (ζ)
)′

ζ p−1

 > γ =
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
.

This completes the proof of Theorem 4.

Putting n = 0 in Theorem 4, we obtain the following corollary:
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Corollary 3. Let a function Eb,c,m,β
p be defined by (9) and F ∈ Ap. If

<


(

Eb,c,m,β
p (ζ)

)′
pζ p−1

 > α (0 ≤ α < 1; <(β) ≥ 0),

then

<


(

Qb;c;m
p F (ζ)

)′
pζ p−1

 >
2pα +<(β)

2p +<(β)
(ζ ∈ ∆).

Using the same technique as in the proof of Theorem 3 (or putting
ζF ′(ζ)

p
instead of

F (ζ) in Theorem 3, respectively), we obtain the following result.

Theorem 5. Let a function Fδ,n,b,c,m,β
p,t be defined by (8) and F ∈ Ap. If

<


(

Fδ,n,b,c,m,β
p,t (ζ)

)′
pζ p−1

 < α (α > 1; <(β) ≥ 0),

then

<


(
Dδ,n,b,c,m

p,t F (ζ)
)′

pζ p−1

 <
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
(ζ ∈ ∆),

where ct(δ) is given by (6).

Proof. From (16) and (17), we have

<

α−
(

Fδ,n,b,c,m,β
p,t (ζ)

)′
pζ p−1


= <

{
α− γ− (1− γ)q(ζ)− βct(δ)

p (1− γ)ζq
′
(ζ)
}
> 0.

(20)

Let

Φ(u, v) = α− γ− (1− γ)u− βct(δ)

p
(1− γ)v, (21)

with q(z) = u = u1 + iu2 and ζq
′
(ζ) = v = v1 + iv2. Then it follows from (21) that

(i) Φ(u, v) is continuous in D = C2;
(ii) (1, 0) ∈ D and <{Φ(1, 0)} = α− 1 > 0;

(iii) for all (iu2, v1) ∈ D such that v1 ≤ −
(1 + u2

2)

2
,

<{Φ(iu2, v1)} = α− γ− ct(δ)v1(1− γ)

p
<(β)

≤ α− γ +
ct(δ)(1− γ)(1 + u2

2)

2p
<(β) ≤ 0.
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Therefore, the function Φ(u, v) satisfies the conditions in Lemma 1. Thus, we have
<{q(ζ)} > 0 (ζ ∈ ∆), that is,

<


(

Fδ,n,b,c,m,β
p,t (ζ)

)′
pζ p−1

 < γ =
2pα + ct(δ)<(β)

2p + ct(δ)<(β)
.

This completes the proof of Theorem 5.

Putting n = 0 in Theorem 5, we obtain the following corollary:

Corollary 4. Let a function Eb,c,m,β
p be defined by (9) and F ∈ Ap. If

<


(

Eb,c,m,β
p (ζ)

)′
pζ p−1

 < α (α > 1; <(β) ≥ 0),

then

<


(

Qb;c;m
p F (ζ)

)′
pζ p−1

 <
2pα +<(β)

2p +<(β)
(ζ ∈ ∆).

3. Conclusions

In the present paper, we mainly obtain some properties of p-valent functions Fδ,n,b,c,m,β
p,t

involving the combination binomial series and confluent hypergeometric function in the
open unit disc. Several consequences of the results are also pointed out as corollaries. Many
interesting outcomes of the study conducted using the theories of differential subordina-
tion and superordination are due to the use of operators. We intend to work further by
generalizing these results using fractional operators.
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