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Abstract: The primary objective of this study is to establish necessary conditions so that the normalized
Fox–Wright functions possess certain geometric properties, such as convexity and pre-starlikeness.
In addition, we present a linear operator associated with the Fox–Wright functions and discuss
its k-uniform convexity and k-uniform starlikeness. Furthermore, some sufficient conditions were
obtained so that this function belongs to the Hardy spaces. The results of this work are presumably
new and illustrated by several consequences, remarks, and examples.
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1. Introduction and Motivation

In this article, we consider the Fox–Wright function; we studied several geometric
properties in a unit disc. The Fox–Wright function is an important special function that
plays a vital role in different branches of science and engineering. Geometric properties,
such as starlikeness, pre-starlikeness, convexity, k-uniformly convexity, and k-uniformly
starlikeness, are associated with special functions, and have always been focused on by
researchers [1–4]. For more descriptions of the geometric properties of special functions,
please refer to [1–10] and their references.

The results mentioned above motivated us to discuss the geometric properties related
to Fox–Wright functions, such as pre-starlikeness, convex of order δ, k-uniform starlikeness,
k-Uniform convexity, and Hardy spaces.

In addition to explaining the definitions of the geometric terms mentioned above, we
will now introduce the basic definitions and properties of the Fox–Wright function, which
are important in the sequel.

1.1. Fox–Wright Function

The Fox–Wright function mψn[.] is defined as [11]

mψn

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αn, βn)

∣∣z] = ∞

∑
k=0

Πm
i=1Γ(ai + kbi)zk

Πn
j=1Γ(αj + kβ j)k!

, (1)

where ai, αj ∈ C, bi, β j ∈ R+ (i = 1, 2 . . . m, j = 1, 2, . . . , n) and Γ(z) denotes Euler’s gamma
function [12]. The series (1) converges in the entire z-plane, when

Ξ = 1 +
n

∑
j=1

β j −
m

∑
i=1

bj > 0.

Axioms 2022, 11, 629. https://doi.org/10.3390/axioms11110629 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11110629
https://doi.org/10.3390/axioms11110629
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-1544-343X
https://orcid.org/0000-0003-4540-1601
https://orcid.org/0000-0003-2270-8109
https://doi.org/10.3390/axioms11110629
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11110629?type=check_update&version=2


Axioms 2022, 11, 629 2 of 17

If Ξ = −1, then the series (1) converges for every bounded |z|, where z ∈ C.
The Fox–Wright function mψn[.] can be represented by the Fox H-function [11] as follows:

mψn

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αn, βn)

∣∣z] = H1,m
m,n+1

[
(1− a1, b1), . . . , (1− am, bm)

(1− α1, β1), . . . , (1− αn, βn), (0, 1)
∣∣− z

]
.

Many special functions, such as the Wright function, Bessel function, hypergeometric
function, and Mittag–Leffler function can be expressed as particular cases of the Fox–Wright
function. For example, putting m = 1, n = 2 and a1 = α2, b1 = β2 in (1), the Wright function
Wα1,β1(z) can be obtained. Particularly, when setting α1 = 1 and β1 = µ + 1, we obtain the
Bessel function [13], represented as:

Jµ(z) =
( z

2

)µ
W1,µ+1

(
− z2

4

)
=

∞

∑
n=0

(−1)n(z/2)2n+µ

n!Γ(n + µ + 1)
, µ > −1. (2)

In Setting m = 1 = n = a1 = b1 and α1 = α, β1 = β in (1), we have the Mittag–Leffler
function Eα,β(z), which is given as:

Eα,β(z) =
∞

∑
n=0

zn

Γ(α + βn)
, β > 0, α ∈ C. (3)

which was introduced by Wiman [14].

1.2. Geometric Functions Theory

Suppose A is the class of analytic functions of the form

g(z) = z +
∞

∑
k=2

bkzk, z ∈ D = {z : z ∈ C and |z| < 1}.

A function g ∈ A is called starlike in D if g(D) is univalent in D and the starlike domain
with respect to the origin in C. The class of starlike functions in D is denoted by S∗. The
analytical descriptions of starlike functions (see [15]) can be described as:

g ∈ S∗ ⇐⇒ <
(

zg′(z)
g(z)

)
> 0 (∀z ∈ D).

Let S∗(α) denote the starlike function of order α. Then analytical characterization of S∗(α)
is given by:

<
(

zg′(z)
g(z)

)
> α (∀z ∈ D; 0 ≤ α < 1).

A function g ∈ A is called convex in a domain D, if g is univalent in D and g(D) is a
convex domain in C. Suppose that K denotes the class of convex functions. The analytical
description of K is given by

g ∈ K ⇐⇒ <
(

1 +
zg′′(z)
g′(z)

)
> 0 (∀z ∈ D).

Moreover, assume that K(α) denotes the class of convex functions of order α. Then
the analytical characterization of K(α) is given as:

<
(

1 +
zg′′(z)
g′(z)

)
> α (∀z ∈ D; 0 ≤ α < 1).
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A function g ∈ A is called close-to-convex in domain D, if there is a starlike function h
in D, which satisfy

<
(

zg′(z)
h(z)

)
> 0 (∀z ∈ D).

It is well known that every close-to-convex in D is univalent in D.
The convolution (Hadamard product) of two power series is an important tool in the

geometric functions theory. To define convolution (Hadamard product), let us consider the
following two Taylor series:

g(z) =
∞

∑
n=0

cnzn (|z| < ρ1) and h(z) =
∞

∑
n=0

dnzn (|z| < ρ2),

where ρ1 and ρ2 are their radii of convergence, respectively. Then their convolutions
(Hadamard product), see, for example, [16], are represented as:

(g ∗ h)(z) =
∞

∑
n=0

cndnzn (|z| < ρ1 · ρ2).

We also require the convolution of two classes of analytic functions. IfM1 andM2 consist
of analytic functions defined on the unit disc, then

M1 ∗M2 := { f ∗ g, ∀ f ∈ M1 and ∀g ∈ M2}.

Pre-starlike functions are introduced by Ruscheweyh in [17]. For µ ∈ (0, 1], consider
the function

gµ(z) =
z

(1− z)2−2µ
.

Then the class of pre-starlike functions of order µ, denoted by Lµ, is given as

Lµ :=
{

g : g ∈ A and gµ(z) ∗ g ∈ S∗(µ)
}

.

In particular, L 1
2
= S∗

(
1
2

)
and L0 = C. Sheil-Small et al. [18] generalized the class Lµ as

L[ρ, µ] for 0 ≤ ρ, µ < 1, which is defined as

L[ρ, µ] :=
{

g : g ∈ A and gρ ∗ g ∈ S∗(µ)
}

,

where gρ(z) = z(1− z)−(2−2ρ). Clearly, Lµ = L[µ, µ].
If a real function g ∈ A on (−1, 1) satisfies the following relation:

=(z)=
(

g(z)
)
> 0 (z ∈ D),

then it is called a typical real function. In [19], Robertson introduced the class of typically
real functions. A function g ∈ A is said to be convex in the imaginary axis direction, if the
region g(D) is a convex region in the imaginary axis direction, i.e.,

<{ν1} = <{ν2}
(
∀ ν1, ν2 ∈ g(D)

)
.

It is well known from [19] that a function g ∈ A is convex in the imaginary axis direction
containing real coefficients if zg′(z) is a typically real function, which is equivalent to

<{(1− z2)g′(z)} > 0 (z ∈ D).
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Two other important classes required in our study are k-ST and k-UCV, introduced by
Kanas et al. (see [20] and [21]; see also [22]); they are defined as follows:

k-ST =

{
g : g ∈ S and <

(
zg′(z)
g(z)

)
> k

∣∣∣∣ zg′(z)
g(z)

− 1
∣∣∣∣ (z ∈ D)

}
and

k-UCV =

{
g : g ∈ S and <

(
1 +

zg′′(z)
g′(z)

)
> k

∣∣∣∣ zg′′(z)
g′(z)

∣∣∣∣ (z ∈ D)
}

.

The following two results are significant for k-ST and k-UCV, respectively.

Theorem 1 ([21]). Assume that g ∈ A. If

∞

∑
k=2

[k + l(k− 1)]|bk| < 1

for some l (0 ≤ l < ∞), then g ∈ k-ST.

Theorem 2 ([20]). Suppose that g ∈ A. If

∞

∑
k=2

k(k− 1)|bk| ≤
1

l + 2

for some l (0 ≤ l < ∞), then g ∈ k-UCV. The number 1
l+2 cannot be enlarged.

We also consider the following class:

Rη(ζ) =

{
g : g ∈ A,<{eiη(g′(z)− ζ)} > 0

(
z ∈ D; ζ < 1;

−π

2
< η <

π

2

)}
.

If we take the function g ∈ A in the classRη(ζ), then we have

|bk| ≤
2(1− ζ) cos η

k
(k ∈ N \ {1}).

1.3. Hardy Space

Let us consider the space of all bounded functionsH∞ in open unit disk D. We suppose
that h is in the class of analytic functions in domain D and set

Mq(ε, h) =


(

1
2π

∫ 2π

0
|h(εe(iθ)|q dθ

) 1
q

(0 < q < ∞)

max{|h(z)| : |z| ≤ ε} (q = ∞).

It can be observed from [23] that h ∈ Hq, ifMq(ε, h) is bounded for all ε ∈ [0, 1) and

H∞ ⊂ Hp ⊂ Hq (0 < p < q < 1).

Let us consider the following results [24] related to the Hardy spaceHq:

<{h′(z)} > 0 =⇒ h′ ∈ Hq (∀ q < 1) =⇒ h ∈ H
p

1−p (∀ 0 < p < 1). (4)

This paper is organized as follows. In Section 2, we present some lemmas that will
help derive the main results. Section 3 presents sufficient conditions so that the Fox–Wright
function satisfies certain geometric properties, such as pre-starlikeness and convexity of
order δ. Furthermore, consequences, important remarks, and examples are shown in this
section. In Section 4, we consider the linear operator associated with the Fox–Wright
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function for which k-uniformly starlikeness and k-uniformly convexity are discussed.
Furthermore, sufficient conditions are established in Section 5, so that this function belongs
to the Hardy space. Consequences and remarks are also presented in this section.

2. Useful Lemmas

Some Lemmas were recalled in this section, which will be helpful to prove the main
theorems in this paper.

Lemma 1 ([25]). For any real number s > 1, the digamma function Ψ(s) = Γ′(s)
Γ(s) satisfies the

following inequality:

log(s)− γ ≤ Ψ(s) ≤ log(s),

where γ is the Euler–Mascheroni constant.

Lemma 2 ([26]). If h ∈ A and |(h(z)/z)− 1| < 1 for all z ∈ D, then h is starlike and univalent in

D 1
2
=

{
z : |z| < 1

2
where z ∈ C

}
.

Lemma 3 ([27]). If h ∈ A and |h′(z)− 1| < 1 for each z ∈ D, then h is convex in

D 1
2
=

{
z : |z| < 1

2
where z ∈ C

}
.

Lemma 4 ([28]). Suppose that the function h(z) ∈ A and

|h′(z)− 1| < 2√
5

(∀ z ∈ D).

Then h is starlike in D.

Lemma 5 ([29]). Assume that h ∈ A.

1. If
∣∣∣∣ zh′′(z)

h′(z)

∣∣∣∣ < 1
2

, then h ∈ UCV.

2. If
∣∣∣∣ zh′(z)

h(z)
− 1
∣∣∣∣ < 1

2
, then h ∈ Sp.

Let M be the class of all analytic functions in D and µ < 1. In [30], the following
classes are introduced:

Mη(µ) =
{

p : p ∈ M, p(0) = 1,<
{

eiη(p(z)− µ)
}
> 0, z ∈ D, η ∈ R

}
and

Lη(µ) =
{

p : p ∈ M,<
{

eiη(p′(z)− µ)
}
> 0, z ∈ D, η ∈ R

}
.

For η = 0, we obtain the classes of the analytic functionMo(µ) and Lo(µ), respectively.
The following lemmas are required to prove the main results in Section 5.

Lemma 6 ([31]). Mo(ρ) ∗Mo(δ) ⊂Mo(µ), where µ = 1− 2(1− ρ)(1− δ) and 0 ≤ ρ, δ < 1.
The value of µ cannot be improved.

Lemma 7 ([32]). If 0 ≤ ρ, δ < 1 and µ = 1− 2(1− ρ)(1− δ), then

Lo(ρ) ∗ Lo(δ) ⊂ Lo(µ)
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or, equivalent to,
Mo(ρ) ∗Mo(δ) ⊂Mo(µ).

Lemma 8 ([33]). If the function g, convex of order λ (0 ≤ λ < 1), is not of the following type:

g(z) =


n + r · z(1− zeiζ)2λ−1

(
λ 6= 1

2

)
n + r · log

(
1− zeiζ) (

λ = 1
2

) (5)

for n, r ∈ C and for ζ ∈ R, then each of the following statements holds true:

(i) There exists ρ = ρ(g), such that h′ ∈ Hρ+ 1
2(1−λ) .

(ii) If 0 ≤ λ < 1
2 , then there exists σ = σ(g) > 0, such that g ∈ Hσ+ 1

1−2λ .

(iii) If λ ≥ 1
2 , then g ∈ H∞.

Now we are ready to state and prove the main results in the subsequent sections.

3. Pre-Starlikeness and Convexity

We should note that mψn

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αn, βn)

∣∣.] /∈ A. We consider the following

normalized form of the Fox–Wright function:

mψ̃n

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αn, βn)

∣∣z] = Πn
j=1Γ(αj)

Πm
i=1Γ(ai)

∞

∑
k=0

Πm
i=1Γ(ai + kbi)zk+1

Πn
j=1Γ(αj + kβ j)k!

.

Theorem 3. Assume that ai > 1
2 , bi > 1

2 , αi > 1
2 , βi > 1

2 , and 0 ≤ µ, ρ < 1. Define
A := max(a1, . . . am), a := min(a1, . . . am), B := max(b1, . . . bm), α := max(α1, . . . αm),
ζ := min(α1, . . . αm), β := max(β1, . . . βm), η := min(β1, . . . βm) such that the following
conditions hold:

B < η, α < a and γ(β + 1) + log(3− 2ρ) + η log
(

A + B
ζ + η

)
< 0.

Further, if

m

∏
i=1

Γ(ai + bi)

Γ(αi + βi)
(e− 1) <

1− µ

(2− µ)(2− 2ρ)

m

∏
i=1

Γ(ai)

Γ(αi)
,

then the Fox–Wright function mψ̃m[.] ∈ L[ρ, µ].

Proof. Let us consider the function p(z) in form of the Hadamard product, defined as

p(z) =
(

mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣.] ∗ gρ

)
(z) (0 ≤ ρ < 1). (6)

To show the results stated by Theorem 3, it suffices to prove that <
(

zp′(z)
p(z)

)
> µ for z ∈ D.

Hence, it is enough to prove that

∣∣∣∣ zp′(z)
p(z)

− 1
∣∣∣∣ =

∣∣∣[p′(z)− p(z)
z

∣∣∣∣∣∣ p(z)
z

∣∣∣ < 1− µ.
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From (6), we have

p(z) =
∞

∑
k=0

Γ(2− 2ρ + k)
Γ(2− 2ρ)

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)zk+1

Γ(αi + kβi)(k!)2 .

Now, ∣∣∣∣p′(z)− p(z)
z

∣∣∣∣ = ∞

∑
k=1

k
Γ(2− 2ρ + k)

Γ(2− 2ρ)

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)zk

Γ(αi + kβi)(k!)2

=
∞

∑
k=1

qk(ai, bi, αi, βi)
zk

k!
, (7)

where

qk = qk(ai, bi, αi, βi) =
Γ(2− 2ρ + k)

Γ(2− 2ρ)

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)

Γ(αi + kβi)Γ(k)
, k ≥ 1. (8)

Let us define the function l1(s) as:

l1(s) =
Γ(2− 2ρ + s)

Γ(2− 2ρ)

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + sbi)

Γ(αi + sβi)Γ(s)
, s ≥ 1. (9)

Using the logarithmic derivative on (9), we have

l′1(s) = l1(s)l2(s),

where

l2(s) = Ψ(2− 2ρ + s) +
m

∑
i=1

biΨ(ai + sbi)− βiΨ(αi + sβi)−Ψ(s).

Using Lemma 1, we have

l2(s) ≤ l3(s) = log (2− 2ρ + s) +
m

∑
i=1

bi log(ai + sbi)− βi log(αi + sβi)− log(s) + βiγ + γ

which leads to

l′3(s) =
1

(2− 2ρ + s)
+

m

∑
i=1

b2
i

ai + sbi
−

β2
i

αi + sβi
− 1

s

=
1

(2− 2ρ + s)
− 1

s
+

m

∑
i=1

b2
i (αi + sβi)− β2

i (ai + sbi)

(αi + sβi)(ai + sbi)

=
1

(2− 2ρ + s)
− 1

s
+

m

∑
i=1

b2
i αi − β2

i ai + s(b2
i βi − βi

2bi)

(αi + sβi)(ai + sbi)

≤ 1
(2− 2ρ + s)

− 1
s
+

m

∑
i=1

B2α− η2a + sbiβi(B− η)

(αi + sβi)(ai + sbi)

<
1

(2− 2ρ + s)
− 1

s
+

m

∑
i=1

η2(α− a) + sbiβi(B− η)

(αi + sβi)(ai + sbi)
.

This shows that l3(s) is decreasing on [1, ∞) under the given hypothesis. It can also be
verified that l3(1) < 0 and l2(s) < 0, for s ≥ 1. Consequently, l′1(s) < 0 on [1, ∞). Clearly,
(qk)k≥1 is decreasing. With the help of (7), we have
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∣∣∣∣p′(z)− p(z)
z

∣∣∣∣ < ∞

∑
k=1

qk(ai, bi, αi, βi)

k!

≤
∞

∑
k=1

q1(ai, bi, αi, βi)

k!

= q1(ai, bi, αi, βi)(e− 1). (10)

A simple computation leads to

p(z)
z

> 1−
∞

∑
k=1

rk(ai, bi, αi, βi)

k!
, z ∈ D, (11)

where the sequence (rk)k≥1 is given by

rk = rk(ai, bi, αi, βi) =
Γ(2− 2ρ + k)

Γ(2− 2ρ)

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)

Γ(αi + kβi)Γ(k + 1)
, k ≥ 1.

Similarly, it can be proven that (rk) is decreasing. Now, using (11), we obtain

p(z)
z

> 1− r1(ai, bi, αi, βi)(e− 1). (12)

Combining (7) and (11), we have∣∣∣∣∣ p′(z)− p(z)
z

p(z)
z

∣∣∣∣∣ ≤ q1(ai, bi, αi, βi)(e− 1)
1− r1(ai, bi, αi, βi)(e− 1)

=
(2− 2ρ)∏m

i=1
Γ(αi)
Γ(ai)

Γ(ai+bi)
Γ(αi+βi)

(e− 1)

1− (2− 2ρ)∏m
i=1

Γ(αi)
Γ(ai)

Γ(ai+bi)
Γ(αi+βi)

(e− 1)
< 1− µ, z ∈ D,

which is equivalent to the given condition, i.e.,

m

∏
i=1

Γ(ai + bi)

Γ(αi + βi)
(e− 1) <

1− µ

(2− µ)(2− 2ρ)

m

∏
i=1

Γ(ai)

Γ(αi)
.

Hence, the theorem is proved.

Example 1. 2ψ̃2

[
(1, 0.55), (1, 0.55)
(0.55, 3), (0.55, 3)

∣∣.] ∈ L[ρ, µ].

Example 2. 1ψ̃1

[
(1, 1)

(0.55, 5)
∣∣.] ∈ L[ρ, µ].

Remark 1. Setting µ = ρ in Theorem 3, it can easily be shown that the Fox–Wright function
mψ̃m[.] ∈ L[µ] for 0 ≤ µ < 1, i.e., the Fox–Wright function mψ̃m[.] is pre-starlike of the order µ ∀
z ∈ D.

Remark 2. Putting µ = ρ = 0 in Theorem 3, we have

mψ̃m[.] ∗ go ∈ S∗,

which is equivalent to z
(

mψ̃m[.]
)′, belonging to class S∗, which yields mψ̃m[.] ∈ C, i.e., mψ̃m[.] is a

convex function.
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Remark 3. It can be verified from Theorem 3 that 1ψ1

[
(1, 1)
(α, β)

∣∣z] = Eα,β(z) belongs to class

L[ρ, µ] for α ∈ [0.555, 1). In ([3] Theorem 3.1), it is established that Eα,β ∈ L[ρ, µ] for α ≥ 1.
Hence, Theorem 3 improves the existing results in [3].

Theorem 4. Suppose that ai, bi, αi, βi > 1
2 and 0 ≤ δ < 1. Define A := max(a1, . . . am),

a := min(a1, . . . am), B := max(b1, . . . bm), α := max(α1, . . . αm), ζ := min(α1, . . . αm), β :=
max(β1, . . . βm) and η := min(β1, . . . βm) such that B < η, α < a, γβ + 3

2 + η log A+B
ζ+η < 0

and satisfy the following inequality:

m

∏
i=1

Γ(ai + bi)

Γ(αi + βi)
(e− 1) <

1− δ

2(2− δ)

m

∏
i=1

Γ(ai)

Γ(αi)
.

Then the Fox–Wright function mψ̃m[.] is convex of order δ in D.

Proof. Let

g(z) =
∞

∑
k=0

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)zk+1

Γ(αi + kβi)k!
.

To show the desired results, we have to prove that h(z) = zg′(z) is a starlike function of
order δ in D. For this, it is enough to prove that <

(
zh′(z)
h(z)

)
> δ, i.e.,

∣∣∣∣∣h′(z)−
h(z)

z
h(z)

z

∣∣∣∣∣ < 1− δ.

We have∣∣∣∣h′(z)− h(z)
z

∣∣∣∣ =
∣∣∣∣∣ ∞

∑
k=0

(
(k + 1)2

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)zk

Γ(αi + kβi)k!
− (k + 1)

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)zk

Γ(αi + kβi)k!

)∣∣∣∣∣
=

∞

∑
k=1

ck(ai, bi, αi, βi)
zk

k!
, (13)

where

ck = ck(ai, bi, αi, βi) = (k2 + k)
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)

Γ(αi + kβi)
, k ≥ 1. (14)

Let us consider the function h1(s) defined as:

h1(s) = (s2 + s)
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + sbi)

Γ(αi + sβi)
, s ≥ 1.

Applying the logarithmic derivative on both sides, we have

h′1(s) = h1(s)h2(s),

where

h2(s) =
2s + 1
s2 + s

+
m

∑
i=1

biΨ(ai + sbi)− βiΨ(αi + sβi).
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Using Lemma 1, we have

h2(s) ≤ h3(s) =
2s + 1
s2 + s

+
m

∑
i=1

(bi log(ai + sbi)− (βi log(αi + sβi)− βiγ)).

Therefore,

h′3(s) =
−1− 2s2 − 2s

(s2 + s)2 +
m

∑
i=1

b2
i

ai + sbi
−

β2
i

αi + sβi

=
−1− 2s2 − 2s

(s2 + s)2 +
m

∑
i=1

b2
i (αi + sβi)− β2

i (ai + sbi)

(αi + sβi)(ai + sbi)

=
−1− 2s2 − 2s

(s2 + s)2 +
m

∑
i=1

b2
i αi − β2

i ai + s(b2
i βi − βi

2bi)

(αi + sβi)(ai + sbi)

≤ −1− 2s2 − 2s
(s2 + s)2 +

m

∑
i=1

B2α− η2a + sbiβi(B− η)

(αi + sβi)(ai + sbi)

<
−1− 2s2 − 2s

(s2 + s)2 +
m

∑
i=1

η2(α− a) + sbiβi(B− η)

(αi + sβi)(ai + sbi)
.

This implies that h3 is the decreasing function on [1, ∞) under the given hypothesis. It can
also be observed that h3(1) < 0 and h2(s) < 0, for s ≥ 1. Consequently, h′1(s) < 0 on [1, ∞).
Thus, (ck)k≥1 is a decreasing sequence. With the help of (13), we have∣∣∣∣h′(z)− h(z)

z

∣∣∣∣ < ∞

∑
k=1

ck(ai, bi, αi, βi)

k!

≤
∞

∑
k=1

c1(ai, bi, αi, βi)

k!

= c1(ai, bi, αi, βi)(e− 1), z ∈ D. (15)

By a simple computation, we have

h(z)
z

> 1−
∞

∑
k=1

dk(ai, bi, αi, βi)

k!
, z ∈ D. (16)

where (dk)k≥1 is given by

dk = dk(ai, bi, αi, βi) = (k + 1)
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)

Γ(αi + kβi)
, k ≥ 1.

In view of sequence (ck), it can be proven that (dk) is decreasing. Now, using (16), we
obtain

h(z)
z

> 1− d1(ai, bi, αi, βi)(e− 1). (17)

Combining (15) and (17), we have∣∣∣∣∣h′(z)−
h(z)

z
h(z)

z

∣∣∣∣∣ ≤ c1(ai, bi, αi, βi)(e− 1)
1− d1(ai, bi, αi, βi)(e− 1)

=
2 ∏m

i=1
Γ(αi)
Γ(ai)

Γ(ai+bi)
Γ(αi+βi)

(e− 1)

1− 2 ∏m
i=1

Γ(αi)
Γ(ai)

Γ(ai+bi)
Γ(αi+βi)

(e− 1)
< 1− δ, z ∈ D,
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which is equivalent to the given condition, i.e.,

m

∏
i=1

Γ(ai + bi)

Γ(αi + βi)
(e− 1) <

1− δ

2(2− δ)

m

∏
i=1

Γ(ai)

Γ(αi)
.

Thus, proof of the theorem is completed.

Remark 4. Setting m = n = a1 = b1 = 1, α1 = α, β1 = β in Theorem 4 we observed that

1ψ1

[
(1, 1)
(α, β)

∣∣z] = E(1)
α,β(z) is convex of order δ for α ∈ [0.555, 1), but in ([34] corollary 4),

discussed E(1)
α,β(z) is convex of order δ for α ≥ 1. Hence, our Theorem 4 is better than the existing

results in [34]. This also leads to a generalized form of several results available in [10,34].

4. k-Uniformly Starlike and k-Uniformly Convex Functions

In this section, we consider a linear operator associated with the Fox–Wright function
for which k-ST and k-UCV are discussed.

Let us define a linear operator using the Hadamard product involving the normalized
Fox–Wright function as:

Im,n : A −→ A such that[
Im,n(g)

]
(z) =

(
mψ̃n

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αn, βn)

∣∣.] ∗ g
)
(z) (g ∈ A).

Or

Im,n

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αn, βn)

∣∣.]g(z) =
(

mψ̃n

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αn, βn)

∣∣.] ∗ g
)
(z).

It can be noted that
[
Im,n(g)

]
(z) is a natural extension of the Alexander and Libra operators,

denoted by A and L, respectively, which was first introduced in [35]. It can be defined in
terms of the Fox–Wright function as follows:

A(g) =
(

2ψ̃1

[
(1, 1), (1, 1)

(2, 1)
∣∣.] ∗ g

)
(z)

and

L(g) =
(

2ψ̃1

[
(1, 1), (2, 1)

(3, 1)
∣∣.] ∗ g

)
(z).

These operators are very useful in fractional calculus. Applications of fractional derivatives
involving the Alexander integral operator were discussed in [36]. In [22], relations between
k-UCV, k-ST, and Rη(ζ) were studied for the above-mentioned similar type of linear
operator associated with the hypergeometric function.

Now, we establish some important theorems associated with the classes k-ST and
k-UCV for the linear operator

[
Im,n(g)

]
(z).

Theorem 5. Let the assertion of Theorem 4 hold and l ∈ [0, ∞) be such that g(z) ∈ Rη(ζ) and

2(1− ζ) cos η
m

∏
i=1

Γ(ai + bi)

Γ(αi + βi)
(e− 1) ≤

m

∏
i=1

Γ(ai)

Γ(αi)

1
l + 2

. (18)

Then
[
Im,m(g)

]
∈ k-UCV.

Proof. To prove this theorem, it is enough to prove that

∞

∑
n=2

n(n− 1)

∣∣∣∣∣ m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi − bi)

Γ(αi + nβi − βi)(n− 1)!
bn

∣∣∣∣∣ ≤ 1
l + 2

.
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Since g ∈ Rη(ζ); therefore,

|bn| ≤
2(1− ζ) cos η

n
.

Now,

∞

∑
n=2

n(n− 1)

∣∣∣∣∣ m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi − bi)

Γ(αi + nβi − βi)(n− 1)!
bn

∣∣∣∣∣
≤

∞

∑
n=2

n(n− 1)

∣∣∣∣∣ m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi − bi)2(1− ζ) cos η

Γ(αi + nβi − βi)n(n− 1)!

∣∣∣∣∣
= 2(1− ζ) cos η

∞

∑
n=1

bn

(n)!
, (19)

where

bn = n
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi)

Γ(αi + nβi)
, n ≥ 1. (20)

Let us consider the function h1(s) defined as:

h1(s) = s
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + sbi)

Γ(αi + sβi)
, s ≥ 1,

which yields
h′1(s) = h1(s)h2(s),

where

h2(s) =
1
s
+

m

∑
i=1

biΨ(ai + sbi)− βiΨ(αi + sβi).

Using Lemma 1, we have

h2(s) ≤ h3(s) =
1
s
+

m

∑
i=1

bi log(ai + sbi)− βi log(αi + sβi) + βiγ.

Which leads to

h′3(s) =
−1
s2 +

m

∑
i=1

b2
i

ai + sbi
−

β2
i

αi + sβi
.

It can be easily shown that h3(s) is a decreasing function on [1, ∞) under the given
hypothesis. It can also noted that h3(1) < 0 and further h2(s) < 0, for s ≥ 1. Consequently,
h′1(s) < 0 on [1, ∞). Thus, (bn)n≥1 is a decreasing sequence. Therefore, by (19), we obtain

2(1− ζ) cos η
∞

∑
n=1

bn

(n)!
≤ 2(1− ζ) cos η

∞

∑
n=1

b1

(n)!

= 2(1− ζ) cos η
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + bi)

Γ(αi + βi)
(e− 1).

In view of condition (18), proof of this theorem is completed.



Axioms 2022, 11, 629 13 of 17

Theorem 6. Let the given supposition of Theorem 4 hold with l ∈ [0, ∞) and f (z) ∈ Rη(ζ).
Moreover, assume that the following inequality holds:

2(1− ζ) cos η(e− 1)
m

∏
i=1

Γ(ai + bi)

Γ(αi + βi)
<

1
l + 2

m

∏
i=1

Γ(ai)

Γ(αi)
.

Then
[
Im,m( f )

]
∈ k-ST.

Proof. To find the required result, we have to show that

∞

∑
n=2

[n + l(n− 1)]

∣∣∣∣∣ m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi − bi)

Γ(αi + nβi − βi)(n− 1)!
bn

∣∣∣∣∣ < 1. (21)

Since g ∈ Rη(ζ), then

|bn| ≤
2(1− ζ) cos η

n
.

A simple computation leads to

∞

∑
n=2

[n + l(n− 1)]

∣∣∣∣∣ m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi − bi)

Γ(αi + nβi − βi)(n− 1)!
bn

∣∣∣∣∣
≤

∞

∑
n=2

[n + l(n− 1)]

∣∣∣∣∣ m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi − bi)

Γ(αi + nβi − βi)

2(1− ζ) cos η

n!

∣∣∣∣∣
= 2(1− ζ) cos η

∞

∑
n=1

[n + 1 + nl]
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi)

Γ(αi + nβi)(n + 1)!

< 2(1− ζ) cos η(1 + l)
∞

∑
n=1

cn

n!
, (22)

where

cn =
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + nbi)

Γ(αi + nβi)
, n ≥ 1. (23)

Using a similar technique proof of Theorem 4 and applying the assumption of this theorem,
it can be observed that cn is a decreasing sequence. Given (22), we obtain

2(1− ζ) cos η(1 + l)
∞

∑
n=1

cn

n!
≤ 2(1− ζ) cos η(1 + l)

∞

∑
n=1

c1

n!

= 2(1− ζ) cos η(1 + l)
m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + bi)

Γ(αi + βi)
(e− 1).

Finally, using the given hypothesis, the desired result can be established.

5. Hardy Space of the Fox–Wright Function

In this section, we will study the inclusion properties of the Fox–Wright function in
the Hardy space.
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Theorem 7. Under the same supposition and statement of Theorem 4, the following relation holds:

mψm

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣.] ∈

H

1
1−2λ

(
0 ≤ λ < 1

2

)
H∞

(
λ ≥ 1

2

)
.

(24)

Proof. Using the definition of the hypergeometric function 2φ1(p, q; r; z) [13], we have

n +
r · z

(1− zeiξ)1−2λ
= n + r · z2φ1

(
1, 1− 2λ; 1; zeiξ

) (
λ 6= 1

2

)
and

n + r · log(1− zeiξ) = n + r · z2φ1

(
1, 1; 2; zeiξ

) (
λ =

1
2

)
.

It can be easily seen that the normalized Fox–Wright function mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αn, βn)

∣∣z]
is not of the given types:

n + r · z(1− zeiξ)2λ−1
(

λ 6= 1
2

)
and

n + r · log(1− zeiξ)

(
λ =

1
2

)
.

Hence, by applying Theorem 4, we observe that mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣z] is convex

of order λ in D. Finally, with the help of Lemma 8, the required result would readily
follow.

Remark 5. It can be noted from Theorem 7 that 1ψ1

[
(1, 1)
(α, β)

∣∣z] = E(1)
α,β(z) belongs to the Hardy

space for α ∈ [0.555, 1), but in ([34] Theorem 7), the authors note that E(1)
α,β(z) is in the Hardy

space for α ≥ 1. Therefore, our Theorem 3 improves the existing result in [3] and in the generalized
form.

Theorem 8. Let the assertion of Theorem 4 hold along with the condition

m

∏
i=1

Γ(ai + bi)

Γ(αi + βi)
(e− 1) ≤ (1− µ)

m

∏
i=1

Γ(ai)

Γ(αi)
. (25)

Then 1
z mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣z] ∈ L(µ).
Proof. To prove this theorem, it is enough to show that |q(z)− 1| < 1, where

q(z) =
1

1− µ

(
1
z mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣z]− µ

)
.

Now by using Lemma 1, we have∣∣∣∣ 1
1− µ

(
1
z mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣z]− µ

)
− 1
∣∣∣∣ = 1

1− µ

∞

∑
k=1

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)zk

Γ(αi + kβi)k!
.
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By applying the similar way proof of Theorem 4, with the assumption of this Theorem, we
have

1
1− µ

∞

∑
k=1

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + kbi)zk

Γ(αi + kβi)k!
<

1
1− µ

m

∏
i=1

Γ(αi)

Γ(ai)

Γ(ai + bi)

Γ(αi + βi)
(e− 1).

Hence, followed by the given condition, the proof of this theorem is complete.

Theorem 9. Suppose that the same assumptions of Theorem 4 hold and the following inequality is
satisfied:

m

∏
i=1

Γ(ai + bi)

Γ(αi + βi)
(e− 1) ≤ (1− ρ)

m

∏
i=1

Γ(ai)

Γ(αi)
. (26)

If g ∈ L(δ)(δ < 1), then
(

mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣.] ∗ g
)
(z) ∈ L(µ), where µ =

1− 2(1− ρ)(1− δ).

Proof. If g ∈ L(δ) (δ < 1), then by using Lemma 7 f ′ ∈ M(δ), suppose that

u(z) = mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣z] ∗ g(z).

We have

u′(z) =
1
z mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣z] ∗ g′(z).

Now, with the help of Theorem 8, it can be easily observed that the normalized
Fox–Wright function is:

1
z mψ̃m

[
(a1, b1), . . . , (am, bm)
(α1, β1), . . . , (αm, βm)

∣∣z] ∈ M(ρ),

using the given conditions. Hence, by using Lemma 7, it can be noted that u′ ∈ M(ρ), and
u ∈ L(µ). Thus, the proof of Theorem 9 would follow readily.

6. Conclusions

In our present article, we investigated geometric properties, such as convexity of order
δ and pre-starlikeness for the Fox–Wright function mψ̃m[.]. It can be observed from Remark 3
that some of the results obtained in this manuscript improved and generalized certain results
established in [34]. Moreover, sufficient conditions were derived, such as k-uniformly starlike
and k-uniformly convex associated with this function. Many other conditions were also provided
for the Fox–Wright function belonging to the Hardy space. From Remark 4 and Remark 5, we
can observe that the results derived in this paper improved and generalized several results
available in the literature [3,34]. Interesting examples and consequences were provided to
support the desired results obtained in this investigation. Further research directions on the
subjects of the present considerations were discussed analogously, i.e., for the Fox–Wright type
functions [37], hypergeometric function [13], and Srivastava’s unification [38] Eα,β(ϕ; z, s, κ) of
the Mittag–Leffler type functions.
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21. Kanas, S.; Wiśniowska, A. Conic regions and k-starlike functions. Rev. Roumaine Math. Pures Appl. 2000, 45, 647–657.
22. Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 2000, 9,

121–132. [CrossRef]
23. Duren, P.L. Theory ofHp Space; Series of Monographs and Textbooks in Pure and Applied Mathematics; Academic Press: New

York, NY, USA; London, UK, 1970; Volume 38.
24. Komatu, Y. On a one-parameter additive family of operators defined on analytic functions regular in the unit disk. Bull. Fac. Sci.

Engrg. Chuo Univ. Ser. I Math. 1979, 22, 1–22.
25. Mehrez, K.; Das, S. Logarithmically completely monotonic functions related to the q-gamma function and its applications. Anal.

Math. Phys. 2022, 12, 20. [CrossRef]
26. MacGregor, T.H. The radius of univalence of certain analytic functions. II. Proc Am. Math. Soc. 1963, 14, 521–524. [CrossRef]
27. MacGregor, T.H. A class of univalent functions. Proc. Am. Math. Soc. 1964, 15, 311–317. [CrossRef]
28. Mocanu, P.T. Some starlike conditions for analytic functions. Rev. Roumaine Math. Pures. Appl. 1988, 33, 117–124.
29. Ravichandran, V. On uniformly convex functions. Ganita 2002, 53, 117–124.
30. Baricz, Á. Bessel transforms and Hardy space of generalized Bessel functions. Mathematica 2006, 48, 127–136.
31. Stankiewicz, J.; Stankiewicz, Z. Some applications of the Hadamard convolution in the theory of functions. Ann. Univ. Mariae

Curie-Skłodowska Sect. A 1986, 40, 251–265.

http://doi.org/10.3390/sym11010045
http://dx.doi.org/10.1186/s13660-019-2044-4
http://dx.doi.org/10.2298/FIL1818475P
http://dx.doi.org/10.3390/sym14051007
http://dx.doi.org/10.3390/math10183254
http://dx.doi.org/10.1007/s43037-020-00059-w
http://dx.doi.org/10.1007/s40840-021-01082-2
http://dx.doi.org/10.3390/math10142516
http://dx.doi.org/10.1080/17476933.2015.1079628
http://dx.doi.org/10.1112/plms/s2-27.1.389
http://dx.doi.org/10.1007/s13324-017-0198-0
http://dx.doi.org/10.1007/BF02403202
http://dx.doi.org/10.1007/BF02803399
http://dx.doi.org/10.2307/1968451
http://dx.doi.org/10.1016/S0377-0427(99)00018-7
http://dx.doi.org/10.1080/10652460008819249
http://dx.doi.org/10.1007/s13324-022-00678-6
http://dx.doi.org/10.1090/S0002-9939-1963-0148892-5
http://dx.doi.org/10.1090/S0002-9939-1964-0158985-5


Axioms 2022, 11, 629 17 of 17

32. Ponnusamy, S. Inclusion theorems for convolution product of second order polylogarithms and functions with the derivative in a
halfplane. Rocky Mountain J. Math. 1998, 28, 695–733. [CrossRef]

33. Eenigenburg, P.J.; Keogh, F.R. The Hardy class of some univalent functions and their derivatives. Michigan Math. J. 1970, 17,
335–346. [CrossRef]

34. Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric Properties of a Certain Class of Mittag–Leffler-Type Functions. Fractal
Fract. 2022, 6, 54. [CrossRef]

35. Owa, S. The quasi-Hadamard products of certain analytic functions. In Current Topics in Analytic Function Theory; World Scientific
Publishing: River Edge, NJ, USA, 1992; pp. 234–251.

36. Güney, H.Ö.; Acu, M.; Breaz, D.; Owa, S. Applications of fractional derivatives for Alexander integral operator. Afr. Mat. 2021, 32,
673–683. [CrossRef]

37. Kumar, A.; Das, S. Integral transforms and probability distributions for a certain class of Fox-Wright type functions and its
applications. Math. Comput. Simul. 2023, 203, 803–825. [CrossRef]

38. Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. I. Philos. Trans. R. Soc. Lond. Ser. A Math.
Phys. Sci. 1940, 238, 423–451.

http://dx.doi.org/10.1216/rmjm/1181071795
http://dx.doi.org/10.1307/mmj/1029000519
http://dx.doi.org/10.3390/fractalfract6020054
http://dx.doi.org/10.1007/s13370-020-00852-8
http://dx.doi.org/10.1016/j.matcom.2022.07.011

	Introduction and Motivation
	Fox–Wright Function
	Geometric Functions Theory
	Hardy Space

	Useful Lemmas
	Pre-Starlikeness and Convexity
	k-Uniformly Starlike and k-Uniformly Convex Functions
	Hardy Space of the Fox–Wright Function
	Conclusions
	References

