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Abstract: The prediction of new cases of infection is crucial for authorities to get ready for early
handling of the virus spread. Methodology Analysis and forecasting of epidemic patterns in new
SARS-CoV-2 positive patients are presented in this research using a hybrid deep learning algorithm.
The hybrid deep learning method is employed for improving the parameters of long short-term
memory (LSTM). To evaluate the effectiveness of the proposed methodology, a dataset was collected
based on the recorded cases in the Russian Federation and Chelyabinsk region between 22 January
2020 and 23 August 2022. In addition, five regression models were included in the conducted
experiments to show the effectiveness and superiority of the proposed approach. The achieved
results show that the proposed approach could reduce the mean square error (RMSE), relative root
mean square error (RRMSE), mean absolute error (MAE), coefficient of determination (R Square),
coefficient of correlation (R), and mean bias error (MBE) when compared with the five base models.
The achieved results confirm the effectiveness, superiority, and significance of the proposed approach
in predicting the infection cases of SARS-CoV-2.

Keywords: hybrid deep learning; time series; LSTM; Stacked LSTM; CNN-LSTMs; BDLSTM; CNN;
GRU; modeling; SARS-CoV-2
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1. Introduction

The outbreak of the coronavirus infection known as SARS-CoV-2 was reported in
Wuhan city, China, in December 2019 SARS-CoV-2, and it spread to more than 200 countries
in less than a year [1]. The world health organization (WHO) called it COVID-19, which
stands for “Coronavirus Disease 2019,” which is the second version of the previously
known severe acute respiratory syndrome SARS (SARS-COV) and identified in short as
SARS-CoV-2 [2]. There have been regular restrictions to avoid the infection spreading in
all countries, including Russia. In almost all of the countries currently being impacted
by the SARS-CoV-2 pandemic, the rate at which patients are becoming infected with and
succumbing to the disease is alarmingly high [3]. The treatment of patients who required
intensive care was one of the most influential factors in determining the death and case
rates associated with (SARS-CoV-2). A significant challenge for healthcare systems all
over the world is posed by the administration of SARS-CoV-2 treatment to patients who
require acute or critical respiratory care [4]. Artificial intelligence and machine learning,
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two non-clinical computer-aided rapid fixes, are needed to battle (SARS-CoV-2) and halt
its global expansion [5]. Intelligent healthcare is increasingly relying on AI, in particular
machine learning algorithms [6]. More and more, these technologies are referred to be the
brains of intelligent healthcare services [7]. Deep learning, a kind of machine learning in
artificial intelligence, comprises networks that can learn from unstructured or unlabeled
data without supervision [8]. SARS-CoV-2 is just one of the numerous applications that have
heavily incorporated deep learning [9]. These solutions are also required in order to prevent
the disease from becoming more widespread. Techniques for making predictions regarding
the future are based on the evaluation of the past [10]. People are under the impression
that nothing will be the same as it was before as a result of the widespread coronavirus
pandemic, which has numerous global implications. The three most significant things
being explored at the moment are figuring out the causes, implementing preventative
measures, and attempting to develop an effective cure [11]. In Russia, there are more
than 20 million confirmed cases and 386 thousand death cases as on September 2022 [12].
Continued research is being conducted on related diseases, as well as public health policies
and containment mechanisms. Quarantine procedures vary from nation to nation, but
their overall goal is the same: to slow or stop the spread of infectious diseases in order to
keep hospitals operational and able to meet the rising demand for medical care [13]. If
the number of patients diagnosed with SARS-CoV-2 continues to rise, it is possible that
healthcare facilities will be unable to meet the needs of their patients and provide the
services they require. This is the worst-case scenario that can be anticipated. It is crucial
that the nations’ health capabilities be used properly and that the demand for the supplies
needed for medical infrastructure is predictable when infection rates are also taken into
consideration [14]. This is because it is important that both the health capacities of the
countries and the infection rates be taken into account. In this regard, it is recommended
that public health strategies be developed and implemented [15]. As a consequence, deep
learning (DL) models are considered precise tools that may aid in the development of
prediction models [16]. The recurrent neural network (RNN) and the long short-term
memory (LSTM) are the ones that are being explored in the (SARS-CoV-2) forecasting
process because they utilize temporal data, despite the fact that several neural networks
(NNs) have been reported in the past [17]. Deep learning networks, such as RNN and LSTM,
were utilized in this investigation. These networks were selected because, by analyzing
time series data, they were able to provide an accurate forecast of what would occur in
the future [18]. An SIR model is a type of epidemiological model that estimates the total
number of people in a closed community that could potentially become infected with an
infectious illness over a period of time. This category of models gets its name from the fact
that they use coupled equations to relate the number of susceptible people to one another
S(t), the number of people infected I(t), and the number of people who are recovered R(t),
so the initial letters of the three terms that make up the SIR model were shortened to form
the acronym (susceptible, infected, and recovered) [19]. The simulation of the SARS-CoV-2
in the Isfahan province of Iran from 14 February 2020 to 11 April 2020 was the subject
of one of the first articles published. The authors of this study made a prognosis of the
remaining infectious cases using three different scenarios. These scenarios ranged from one
another in terms of the extent of social distancing required. In spite of the fact that it was
able to estimate infectious cases in shorter time intervals, the developed SIR model was not
successful in predicting the actual spread and pattern of the epidemic over a longer period
of time. Surprisingly, the majority of the published SIR models that were constructed in
order to predict SARS-CoV-2 for different communities all suffer from the same conformity.
The SIR models are predicated on assumptions that do not appear to be correct in the
circumstances surrounding the SARS-CoV-2 epidemic. Therefore, in order to foresee
the pandemic, more complex modeling methodologies and extensive knowledge of the
biological and epidemiological features of the disease are required [20]. In addition to more
conventional methods, these two models demonstrated a significant amount of success in
the forecasting of temporal data. In the first place, recurrent neural networks (RNNs) have
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been put to use for the processing of time series and sequential data [18]. These networks
are also useful for modeling sequence data. RNNs are a type of artificial neural network
that is derived from feed-forward networks and exhibit behavior that is analogous to that
of the human brain [21]. To put it another way, RNNs have the ability to predict outcomes
based on sequence data, whereas other algorithms do not. After that, LSTMs, which have
complex gated memory units designed to handle the vanishing-gradient problems that
limit the efficiency of simple RNNs, have been used [22]. The average predicted errors for
SARS-CoV-2 infection cases using machine learning models are substantially equal to those
using statistical models. Machine learning algorithms can be used to forecast long-term
time series [23]. They compared (TS-system) and (DLM-system) LSTM-BI-LSTM-GRU
faults. Ensembling models provided fewer mistakes than (DLM-system) models at the
level of four countries, and hence the ensembling model outperformed (DLM-system) deep
learning models [24].

In this research, we aim to forecast SARS-CoV-2 cases (infection—death) in Russia and
Chelyabinsk; the period extends (80–20) Using Hybrid deep learning models, which are
based on different assumptions about data estimation.

2. Related Work

Researchers have been focusing on x-ray image diagnosis of SARS-CoV-2 and, on the
other hand, using time series models and artificial intelligence for the prediction of daily
infection, recovery, and death cases for SARS-CoV-2. X-ray images for SARS-CoV-2 were
diagnosed using neural networks. In [25], they created a system using five models and
deep learning algorithms: Xception, VGG19, ResNet50, DenseNet121, and Inception for
binary classification of X-ray images for SARS-CoV-2. In order to aid medical efforts and
lessen the strain on medical professionals while dealing with SARS-CoV-2, they provided
deep learning models and algorithms that have been developed and evaluated. Based on
machine learning and deep learning approaches, a survey of recent works for misleading
information detection (MLID) in the health sectors is presented [26]. Other research focused
on a database called COVIDGR-1.0 has all severity levels, from normal with positive RT-
PCR to mild, moderate, and severe. With an accuracy of 97.72%, 0.95%, 86.90%, 3.20%,
61.80%, and 5.49% in severe, moderate, and mild SARS-CoV-2 severity levels, the technique
produced excellent and steady results [27]. The use of user-generated data is envisioned as
a low-cost method to increase the accuracy of epidemic tolls in marginalized populations.
Utilizing the potential of user-posted data on the web is what they suggested [28]. In
addition to social media channels, bogus news about the SARS-CoV-2 epidemic may be
automatically classified and located using deep neural networks. In this investigation, the
CNN model performs better than the other deep neural networks, with the greatest accuracy
of 94.2% [29]. A brand-new interactive visualization system illustrates and contrasts
the SARS-CoV-2 pandemic’s pace of spread over time in various nations. The method
used by the system, called knee detection, splits the exponential spread into many linear
components. It may be used to analyze and forecast upcoming pandemics [30]. In [31],
they provided a technique for extracting implicit responses from huge Twitter collections.
Tweets were cleaned up and turned into a vector format that could be used by various
machine-learning methods. For both informational and non-informational classes, the Deep
Neural Network (DNN) classifier had the maximum accuracy (95.2%) and F1 score (73.6%).
Other research has developed a brand-new relation-driven collaborative learning strategy
for segmenting SARS-CoV-2 CT lung infections. Extensive research demonstrates that using
shared information from non-SARS-CoV-2 lesions may enhance current performance by
up to 3.0% in the dice similarity coefficient [32]. A domain-specific Bi-directional Encoder
Representations from Transformer (BERT) language model called COVID-Twitter BERT
(CT-BERT) has been introduced in recent sentiment analysis research on SARS-CoV-2.
CT-BERT does not always perform better at comprehending sentiments than BERT. In
comparison to a broad language model, a domain-specific language model would perform
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better. An auxiliary technique using BERT was developed to address performance concerns
with the single-sentence categorization of SARS-CoV-2-related tweets [33].

In our work, we built a hybrid deep learning algorithm as part of our research, as well
as an application that makes use of this algorithm, with the goal of forecasting the number
of daily SARS-CoV-2 infections and death in the Russian Federation and the Chelyabinsk
region. Therefore, in our work, we will be using hybrid deep learning models for modeling
and forecasting SARS-CoV-2 infection and daily death cases in Russia and Chelyabinsk.
Chelyabinsk is located in the Ural Federal District in central Russia [34]. The most important
contribution made by this study is the development of DL prediction models that, when
applied to historical and recent data, are capable of producing the most accurate forecasts of
confirmed positive (SARS-CoV-2) cases and cases in which (SARS-CoV-2) was determined
to be the cause of death in Russia and Chelyabinsk [35].

3. Data and Materials

When preparing data, deep learning faces some issues with long sequences in the
database [36]. For the first problem, training is time-consuming and demands a lot of
memory. Second problem, back-propagating extended sequences, results in an incorrectly
trained model. Prepare and preprocess data before importing it into neural networks.
Normalization and standardization problems are two aspects of data preparation. We
used data normalization, a scaling procedure, to set the mean and standard deviation to
0 and 1, respectively [37]. We used daily data on SARS-CoV-2 infection and death cases
in the Russian Federation and Chelyabinsk region. The dataset was obtained from the
official website of the World Health Organization between the dates of 22 January 2020 and
23 August 2022. The dataset is then further prepared in such a way that the first eighty
percent of the datasets are used for training purposes while the remaining twenty percent
of the datasets are used for testing purposes (the last 20% of this dataset approximates
the last 6 months (last 190 days)). The training dataset was used to train and improve the
models, and 20% of the training data was utilized to analyze if the models were overfitting
or underfitting the data. The performance of the model is evaluated with the help of the
test set. Ref [38] provides both the method and the daily SARS-CoV-2 infection and death
case data. Both of these can be accessed from our source.

Figure 1 showed a visual depiction of SARS-CoV-2 infection cases (left panel) and death
cases (right panel) in Russia and Chelyabinsk repeatedly (Figure 1A,C). Figure 1A shows
that the maximum month for total infection cases in Russia is February 2021. Figure 1C
shows the same situation for infection cases in Chelyabinsk that same month (February 2021
and 2022). It had close to 100 thousand infection cases in 2022 when the mutant omicron
appeared. We also note an upward trend in the development of death cases in Russia and
Chelyabinsk (Figure 1B,D), with the emergence of volatility in death cases during the period.
Figure 1B shows that the maximum month for total death cases in Russia is February 2022;
Figure 1D shows that the maximum total number of death cases in November, December,
and February in Chelyabinsk exceeded 800 death cases in November 2021. Then we find a
decrease in the death cases after this month as a result of precautionary measures taken by
both regions. One of the clear patterns in the visual is a similar trend in cases and death in
both Russia and Chelyabinsk, which shows the unification of anti-SARS-CoV-2 policies.
Using a heatmap enables us to extract some features from the SARS-CoV-2 data.

Figure 2 presents the heatmap for total monthly infection and death cases. Figure 2A
shows that the maximum month for total infection cases in Russia is February 2021, and the
same month in 2022 had close to 5 million infection cases in 2022 when the mutant omicron
appeared. Figure 2B shows that the maximum month for total death cases in Russia is
February 2022, and the same situation occurred in February 2021 when the mutant delta
appeared. Figure 2C shows the same situation for infection cases in Chelyabinsk that same
month (February 2021 and 2022). It had close to 100 thousand infection cases in 2022 when
the mutant omicron appeared. Figure 2D shows that the maximum total number of death
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cases in November, December, and February in Chelyabinsk exceeded 800 death cases in
November 2021.
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4. Proposed Framework Algorithm and Methodology

The mechanism that underlies our proposed approach for modeling and forecasting
SARS-CoV-2 is depicted in Figure 3. The subsequent stages are carried out.
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4.1. Proposed Framework Algorithm

First step → Input time series data for daily infection and death cases into our algo-
rithm. Then input parameters for the deep learning model (number of neural networks,
number of epochs, Loss Function, and optimizer) start running the algorithm.

Second step → preprocessing step, training takes time and memory. Second, back-
propagating extended sequences create a poorly trained model. Before importing data into
neural networks, prep it. Normalization and standardization are data prep steps. Using
data normalization, we set the mean and standard deviation to 0 and 1, respectively.

Third step → Separate the dataset into training, validation, and testing. SARS-CoV-2
infection and death cases. From 22 January 2020 to 23 August 2022, WHO website data
was collected. We test our model using 20% of this dataset (the last 190 days). The dataset
is divided such that 80% is used for training and 20% for testing. We utilized the training
dataset to train and improve the models and 20% to test overfitting and underfitting. Test
set is used to evaluate model performance.

Fourth step → Modeling In this stage, we execute our algorithm for LSTM, LSTMs
(stacked LSTM), BDLSTM (Bidirectional LSTM), ConvLSTMs, and other forecasting models.

Fourth step → Performance and Models Evaluation
Fifth step → Forecasting using best models

4.2. Methodology

(A) LSTM Model (long short-term memory model)

One of the first and most successful techniques for addressing vanishing gradients
came in the form of long short-term memory (LSTM) due to [39].

The (long-term memory) part comes after simple recurrent neural networks have long-
term memory in the form of weights. Weights change slowly during training, encoding
general knowledge about the data. Moreover, the other part (short-term memory) is due to
ephemeral activations, which go from each node to successive nodes. The LSTM model
introduces an intermediate type of storage via the memory cell. A memory cell is a complex
unit built from simpler nodes in a specific communication pattern with a new inclusion
of multiplex nodes. A generalized LSTM unit consists of three gates (input, output, and a
forget). The LSTM transition equations are given as follows [40].

Input gate: this gate makes the decision of whether or not the new information will
be added to LSTM memory. This gate consists of two layers: (1) the sigmoid layer and (2)
tanh layer. The first layer defines the values to be updated, and tanh layer creates a vector
of new candidate values that will be added to LSTM memory. The output of these layers is
calculated by:

it = σ
(

Wixt + Uiht−1 + bi
)

(1)

ut = tan h(Wuxt + Uuht−1 + bu) (2)

where it: values updates, ut: new candidate values, σ: sigmoid layer (or nonlinear function),
xt: represents a sequence of length t, b: is a constant bias, h: represents RNN memory at
time step t. W and U are weight matrices.

Forget gate: the sigmoid function of this gate is used to decide what information
to remove from LSTM memory. This decision is mainly made based on the value of h
and xt. The output of this gate is f , which is the value between 0 and 1, where 0 indicates
completely eliminating the acquired value, and 1 indicates that the entire value is preserved.
This output is calculated as:

ft = σ
(

W f xt + U f ht−1 + b f
)

(3)

where ft: values updates, σ: sigmoid layer (or nonlinear function), xt: represents a sequence
of length t, b: is a constant bias, h: represents RNN memory at time step t. W and U are
weight matrices.
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Input gate: this gate first uses a sigmoid layer to decide which part of LSTM memory
contributes to output. Next, it implements a nonlinear tanh function to set values between
−1, 1. Finally, the result is multiplied by output of the sigmoid layer. The following
equation represents the formulas for calculating output:

ot = σ(Woxt + Uoht−1 + bo) (4)

ht = ottanhtct−1 (5)

where ot: is an output gate, ht: is represented as a value between [1, −1].
Combining these two layers provides an update to LSTM where the current value is

forgotten using forget layer by doubling the old value ct−1 followed by adding candidate
value itut, The following equation represents its mathematical equation:

ct = itut + ftct−1 (6)

where ct: is a memory cell. ft are the results of forget gate, which is a value between 0 and
1 where 0 indicates completely rid-of value; 1 implies completely preserved value. The
hypothetical combination between these units is illustrated in Figure 4
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(B) Stacked LSTM (Stacked long-short-term memory model)

Stacked LSTM model is an extension of LSTM model as it consists of multiple hidden
layers where each layer contains multiple memory cells. It was introduced by [41]. They
found that the depth of network was more important than the number of memory cells in a
given layer to model skill layer for modeling the skill.

A stacked LSTM architecture can be defined as an LSTM model comprised of multiple
LSTM layers. It provides a sequence output rather than a single value output to LSTM
layer below. Specifically, one output per input time step rather than one output time step
for all input time steps. This is illustrated in Figure 5.
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(C) Bi LSTM model (Bidirectional long-short-term memory model)

Bi LSTM model put two independent RNNs together. This architecture allows network
to obtain back-and-forth information about the sequence at each time step [42].

Using Bi LSTM will run inputs in two ways, one from past to future and one from
future to past; where this approach differs from unidirectional is that in LSTM running
backward, you keep information from the future and using the two hidden states together
are able at any time to hold the information from the past and future. Calculating the
output y at time t is illustrated in Figure 6.

yt = σ
(
Wy[h→t , h←t ] + by

)
(7)

where σ is nonlinear function, Wy: are weight matrices that are used in deep learning
models, by: is a constant bias. ht: are hidden states.
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Is illustrated in Figure 5:
Figure 6 shows us how Bi LSTM model works, as it shows information sent from past

and future time series (green color), from inputs xt, which are collected in hidden layers ht
and extract features through nonlinear function σ to predict moment yt.

(D) GRU model (Gated Recurrent Unit model)

Gated Recurrent Unit (GRU) is an advanced and more improved version of LSTM.
It is also a type of recurrent neural network. It uses less hyper parameters because of
reset gate and update gate in contrast to three gates of LSTM. Update gate and reset gate
are basically vectors and are used to decide which information should be passed to the
output [43]. The reset gate controls how much of the previous state we need to remember.
From there, update gate will allow us to control whether the new state is a copy of old state.
Two gate outputs are given by two fully connected layers with sigmoid activation function;
Figure 7 shows the inputs for both reset and update gates in GRU. Mathematically, output
is calculated as follows:

rt = σ(Wrxt + Urht−1 + br) (8)

zt = σ(Wzxt + Uzht−1 + bz) (9)

where rt: is reset gate, zt: is update gate, σ: sigmoid activation function, W and U are weight
parameters, ht−1: the hidden state of the previous time step, b: is a constant bias. Next,
we combine the reset gate with the regular refresh mechanism; it is given mathematically
according to following equation:

it = σ
(

Wixt + Uiht−1 + bi
)

(10)
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Which leads to the next candidate hidden state:

at = tan h
(

wxt + rtUiht−1 + bh
)

(11)

where: at: candidate hidden state, tan h: activation function, w and U are weight parametres,
rt: is reset gate, ht−1: the hidden state of the previous time step, b: is a constant bias. Finally,
we need to incorporate the effect of update gate. This determines how closely new hidden
state is with old state versus how similar it is to new candidate state. Update gate can be
used for this propose, simply by taking element-wise convex combinations of ht and ht−1.
This leads to final update equation for GRU:

ht = ztht−1 + (1− zt)at (12)

where zt: update gate, rt: reset gate, at: activation function, ht: hidden state output gate.
The following Figure 7 illustrates this model:

(E) Conv and CNN-LSTM Model

The convolutional neural network consists of two convolutional layers; this allows for
spatial advantage extraction. Where one-dimensional convolution operation is performed
over the flow of data xs

t at each time step t., a one-dimensional convolution kernel filter
is used to acquire the local perceptual domain by a sliding filter [44]. The process of
convolution kernel filter can be expressed as follows:

Ys
t = σ(Ws ∗ xs

t + bs) (13)

where Ys
t : output of convolutional layer, Ws: weights of the filter, xs

t : input traffic flow at
time t, σ: activation functions.

CNN-LSTM Model is combination of Conv and LSTM; the input of CNN-LSTM is a
spatial-temporal traffic flow matrix xs

t , as follows [2]:

xs
t =


xs

t−n
xs

t−(n−1)
...

xs
t




f 1
t−n f 1

t−(n−1) . . . f 1
t

f 2
t−n f 2

t−(n−1) · · · f 2
t

...
...

. . .
...

f m
t−n f m

t−(n−1) · · · f m
t

 (14)

where xs
t = f 1

t . . . f m
t : denotes the traffic flow of the prediction region at time t, which

represents the historical traffic flow of the POI to be predicted and its neighbors. As shown
in Figure 8:
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Figure 8. CNN-LSTMs Model is combination of Conv and LSTM.

Figure 8 shows us how CNN-LSTM model works; this is performed by adding CNN
layer on the front end (left panel) followed by LSTM layers with a dense layer on output
(right panel). CNN model works to extract features, and LSTM model works to interpret
over time steps.

(F) Adam Optimization Algorithm

Stochastic gradient descent is extended by Adam optimization in order to update
network weights in a more efficient manner. The method of adaptive moment estimation is
used in stochastic optimization. This makes it possible for the rate of learning to adjust over
the course of time, which is a vital concept to grasp, given that Adam also demonstrates
this phenomenon. Adam is the result of combining the two variables (Momentum and
RMSprop) as shown in Algorithms 1, which presents a method in greater detail and also
Pseudo-code 1.

Adam proposed algorithm for stochastic optimization and for a slightly more efficient
order of computation. g2

t indicates the elementwise square gt � gt. Good default settings
for the tested machine learning problems are α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8.
All operations on vectors are element-wise. With βt

1 and βt
2 we denote β1 and β2 to the

power t [19].

Algorithms 1: Adam algorithm for stochastic optimization [19].

Require: a : Stepsize
Require: β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates
Require: f (θ) : Stochastic objective function with parameters θ

Require:θ0 : Initial parameter vector m0 ←
0(Initialize 1st moment vector) v0 ←
0(Initialize 2nd moment vector) t←
0(Initialize timestep)

while θ not converged do
t + t1
gt ← ∇θ ft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt← β1·mt−1 + (1− β1)·gt (Update biased first moment estimate)
vt← β2·vt−1 + (1− β2)·g2

t (Update biased second raw moment estimate)
m̂t ← mt/

(
1− βt

1
)

(Compute bias-corrected first moment estimate)
v̂t ← vt/

(
1− βt

2
)

Compute bias-corrected second raw moment estimate)
θt ← θt−1 − a·m̂t/(

√
v̂t + ε (Update parameters)

end while
return θt (Resulting parameters
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Adaptive Moment Estimation (Adam)
Pseudo-code: Adam algorithm for stochastic optimization
Note:
We have two separate beta coefficients → one for each optimization part. We implement bias
correction for each gradient
On iteration t:
Compute dW, db for current mini-batch
# #Momentum
v_dW = beta1 * v_dW + (1 − beta1) dW
v_db = beta1 * v_db + (1 − beta1) db
v_dW_corrected = v_dw/(1 − beta1 ** t)
v_db_corrected = v_db/(1 − beta1 ** t)
# #RMSprop
s_dW = beta * v_dW + (1 − beta2) (dW ** 2)
s_db = beta * v_db + (1 − beta2) (db ** 2)
s_dW_corrected = s_dw/(1 − beta2 ** t)
s_db_corrected = s_db/(1 − beta2 ** t)
# #Combine
W = W − alpha * (v_dW_corrected/(sqrt(s_dW_corrected) + epsilon))
b = b − alpha * (v_db_corrected/(sqrt(s_db_corrected) + epsilon))
Coefficients
alpha: the learning rate. 0.001.
beta1: momentum weight. Default to 0.9.
beta2: RMSprop weight. Default to 0.999.
epsilon: Divide by Zero failsave. Default to 10 ** −8.

(G) Performance indicators

To compare the prediction performance of the three models used:
Calculating root mean square error (RMSE) between the estimated data and actual data:

RMSE =

√
∑n

t =1(ŷt − yt)
2

n
(15)

where ŷt: the forecast value, yt: the actual value, n: number of fitted observed.
Calculating relative root mean square error (RRMSE):

RRMSE =

√√√√ 1
n ∑n

t =1(ŷt − yt)
2

∑n
t=1(ŷt)

2 (16)

Calculating mean absolute error (MAE):

MAE =
1
n

n

∑
t=1
|yt − ŷt| (17)

Calculating mean bias error (MBE):

MBE =
∑n

t=1(yt − ŷt)

n
(18)

Calculating Coefficient of correlation (R):

R =
Cov(yt, ŷt)√
V(yt) V(ŷt)

(19)



Axioms 2022, 11, 620 13 of 19

Calculating Coefficient of determination (R Square):

R2 = 1− ∑n
t=1(ŷt − yt)

2

∑n
t=1(yt − yt)

2 (20)

The model that has the least values of (RMSE—RRMSE—MAE—MBE) and greater
values of (R–R-Square) is the best model.

5. Results

To prove the effectiveness and superiority of the proposed approach, several exper-
iments were conducted to predict SARS-CoV-2. Firstly, a set of baseline experiments
were conducted using six base models, including LSTM, BDLSTM, GRU, LSTMs, and
CONVLSTMs. The results of these models were compared to the achieved results using
the Bi-LSTM, LSTM, CNN, and CNN-LSTMs algorithm for daily infection and death for
SARS-CoV-2 in Russia and Chelyabinsk, respectively. Table 1 presents the results of the
testing for each of the base models along with the proposed approach based on the adopted
evaluation criteria.

Table 1. Comparison of six methods evaluation testing 20% SARS-CoV-2 daily infection and death
cases in Russian federation and Chelyabinsk.

Model RMSE RRMSE MAE R2 r MBE

(SARS-CoV-2)Infection Cases in Russia
LSTM 9126.42 0.40 3653.27 0.93 1.00 3023.27

Stacked
LSTM 35,612.77 1.56 12,646.76 −0.03 0.26 −10,796.24

BDLSTM 2611.48 0.11 1417.74 0.99 1.00 −59.11
GRU 13,105.75 0.57 4223.04 0.86 0.97 −3299.01
Conv 3397.80 0.33 1936.18 0.86 0.96 −1277.09
CNN-

LSTMs 2583.41 0.25 1717.80 0.92 0.98 −1315.08

(SARS-CoV-2)Death Cases in Russia
LSTM 24.46 0.12 20.19 0.99 1.00 13.85

Stacked
LSTM 32.29 0.15 27.62 0.98 1.00 22.80

BDLSTM 24.98 0.12 20.97 0.99 1.00 16.61
GRU 27.07 0.13 23.33 0.99 1.00 19.77
Conv 88.80 0.70 46.65 0.37 0.99 39.03
CNN-

LSTMs 58.11 0.46 37.69 0.73 0.99 16.52

(SARS-CoV-2)Infection Cases in Chelyabinsk region
LSTM 160.23 0.43 59.46 0.91 1.00 57.78

Stacked
LSTM 583.25 1.55 188.00 0.14 0.03 −177.87

BDLSTM 64.47 0.17 25.46 0.99 1.00 21.97
GRU 64.98 0.17 25.38 0.99 1.00 20.51
Conv 24.69 0.13 14.36 0.96 0.98 3.86
CNN-

LSTMs 122.46 0.65 86.77 −0.02 0 −19.01

SARS-CoV-2Death Cases in Chelyabinsk region
LSTM 1.84 0.35 1.44 0.88 0.94 0.22

Stacked
LSTM 1.91 0.37 1.46 0.87 0.94 0.15

BDLSTM 2.03 0.39 1.63 0.85 0.94 0.68
GRU 1.79 0.35 1.39 0.89 0.94 −0.03
Conv 2.83 0.90 2.19 −0.44 0.75 1.87
CNN-

LSTMs 1.60 0.51 1.29 0.54 0.78 0.63



Axioms 2022, 11, 620 14 of 19

As presented in the table, the proposed approach could achieve the best values over
all the evaluation criteria, which confirms the superiority of the proposed approach. The
achieved RMSE on the test set using the proposed approach BDLSTM for infection cases
of SARS-CoV-2 in Russia is (2611.48). In addition, RRMSE, MAE, R2, r, and MBE of the
test set using the proposed approach BDLSTM is (0.11), (1417.74), (0.99), (1), and (−59.11).
These values prove the effectiveness of the proposed approach. The achieved RMSE on the
test set using the proposed approach LSTM for death cases of SARS-CoV-2 in Russia is
(24.46). In addition, RRMSE, MAE, R2, r, and MBE of the test set using the proposed ap-
proach LSTM is (0.12), (20.19), (0.99), (1), and (13.85). These values prove the effectiveness
of the proposed approach. The achieved RMSE on the test set using the proposed approach
Conv for infection cases of SARS-CoV-2 in the Chelyabinsk region is (24.69). In addition,
RRMSE, MAE, R2, r, and MBE of the test set using the proposed approach Conv are (0.13),
(14.36), (0.96), (0.98), and (3.86). These values prove the effectiveness of the proposed ap-
proach. The achieved RMSE on the test set using the proposed approach CNN-LSTMs for
death cases of SARS-CoV-2 in the Chelyabinsk region is (1.60). In addition, RRMSE, MAE,
R2, r, and MBE of the test set using the proposed approach CNN-LSTMs are (0.51), (1.29),
(0.54), (0.78), and (0.63). These values prove the effectiveness of the proposed approach.

Table 2 shows us the large difference between the maximum and minimum values of
all variables and thus affects the shape of the distribution. Thus, the estimators here (Mean,
Median, Mode, and SD) are useless because they are breakdown points. We notice from the
table that the largest difference is for the variable number of infections in Russia, from 0
to 202,211 cases, which leads to a kurtosis that gives a pointed top of the distribution as
its value is much greater than three and a greater value for standard error (more difficulty
in predicting), with the distribution skewed towards the right as the frequency of values
greater than the average is greater for this variable. as the injury variable in Russia took
700 days to move from the lowest value to the largest value. The same thing happened for
infection Chelyabinsk, with less difference between max and min values leading to less S.D.
As for death cases, we notice a negative kurtosis, which indicates less volatility for both
variables and, therefore, a smaller S.D than infection cases with a slight Skewness due to
the convergence of the values from the arithmetic mean, and therefore, the cases of death
are less developed than the cases of injury with the preventive measures that have been
taken in these areas.

Table 2. Descriptive statistics of SARS-CoV-2.

Mean S.E Median Mode S.D Kurtosis Skewness Mini Max

Infection in Russia 20,002.25 940.40 11,409 0 28,908.88 18.08 4.015 0 202,211
Death in Russia 397.79 10.94 354 0 336.374 −0.50 0.70 0 1222

Infection Chelyabinsk 383.25 25.07 180 0 750.20 21.87 4.58 0 5354
Death Chelyabinsk 8.76 0.31 6 0 9.35 −0.11 1.06 0 32

The table shows us that the best model for predicting SARS-CoV-2 infection cases
in Russia is (BDLSTM) because it has the least values of (RMSE—RRMSE—MAE—MBE)
and, therefore, the least difference between the real and estimated values using the model.
We also note that the model is able to explain the volatility in a variable through the
high value of the coefficient of determination (R Square = 99%); there is a perfect linear
correlation between the estimated and actual values. As before, we note that the best model
for SARS-CoV-2 death cases in Russia is (LSTM), and for SARS-CoV-2 infection cases in
the Chelyabinsk region is (CONV), and for SARS-CoV-2 death cases in the Chelyabinsk
region is (CNN-LSTMs). As these models achieve convergence between the actual and
estimated values of the training and test data, noting their ability to capture extreme values
(Maximum and Minimum value). This is illustrated by the following figures:

Figure 9 shows us the convergence of data on actual daily infection of SARS-CoV-2 in
Russia with estimated using the BDLSTM model (training–testing), so we notice a great
convergence between the actual and estimated data and the ability of the model to clarify
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volatility in infection of SARS-CoV-2 and capture structural points, and thus this model
can be used to predict in daily infection of SARS-CoV-2 in Russia.
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Figure 10 shows us the convergence of data on actual daily death SARS-CoV-2 in
Russia with estimated using the LSTM model (training–testing), so we notice a great
convergence between the actual and estimated data and the ability of model to clarity
volatility in death SARS-CoV-2 and capture trends change and thus this model can be used
to predict in daily death SARS-CoV-2 in Russia.
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Figure 11 shows us the convergence of data on actual daily infection SARS-CoV-2 in
the Chelyabinsk region estimated using the CNN model (training–testing), so we notice
a great convergence between the actual and estimated data and the ability of the model
to clarify volatility in SARS-CoV-2 infection and capture structural points, and thus this
model can be used to predict in daily SARS-CoV-2 infection in the Chelyabinsk region.
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Figure 12 shows us the convergence of data on actual daily death SARS-CoV-2 in the
Chelyabinsk region with estimated using the CNN-LSTMs model (training–testing), so we
notice a great convergence between the actual and estimated data and the ability of the
model to clarify volatility in death SARS-CoV-2 and capture structural points, and thus this
model can be used to predict in daily death SARS-CoV-2 in the Chelyabinsk region. The
hyper-parameters for deep learning models are shown in Table 3.
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Table 3. Hyper-parameter setting for models.

Parameter Infection in Death Infection Death

Area Russia Russia Chelyabinsk Chelyabinsk
Model BDLSTM LSTM Conv ConvLSTMs

Activation function Relu Relu Relu Relu
Number of hidden units in LSTM layer 200 200 200 200

LSTM layer activation function Relu Relu Relu Relu
Timestep 2 2 2 10
Batch size 1 1 1 1
Optimizer Adam Adam Adam Adam

Learning rate 0.001 0.001 0.001 0.001
Loss function MSE MSE MSE MSE

Epochs 200 200 200 200
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6. Conclusions and Future Research

In this study, a hybrid deep learning model’s algorithm was used to improve the
performance of a standard LSTM network in the analysis and forecasting of SARS-CoV-2
infections and death cases in the Russian Federation and the Chelyabinsk region. This was
accomplished by using a combination of traditional LSTM networks and hybrid deep learn-
ing models. In order to demonstrate that the strategy being offered is effective, a dataset is
gathered for the purposes of analysis and prediction. The suggested method was evaluated
by applying it to datasets obtained from an official data source that was representative
of the Russian Federation and the Chelyabinsk region. The utilization of these six key
performance indicators allows for the performance of the suggested methodology to be
evaluated and analyzed. In addition, the performance of the suggested method is evaluated
and compared to that of the other five prediction models in order to demonstrate that the
proposed method is superior. The compiled data provided unmistakable evidence that
the strategy being recommended (Hybrid Deep-Learning models) are not only successful
but also significantly more advantageous and important. On the other hand, it serves
as a reference for the health sector in Russia, in particular, as well as the World Health
Organization (WHO), as well as, more generally, for the health sectors in other nations.
As for future research directions, it is planned to enable medium- and long-term forecast-
ing of time series in weakly structured situations, to develop mechanisms for correcting
long-term forecasts, to force a set of forecasting models to account for forecasting quality
in previous periods, and to consider the possibility of employing nonlinear forecasting
models for weakly structured data. All of these, along with the use of additional criteria
for the verification of the best models, can be used to expand and enhance the algorithm
discussed in this study and create a new package in Python for modeling and forecasting
not only SARS-CoV-2 data but any univariate-dimensional time series data.
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