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Abstract: In this paper, we introduce a new generalized concept, namely, extended interpolative
Ciri¢-Reich—-Rus-type F-contraction in b-metric space. In addition, we put forward the notion of
interpolative Kannan-type F-contractions. Fixed point results for these new interpolative contraction
mappings are established, and non-trivial examples involving finite and infinite sets are provided to
validate the results.
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1. Introduction

Following the most celebrated fixed point results of Banach [1] in 1922, fixed point the-
ory has witnessed breakthrough developments in different directions. One such direction
is the replacement of the contraction condition with extended versions; another direction is
the development of the metric space itself by inducing advanced properties. In the current
research, we follow the first direction, i.e., the enhancement of the contraction condition.

For our work, we consider the F-contraction introduced by Wardowski [2] in 2012.
Major improvements to Banach’s contraction principle were accomplished by Boyd and
Wong [3], Chatterjea [4], Ciri¢ [5], Kannan [6], and Meir and Keeler [7]. For developments
in interpolative contractions, we refer to [8-11].

Bakhtin [12] and Czerwik [13] introduced the b-metric space, which non-trivially
extended the class of metric spaces. Subsequently, tremendous improvement in fixed point
theory in the framework of b-metric space have taken place [14-23].

In this paper, we put forward the concept of extended interpolative Ciri¢-Reich-
Rus type (CRR-type) F-contraction and interpolative Kannan-type F-contraction in a
b-metric space (bMS). These new interpolative results provide a new direction in the area of
integral equations to find new solutions. We establish a number of important results while
investigating this connection, and provide examples to validate our results. Finally, we
present an application of the newly established results towards the solution of a particular
type of integral equations.

2. Preliminaries

Several important results in the present context are listed below:

Definition 1 ([12,13]). Consider a mappingY : M x M — [0, 00) where M # ¢ is a set. When
Y satisfies the following conditions:

(bM1) Y (11,12) = 0 ifand only if 11 = 1p;

(bM2) Y (11,12) = Y(t2,11) forall 11,15 € X;

(bM3) There exists a real number s > 1 such that Y(i1,13) < s[Y(11,12) + Y(i2,13)] for all
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11,12,13 € X; then, Y is known as a b-metric on M and (M, Y) is b-metric space (bMS) having
coefficient s.

Definition 2 ([24]). Consider a sequence {uy,} in M, where (M,Y) is a b-metric space and
u € M. Then:

(a) {un} is known as a convergent sequence in (M,Y ), and converges to u if, for every ¢ > 0 3,
ng € N such that Y(u,,u) < e ¥ n > ng, which can be written as nh_r)r;o Uy = U OF Uy — UAS
n — oo,

(b) {un} is known as a Cauchy sequence in (M,Y) if, for every ¢ > 0, 3 ng € N such that
Y (tty, tntp) <e¥n>mng,p>0.

(c) If every Cauchy sequence in M converges to some u € M, then (M,Y) is known as a complete
b-metric space.

Definition 3 ([2]). Consider a real mapping F : (0,00) — (—o00, +00) satisfying the following
conditions:

(F1) F follows the strictly increasing property;

(F2) For a sequence {ty },en C (0,00), for every {tn }pen, limy—seo tn = 0 iff

limy, 00 F(ty) = —00;

(F3) 3s € (0,1) such that lim;_,g £ F(t) = 0.

Suppose F is the collection of all mappings F. If (M, p) is a metric space, then a function S : M —
M is called an F-contraction if 3T > 0, F € F such that ¥ p,q € M. Then, we have

p(S(p),S(q)) > 0= 7+ F(p(S(p),S(q))) < F(o(p,q))-

3. Extended Interpolative F-Contraction

Here, we present our main results. We first introduce the definition of an extended
interpolative CRR-type F-contraction, then establish a fixed point theorem.

Definition 4. Consider the bMS (M, ¢, s) and a self-map S : M — M. Then, the function S is
known as an extended interpolative modified CRR-type F-contraction if, for T > 03 ¢1,¢c2 € [0,1)
with ¢1 + ¢y < land F € F such that

T+ F(8(5(6),5(q))) < c1F(&(s,q)) +2F(8(c,5(6))) + (1 —c1 — Cz)F(gé(q/S(Q))) 1)
V¢, g € M\ Fix(S), where Fix(S) = {¢c € M : S(¢) = ¢} with &(S(¢g),S(q)) > 0.

Theorem 1. Consider a complete bMS (M, ¢, s) and a continuous self-map S on M. Then, S has a
fixed point in M if S is an extended interpolative CRR-type F-contraction.

Proof. Consider ¢y € M. Suppose g, is a sequence. Consider ¢, = 5"(¢p) V n € N. Then,
Gno becomes a fixed point of S if 31y € N such that ¢,,; = ¢,,+1. Hence, we assume that
Gn # Gu+1 V1 € Nwithg = ¢, and g = g,—1 V1 € N. Then, we have the following from the
Equation (1):

T+ F(G(gn+1,6n)) = T+ F(E(S(6n), S(gn-1)))

< c1F(§(gn,Gn-1)) +c2F(&(6n,S(gn))) + (1 —c1 — CZ)F(EC(QHflrS(anl)))

= c1F(G(6n,Gn-1)) + c2F(&(6n,Gny1)) + (1 —c1 — CZ)F(%‘:(anlrQn)) ()

< 1rF(§(6n Gn-1)) + 2F(E(6n, Gnr1)) + (1 — 1 = 2)F(E(6n-1,6n)), (fors >1).

Suppose, &(¢n-1,6n) < &(¢n, Gnr1); then, from (2), we have
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T+ F(8(6n-1,6n)) < c1F(&(n,Gny1)) +2F(E(Gn,Gnr1)) + (1 —c1 — c2)F(E(6n/Gnt1))
= F(¢(gn Gn+1))
= T+ F(¢(Gn-1,6n)) < F(&(6n,Gns1)),

which is a contradiction.

Therefore,

¢(6n Gnt1) <&(Gn-1,6n), Vn =1
Hence,

T+ F(&(6n11,6n)) < F(E(6n Gn-1))-
Consequently,

F(C(gn,gn+1)) < F(C(Qn—lfgn)) —17<...< F(é‘(go, g1)) —nt,Vn>1.

Then, by taking the limit as n — oo, we have

limy, 00 F(E(Gn, Gnr1)) = —c0.
Thus, from condition F2 we obtain

limy 0 §(GnsGny1) = 0.

Let 0, = G(Gn, Gnt1)-
Hence,

1imn*>oo 9;1 - 0

Next, from condition F3, 3k € (0,1) V n € N, and we have
0% (F(6,) — F(6))) < —63nT < 0. ®)

Now, using condition F3 and taking the limit as n — oo, we have
Jim, ngk = 0.
n—o0
Hence, 3 ny € N such that neﬁ <1,Vn > nyg.
On < A

17
nk

Vn > nyg.

Next, to verify that {¢, } is a Cauchy sequence, we take m,n € N such thatm > n > nj.
From the triangular inequality, we have

g(en om) < ml,l [6(6n Gnv1) +8(Gnt1,6n+2) + oo+ 8(Gm—1,6m)]

92}

1
gm—1 [071 + 9n+1 +...t Gmfl]

3
AN
@ | =
3
AN

.TS -

A

I
—
B

IN
™
Q=

Il
—_
Il
3

IA
agk
@ | -
e
|~

Il

—

I

=

=
=

If we take the limit as n — oo for the above inequality, we obtain

limm,n%oo C(Qn/ Qm) =0.
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Therefore, {g, } is a Cauchy sequence in M.

Because (M, ¢, s) is a complete b-MS, 3 ¢* € M such thatg, — ¢* € M, asn — .
Next, we have to show that ¢* is a fixed point of S.

Because ¢, — ¢* € M,asn — oo,

limy, 500 G = 6.
Therefore, for a subsequence g, of gy,
¢ = lim ¢y 41
= 15,5 (n)
= (i, 6n)

= 5(¢")-

Hence, ¢* is a fixed point in S.
O

Next, we introduce the extended interpolative Kannan-type F-contraction and estab-
lish a fixed point result.

Definition 5. Consider the bMS(M, ¢, s) and a self-map S : M — M. Then, the map S is called
an extended interpolative modified Kannan-type F-contraction if for t > 0 3 ¢1, ¢ € (0,1) with
c1+c < land F € F such that

T F(E(S(6),S0))) < erF(E(e,S(0))) + eaF (£E(0,5(9))) @
V¢, q € M\ Fix(S) with S(g) # S(q), where Fix(S) denotes the set of all fixed points of S.

Theorem 2. Consider a complete b-MS (M, ¢, s) and a continuous self-map S on M. Then, S has
a unique fixed point in M if S is an extended interpolative Kannan-type F-contraction.

Proof. Consider ¢y € M. Construct the sequence ¢, such that ¢, = S"(go) Vn > 0. If 3
np € N such that ¢, = ¢y,+1, then gy, is clearly a fixed point of S. Hence, assume that
Gn # Guy1 V1 > 0with g = ¢, and g = 6,1 V n € N. Then, we have the following from
Equation (4):

T+ F((nr1,6n)) = T+ F(G(S(gn), S(6u-1)))
< c1F(E(6n, S(gn))) + c2F(

[V

¢(en-1,5(6u-1)))
< P (n 6uen)) + (1= ) F(2E(Gn1,60)
< F(EGn 6us)) + (1 - )F(Elea 1,60), (fors 1) 6

Suppose &(6n,6n-1) < §(Gn+1,6n); then, from (5), we have

T+ F(&(S(6n),S(6n-1))) < c1F(&(6n,6ny1)) + (1 —c1)F(E(Snt1,6n))
= T+ F(8(6nt+1,6n)) < F(E(Gn Gnr1))-

which is a contradiction.
Therefore,

&(Gns1,6n) <C(Gn,Gu-1), Vn2>1
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Hence,
T+ F(G(gn+1,6n)) < F(§(6n, 6n-1))-

Consequently,

F(&(6n 6nt1)) < F(G(6n-1,6n)) =T < ... < F(&(60,61)) — 1T,

Then, taking the limitas n — oo,
limy 00 F(E(Gn, Gni1)) = —00.

Thus, from condition F2 we obtain
limy 0 § (61, Gny1) = 0.

Let 0, = é(GnrQnJrl)‘
Hence,

limy, 00 0, = 0.
Next, from the condition F3, 3k € (0,1) Vn € N, we have
0 (F(6) — F(60)) < —0fnt < 0.
Now, using condition F3 and taking the limit as n — oo,
limy; 00 nGﬁ =0.
Hence, ny € N such that nG’,‘l <1,Vn > nyg.

0, < %,Vn > nyg.

nk

(6)

Next, to verify that {¢, } is a Cauchy sequence, we take m,n € N such thatm > n > nj.

From the triangular inequality, we have

1
Slonom) < G [8(6m 1) +6(6n+1,Guv2) oo 4 E(Gm—1,6m)]

1
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If we take limit as n — co for the above inequality, we obtain
hmm,n—)oo ‘:(Qnr Qm) =0.

Therefore, {¢, } is a Cauchy sequence in M.
Because(M, &, s) is a complete bMS,
there exists ¢* € M such thatg, — ¢* € M, asn — oo.
Next, we have to show that ¢* is a fixed point of S.
Because gy, — ¢* € Mand n — oo,

limy o0 Gn = ¢*.

Therefore, for a subsequence ¢, of gy,
¢" = lim ¢y 11
= nlgrolo S(6n)
= S(lim ¢y, )

= 5(¢").
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Hence, ¢* is a fixed point in S.

Finally, we have to show the uniqueness.

Consider two fixed points, ¢* and g%, such that ¢* # ¢*. Then, S(¢*) = ¢* # q* = S(q%).
Thus, we have

T+ F(E(S(¢7),5(q7))) < erF(G(¢™, S(¢))) +CzF(%é‘(q*,5(q*)))
=0,

which is a contradiction.

Therefore, ¢* = g*.

Hence, S has a unique fixed point in bMS.
O

4. Examples

In this section, we provide examples to validate our results.

Example 1. Consider M = {x,y,z}. Let § : M x M — [0,00) be defined as &(x,y) = 0ifx =y,
E(xy) =&y, x)Vx,y € Mand &(x,y) = 1,&(x,z) = 2.3,&(y,z) = 1.1. Then, (M, ¢, ) isa
complete b-MS but not an MS.

Construct a self-map S : M — M such that

[ A{x}, fx=xorx=y
so={ &} 4.2

Next, construct

[E(xx) =0}, fxrtzyra
) =1}, fx—zy
)=1}, fx#Fzy=z

Elyy) =0}, fr=zy=z

Hence, ¢(S(x),S(y)) attains its maximum value of 1.

Now, we consider x,y € M \ Fix(S) with S(x) # S(y).

Consider ¢c; = %, =31= %ln(%) and F(x) = In(x) for x > 0.

For the Ciric’—Reich—Ruzltype inequality, we have
T F(E(5(x),5(9) = 3 In(oy) + F(1)
:%m@b+mu)
= Jin(%).

Further,

c1[F(&(x,y))] + c2[F(E(x, S(x)))]+(1 —e1 — Cz)[F(%C(yIS(y)))]

:qnn+qﬂn+a—q—qﬁé§)
= (1- 6 - e)F(3)

3 21
= Eln(%).

Therefore,

T+ F(5(S(x),5(y))) < arlF(E(x,))] + c2[F(E(x, S(x)))] + (1 = e1 = c2)[F(5E (¥, 5(1)))]-

Hence, the conditions for a CRR-type F-contraction are satisfied.
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Next, for a Kannan-type inequality, we have

T+ F(G(S(x),5(y)) =

and

Therefore,
T+ F(&(S(x),5(y))) < c1[F(&(x,5(x)))] + c2[F($&(y, S()))]-

Hence, the conditions for a Kannan-type F-contraction are satisfied.

Example 2. Consider the space ,(0 < p < 1), where

(0]

P
lp=% () CR: Y |xu|P < o0

n=1

Define a metric on this space such as

11, x 1, = R defined by,
prtp Y

Z X0 — yu|P)P, where x = xp,y = yy € 1,

having the triangular inequality

E(x,2) < 27 [E(x, ) + £, 2)].

Then, (1p, 5,2%) is a complete bMS.
Construct a self-map S : 1, — 1, such that

[ {0}, if x=1(0) or x = (x) where x €1
5(x) _{ {1}, otherwise. ’

Now, for the Ciric—Reich—Rus type inequality, we have

1

x) +27(5(xy) +8(v,5())))]
<t+aF((xy)) +eF(E(xS(x)) + (1 —ca - Cz)F(%p(%S(y)))

T+ F(E(S(x), S(y))) < T+ F(27 (&(S(x),x) + &(x,5(1))))
P (E(S(x),

where c¢1,c2 € N.
Therefore the conditions for a CRR-type F-contraction are satisfied.
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Next, for a Kannan-type inequality, we have

T+ F(E(S(x),S(1))) < T+ F(2P (§(S(x),%) +E(x,5(1)))

< T4+ 2P (§(5(x), ) + 2P (6(5y) + (3, 5(1)
< T P, S(0) + eaF (20, S(1)

where c1,c2 € N.
Therefore, the conditions for a Kannan-type F-contraction are satisfied.

5. Application to Integral Equations

Applications of fixed point theorems can be found in various areas of science, such as
physics, engineering, etc., in terms of solutions of differential and integral equations. In this
section, following the similar lines as in [25,26], we provide an application of Theorem 2
towards the solution of an integral equation.

Let I =[0,7],r > 0and M = C(I,R) be the set of all real-valued continuous functions
defined on I. Suppose that

¢(gh) = Stlg(lg(t) —h(®)]) = [Ig = hll,

where ¢ is a b-metric on M.
Consider the integral equation

r
§(x) = q(x) + || Glx,w) f(w,g(w))dw,x € [0,7] @)
where
(i)g:I — Rand f: I x R = R are continuous;
(ii) forallx € I, G : I x I — R is continuous and measurable at w € I;

(iii) for all x,w € I, G(x,w) > 0 and forall x € I, [; G(x, w)f(w, g(w))dw < 1.

Theorem 3. Assume that conditions (i) — (iii) hold. Let T > 0and c1,c; € (0,1) withcy + ¢ <
1 exist such that

[f(xg(x)) f(x
(H et

- Lol

foreach x € I and for all g, h € X such that
r
x) # || Glxw)flaw,g(w))dw

0) # [ Gl w)flwhw)de,

while g(x) # h(x) for all x € I. Then, the integral equation (7) has a solution in M.

Proof. Let us define a self-map I' : M — M by

I(g(x)) =g(x)+ /Or G(x,w)f (w,g(w))dw,x € [0,7].

For each x € [0,7], we have
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(g(x)) ~ ()| = | [ G(x,0) {F(w,8(0)) ~ o, h(w)) b
< [ 6w flw,g(w)) — (e, h(w))|do

7 1 . ‘1
< [[6tww) e (ls-rsl) -
c2
<||h—rh||> dw
1 Cc1 o
— —T
— e (lg=rsl) - (-

1 €1 [}
< e (lg=rgl) - (In-rhl) o)

(because [y G(x,w)dw < 1 forall x € I).
Taking the supremum over x € I on both sides of (9), we have

¢(Ig,Th) = ||ITg — Th]|

1 C1 (5
< e (lg=rgt) - (-rm)

= Lo (etere) - (etnrn))
£(rg, ™ .

<e

&(eterg) - (com) "

—

. ln{ ¢(I'g,Th) } <t

& (etere) (et
— n[erg ] -m [ 1 (eere) - (ern) | <
— 7+l {C(Fg,l’h)} <In Kg(g,rg))q - (%(h,rh))j

s
— 7+In [C(Fg,l"h)} <cln [(fj(g,l"g))] +cln E <§(h,l"h))]. (10)

Taking F(6) = In(d), 6 > 0, we have form (10):

1
T+ F(G(Tg Th)) < ciF(8(g,Tg)) + c2F(S1(h, Th)),
forall g,h € M\ Fix(T') withTg # Th.
Hence, per Theorem 2, I has a unique fixed point; therefore, the integral Equation (7)
has a unique solution. O

6. Conclusions

In this paper, we have introduced extended interpolative CRR-type F-contraction and
interpolative Kannan-type F-contraction mappings in a bMS. The existence of fixed point
results has been established for the new contraction maps. We have provided examples
involving both finite and infinite bMSs. This work can be extended in the future to investi-
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gate discontinuity results at the fixed points. Applications of these extended results may
point out new iterative schemes for the solution of differential and integral equations.
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