Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings
Abstract
:1. Introduction
2. Preliminaries
- -preinvex onwith respect toif
- -preincave onwith respect toif inequality (13) is reversed.
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, R.E. Interval Analysis; Prentice-Hall: Hoboken, NJ, USA, 1966. [Google Scholar]
- Snyder, J. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
- Gasilov, N.A.; Emrah Amrahov, S. Solving a nonhomogeneous linear system of interval differential equations. Soft Comput. 2018, 22, 3817–3828. [Google Scholar] [CrossRef]
- De Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Edu. 2011, 55, 9–15. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Rufián-Lizana, A.; Román-Flores, H.; Jiménez-Gamero, M.D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Silva, G.N.; Rufián-Lizana, A. On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 2015, 272, 60–69. [Google Scholar] [CrossRef]
- Entani, T.; Inuiguchi, M. Pairwise comparison-based interval analysis for group decision aiding with multiple criteria. Fuzzy Sets Syst. 2015, 274, 79–96. [Google Scholar] [CrossRef]
- Osuna-Gómez, R.; Chalco-Cano, Y.; Hernández-Jiménez, B.; Ruiz-Garzón, G. Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 2015, 321, 136–146. [Google Scholar] [CrossRef]
- Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Macías-Díaz, J.E.; Soliman, M.S.; Zaini, H.G. Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation. Demonstr. Math. 2022, 55, 387–403. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann-Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann-Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanta, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.S.; Ismail, K.A.; Elfasakhany, A. Some Inequalities for LR-(h1,h2)-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 180. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Flores-Franuli’c, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Costa, T.M.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
- Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Fejér fractional type inequalities for 𝒽-convex and harmonically 𝒽-convex interval-valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Motreanu, D.; Zeng, S.-D. Generalized penalty and regularization method for differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F.; Yao, J.-C.; Zeng, S.-D. Existence of solutions for a class of noncoercive variational—Hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migorski, S.; Liu, Z.-H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.-H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Internat. J. Bifur. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
- Narges Hajiseyedazizi, S.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
- Jin, F.; Qian, Z.-S.; Chu, Y.-M.; ur Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
- Wang, F.-Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.-M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Bhayo, B.A.; Chu, Y.-M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
- Iqbal, S.A.; Hafez, M.G.; Chu, Y.-M.; Park, C. Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J. Appl. Anal. Comput. 2022, 12, 770–789. [Google Scholar] [CrossRef]
- Huang, T.-R.; Chen, L.; Chu, Y.-M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 2021, 1809–1822. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef][Green Version]
- Zhao, T.-H.; Wang, M.-K.; Zhang, W.; Chu, Y.-M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef][Green Version]
- Chu, Y.-M.; Zhao, T.-H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
- Qian, W.-M.; Chu, H.-H.; Wang, M.-K.; Chu, Y.-M. Sharp inequalities for the Toader mean of order—1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Chu, H.-H.; Chu, Y.-M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Dai, Y.-Q.; Chu, Y.-M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Hai, G.-J.; Chu, Y.-M. Landen inequalities for Gaussian hypergeometric function. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Matemáticas RACSAM 2022, 116, 53. [Google Scholar] [CrossRef]
- Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pečarić, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
- Dragomir, S.S. Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices. J. Math. Inequal. 2017, 11, 241–259. [Google Scholar] [CrossRef][Green Version]
- Latif, M. On Some New Inequalities of Hermite-Hadamard Type for Functions Whose Derivatives are s-convex in the Second Sense in the Absolute Value. Ukr. Math. J. 2016, 67, 1552–1571. [Google Scholar] [CrossRef]
- Noor, M.A.; Cristescu, G.; Awan, M.U. Generalized Fractional Hermite-Hadamard Inequalities for Twice Differentiable s-convex Functions. Filomat 2015, 29, 807–815. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard Inequalities for 𝒽-Preinvex Functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex. Intell. Syst. 2021, 8, 413–427. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
- Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite-Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
- Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. De La Real Acad. De Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas RACSAM 2021, 115, 46. [Google Scholar] [CrossRef]
- Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically 𝒽-convex functions. Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
- Chalco-Cano, Y.; Lodwick, W.A. Condori-Equice. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Set. Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex intervalvalued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
- Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for 𝒽-convex interval-valued functions. J. Inequal. Appl. 2018, 302, 302. [Google Scholar] [CrossRef][Green Version]
- Zhao, D.; An, T.; Ye, G.; Torres, D.F. On Hermite-Hadamard type inequalities for harmonical 𝒽-convex interval-valued functions. arXiv 2019, arXiv:1911.06900. [Google Scholar]
- An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard type inequalities for interval (𝒽1, 𝒽2)-convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef][Green Version]
- Liu, R.; Xu, R. Hermite-Hadamard type inequalities for harmonical (𝒽1, 𝒽2) convex interval-valued functions. Math. Found. Comput. 2021, 4, 89. [Google Scholar] [CrossRef]
- Almutairi, O.; Kiliçman, A.A.A. Some integral inequalities for 𝒽-Godunova-Levin preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef][Green Version]
- Bai, H.; Saleem, M.S.; Nazeer, W.; Zahoor, M.S.; Zhao, T. Hermite-Hadamard and Jensen type inequalities for interval nonconvex function. J. Math. 2020, 2020, 3945384. [Google Scholar] [CrossRef]
- Costa, T. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Rashid, S. Some new classes of preinvex functions and inequalities. Mathematics 2019, 7, 29. [Google Scholar] [CrossRef][Green Version]
- Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Kirmaci, U.S.; Bakula, M.K.; Ozdemir, M.E.; Pečarić, J. Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 2007, 193, 26–35. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite-Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
- Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Matemáticas RACSAM 2020, 114, 96. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite-Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some Novel Inequalities for LR-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Math. Meth. Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Math. 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migórski, S.; Liu, Z.-H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation. Sci. Sin. Math. 2022, 52, 331–354. [Google Scholar]
- Liu, Z.-H.; Sofonea, M.T. Differential quasivariational inequalities in contact mechanics. Math. Mech. Solids. 2019, 24, 845–861. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migórski, S.; Liu, Z.-H.; Yao, J.-C. Convergence of a generalized penalty method for variational-hemivariational inequalities. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105476. [Google Scholar] [CrossRef]
- Li, X.-W.; Li, Y.-X.; Liu, Z.-H.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Positive solutions for resonant (p,q)-equations with convection. Adv. Nonlinear Anal. 2021, 10, 217–232. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Differential inclusion problems with convolution and discontinuous nonlinearities. Evol. Equ. Control Theory 2020, 9, 1057–1071. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Double phase Dirichlet problems with unilateral constraints. J. Differ. Equ. 2022, 316, 249–269. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Anisotropic (p,q)-equations with competition phenomena. Acta Math. Sci. 2022, 42B, 299–322. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. https://doi.org/10.3390/axioms11110622
Khan MB, Macías-Díaz JE, Soliman MS, Noor MA. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms. 2022; 11(11):622. https://doi.org/10.3390/axioms11110622
Chicago/Turabian StyleKhan, Muhammad Bilal, Jorge E. Macías-Díaz, Mohamed S. Soliman, and Muhammad Aslam Noor. 2022. "Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings" Axioms 11, no. 11: 622. https://doi.org/10.3390/axioms11110622