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Abstract: In this article, we propose the generalized version of the extended, partitioned Bonferroni
mean (EPBM) operator with a systematic investigation of its behavior and properties. It can aggregate
data of various dimensions in one formulation by modeling mandatory conditions along with
partitioned structure interrelationships amongst the criterion set. In addition, we generate the
condition for weight vectors satisfied by the weighting triangle associated with the proposed extended
aggregation operator. We employed the proposed operator to aggregate a dataset following a
hierarchical structure. We found that by implementing the proposed operator one can even rank the
alternatives more intuitively with respect to any intermediate perspective of the hierarchical system.
Finally, we present an application of the proposed extended aggregation operator in a case-based
example of a child’s home environment quality evaluation with detailed analysis.
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1. Introduction

Aggregation [1,2] is a process of merging several inputs to obtain a single repre-
sentative output value. The mathematical operator carrying out this process is called an
aggregation operator. Aggregation operators play an important role in many fields of
science, including decision making [3–5], image processing [6,7], pattern recognition [8,9]
and machine learning [10], where problems are related to the fusion of data or information.
In a decision-making scenario, aggregation of information comprises all those situations
where multiple opinions or different attributes are included and the intention is to make
a potentially consistent decision with the primary information. For more details on the
aggregation operators, the reader can turn to [11–13].

Conventional aggregation operators mostly consider a fixed number of input ar-
guments. However, in some applications, data cardinality changes can often occur—in
hierarchical systems, for example—and each time a different aggregation operator needs to
be used to aggregate the new collection of elements. The issue of aggregating dimensional
data was analyzed in terms of the notion of the extended aggregation operator [14–19],
and some well-known aggregation operators, such as the ordered weighted averaging
operator and Quasilinear weighted mean, have already been extended to explore their
applicability in aggregating data of various dimensions. However, the aforementioned
aggregation operators emphasize the importance of each input, yet they are unable to
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capture interrelationships of any kind among the aggregated arguments. In this regard,
Calvo et al. [19] introduced the concept of an extended discrete Choquet integral to aggre-
gate inputs of various dimensions under the same framework. In this article, we focus on
developing and analyzing an extended version of the partitioned Bonferroni mean operator
to aggregate multidimensional data under the same framework, along with modeling
specific requirements in the partition structure interrelationship among criteria.

The PBM is one of the variants of the BM [20] operator. The constructional interpreta-
tion of the BM operator provided by Yager [21], who analyzed the BM as a combination of
averaging and an “anding” operator, influenced the researchers to work on that, and as a
result, sophisticated evolution of the BM operator and its several variants has been devel-
oped. Dutta and Guha [22] introduced the PBM operator by modeling partitioned structure
interrelationship patterns among the criteria. In recent years, the PBM operator has re-
ceived a lot of attention from researchers in a variety of decision-making contexts [23–25].
To handle the imprecision and vagueness in the data, the PBM operator has been applied to
distinct, higher-order fuzzy sets such as the linguistic 2-tuple data [22], the interval-valued
fuzzy set [26], intuitionistic fuzzy sets [23], the Pythagorean uncertain linguistic set [27] and
the q-rung orthopair fuzzy [28]. Added to that, in the literature, amalgamation of different
aggregation operators with PBM has been accomplished. For instance, motivated by the
ideal of the geometric mean and the PBM, Liu and Liu [29] developed the partitioned
geometric Bonferroni mean (PGBM) operator. Liu et al. [30] integrated the Maclaurin
symmetric mean operator into the PBM operator and proposed a new operator named the
partitioned Maclaurin symmetric mean (PMSM) operator. However, the PBM operators for
data of various dimensions have not been studied yet.

As influenced by the concept of the extended aggregation operator, Banerjee et al. [31]
analyzed the PBM operator for aggregating data of various dimensions by defining new par-
tition sets with the changes of data cardinality and named it the EPBM operator. The main
advantage of the proposed operator over other existing variants of BM is its ability to aggre-
gate multi-dimensional input arguments into one formulation with partitioned structure
interrelationship patterns. However, there is a gap in the development and application
of EPBM:

• Weight vector analysis associated with multi-dimensional EPBM was not done.
• moreover, along with partitioned structure interrelationship to model genuine repre-

sentation of the real situation, modelling specific requirements is also important which
was missing in that paper.

This observation motivated us to develop a generalized multi-dimensional EPBM
with suitable replacements of different components to explicitly and deeply understand its
aggregation mechanism. In order to assign weight vectors to the multi-dimensional EPBM,
we focus on the construction of a probabilistic triangle or triangle of weights [14,15,18].
To implement those weighting triangles, we first ascertained under which conditions the
proposed operator is monotonic. In this sense, we established the condition for weight
vectors satisfied by the weighting triangle associated with our proposed multi-dimensional
EPBM. Further, the application of the proposed operator was explored in a hierarchical
model. Hierarchical decomposition [32–34] basically assists decision makers by providing a
ranking of alternatives not only considering the whole set of criteria but also with respect to
any intermediate higher-level point of view. Since in each level of the hierarchy, the number
of criteria considered varies in dimensions, this model is intrinsically multi-dimensional.
Moreover, the elementary criterion set of a hierarchical system can follow a partition struc-
ture interrelationship pattern where each class of the partition comprises the elementary
sub-criteria belonging to the same criteria of the immediately upper level (more explanation
is provided in Section 5). These observations motivated us to synthesize the features of the
hierarchical decomposition in the context of a multi-dimensional EPBM operator.

With these incentives, in this contribution, we

• introduce the concept of the generalized multi-dimensional EPBM (refer to it as the
GEPBM operator), and an in-depth analysis of the proposed operator is presented.
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• estimate the weight vector associated with the proposed operator.
• handle a hierarchical attribute set where alternatives are evaluated based on the

criteria which are not at the same level but structured into several levels using the
proposed operator.

The rest of the paper is as follows: In Section 2, we describe some basic concepts
of the extended aggregation operator and partitioned Bonferroni mean (PBM) operator.
In Section 3, we present a generalized version of the multi-dimensional EPBM (named
as GEPBM) operator. Section 4 provides the conditions of weight vectors satisfied by
the weighting triangle associated with the proposed operators. The evolution of the
proposed operator for handling the hierarchical structure of criteria is provided in Section 5.
Section 6 explains the implementation of the proposed operators in the child’s home
environment index assessment through a case-based example with a detailed analysis.
Finally, in Section 7, we conclude the discussion with some future work.

2. Preliminaries

Here we begin by recalling the concept of the extended aggregation operator first.

2.1. Brief Review of Extended Aggregation Operators

Suppose
⋃

n≥1
[0, 1]n represents the set of all finite ordered lists that can be constructed

from [0, 1]. In order to compare two ordered lists with different dimensions, the following
binary relations on

⋃
n≥1

[0, 1]n can be considered.

Definition 1 ([14]). Suppose x = (x1, x2, . . . , xn1) and y = (y1, y2, . . . , yn2) are the two elements
from

⋃
n≥1

[0, 1]n. Then, the orderings on
⋃

n≥1
[0, 1]n can be considered as

(i) x ≤π y if n1 = n2 and if xi ≤ yi for all i = 1, 2, . . . , n1.
(ii) x ≤α y if n1 ≤ n2, xi ≤ yi for all i = 1, 2, . . . , n1, and if n1 < n2, then

max(x1, x2, . . . , xn1) ≤ min(yn1+1, yn1+2, . . . , yn2).
(iii) x ≤β y if n1 ≥ n2, xi ≤ yi for all i = 1, 2, . . . , n2, and if n1 > n2, then

max(xn2+1, xn2+2, . . . , xn1) ≤ min(y1, y2, . . . , yn2).

Thus, the binary relations≤s, s ∈ {π, α, β} are partial orderings on
⋃

n≥1
[0, 1]n. The first

order is the standard partial order of Cartesian products of [0, 1] related to the considered
dimensions. As an extension of this order, two other partial orders (α-order and β-order)
were introduced in [14], which refine the π-order.

Now, we recall the definitions of the extended aggregation operator which was intro-
duced in [18,19].

Definition 2 ([19]). A mapping A :
⋃

n∈N
[0, 1]n → [0, 1] is an extended aggregation operator on

([0, 1],≤) if for a fixed n ∈ N, the aggregation operator satisfies the≤π monotonicity and boundary
conditions A(0n) = 0 and A(1n) = 1 for all n ∈ N.

However, with the help of the above definition, we have problems when comparing
inputs with different numbers of arguments.

Definition 3 ([18]). A mapping A :
⋃

n∈N
[0, 1]n → [0, 1] is an extended aggregation operator on

([0, 1],≤) if

• it is monotonic with respect to ≤π , ≤α and ≤β—i.e., for all x = (x1, . . . , xn1), y =
(y1, . . . , yn2) ∈

⋃
n≥1

[0, 1]n, A(x) ≤ A(y) whenever x ≤s y, s ∈ {π, α, β}.

• A is idempotent—i.e., A(
n times︷ ︸︸ ︷

x, x, . . . , x) = x for all x ∈ [0, 1] and n ≥ 1.
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However, the above definition suffers from the false assumption of the idempotency
condition. Following [14], if we replace condition (ii) of the above definition by A(x) = x
for any x ∈ [0, 1], then it will inevitably lead to idempotency of A. With this observation in
this contribution, we present the definition of an extended aggregation operator which we
refer to as regular extended aggregation operator as follows.

Definition 4. A mapping A :
⋃

n∈N
[0, 1]n → [0, 1] is a regular extended aggregation operator on

([0, 1],≤) if

• it is monotonic with respect to ≤π , ≤α and ≤β—i.e., for all x = (x1, . . . , xn1), y =
(y1, . . . , yn2) ∈

⋃
n≥1

[0, 1]n, A(x) ≤ A(y) whenever x ≤s y, s ∈ {π, α, β}.

• A(x) = x for any x ∈ [0, 1].

Observe that, for any x ∈ [0, 1],

(

n times︷ ︸︸ ︷
x, x, . . . , x) ≤β x ≤α (

k times︷ ︸︸ ︷
x, x, . . . , x)

and thus

A(
n times︷ ︸︸ ︷

x, x, . . . , x) ≤ A(x) = x ≤ A(
k times︷ ︸︸ ︷

x, x, . . . , x).

Hence, A :
⋃

n≥1
[0, 1]n → [0, 1] is an extended aggregation operator if and only if for

each n ∈ N, the restriction A|[0,1]n is an n-ary aggregation operator. On the other hand,
A :

⋃
n≥1

[0, 1]n → [0, 1] can be regular extended aggregation operator only if A|[0,1]n is an

n-ary idempotent aggregation operator for each n ∈ N (but this condition is not sufficient).
In this contribution, we are interested in regular extended aggregation operators.

Next, we recall the definition of the weighting triangle associated with the weighted ex-
tended aggregation operator that collects the weights of any weighting list
W(n) = (w1,n, w2,n, . . . , wn,n), where n ≥ 1.

Definition 5 ([18]). A weighting triangle is a collection of numbers wi,n ∈ [0, 1], for i = 1, . . . , n,

such that
n
∑

i=1
wi,n = 1 for each n ≥ 1. It can be represented as

1

w1,2 w2,2

w1,3 w2,3 w3,3

w1,4 w2,4 w3,4 w4,4

. . .

It can be denoted as ∆.
Some well-known extended aggregation operators, for instance, the extended ordered

weighted averaging (EOWA) operator [35] and the extended quasi-linear weighted mean
(EQLWM) operator [18], are examples of idempotent extended aggregation operators which
may not satisfy the ≤α, ≤β monotonicity conditions (i.e., may not be regular).

2.2. Partitioned Bonferroni Mean and Generalized Partitioned Bonferroni Mean Operator

As mentioned earlier, in this study our motivation was to employ the PBM operator
for aggregating hierarchical data. Thus, in this section, we recall the definitions of the PBM
operator and its several generalizations.
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We are starting with the definition of BM. Suppose a = (a1, a2, . . . , an) denotes the de-
gree of satisfaction of the alternative X associated with the criterion set C = {C1, C2, . . . , Cn},
where ai ∈ [0, 1] ∀ i = 1, 2, . . . , n. Then, the BM operator can be defined as:

Definition 6 ([21]). For p, q ≥ 0 with p + q > 0, the Bonferroni mean operator is a mapping
BMp,q : [0, 1]n → [0, 1] such that

BMp,q(a1, a2, . . . , an) =

(
1
n

n

∑
i=1

ap
i

(
1

n− 1

n

∑
j=1,
i 6=j

aq
j

)) 1
p+q

. (1)

BM operator fundamentally captures the homogeneous interaction between all pairs
of input arguments. However, in practice, the data may be related to each other in a
different way.

With increasing complexity, sometimes some criteria are related to each other, and
some criteria are not related to any other criteria. In that case, we can divide the criteria
into two sets: I1: set of criteria that are related to others; I2: the set of criteria which are
not related to any criteria such that I1 ∩ I2 = ∅ and |I1|+ |I2| = n. Without loss of gener-
ality, assume that, first, n1 among the criterion set {C1, C2, . . . , Cn} is partitioned into dn1

mutually disjoint partition sets {P1, P2, . . . , Pdn1
} where |Pr| ≥ 2 for all r = 1, 2, . . . , dn1 and

d⋃
r=1

Pr = {C1, C2, . . . , Cn1}. Clearly, |I1| = n1. We further assume that the criteria of each

partition set Pr are interrelated, and there is no interrelationship among criteria of any
two partition sets Pr and Pk whenever r, k ∈ {1, 2, . . . , dn1} and r 6= k. The remaining
(n− n1) criteria are not related to any other criteria. With this information in the back-
ground, the partitioned Bonferroni mean (PBM) [26] operator of the collection of inputs
(a1, a2, . . . , an) can be defined as follows:

Definition 7 ([26]). For p, q ≥ 0 with p + q > 0, the partitioned Bonferroni mean operator is a
mapping PBMp,q : [0, 1]n → [0, 1] such that

PBMp,q(a1, a2, . . . , an)

=

(
n1

n

(
1

dn1

dn1

∑
r=1

(
1
|Pr| ∑

i∈Pr

ap
i

(
1

|Pr| − 1 ∑
j 6=i

j∈Pr

aq
j

)) p
p+q
)
+

n− n1

n

(
1

n− n1
∑
i∈I2

ap
i

)) 1
p

(2)

with the convention 0
0 = 1 and |Pr|= cardinality of Pr.

From the construction of the PBM operator, it is clear that the aggregated value com-
puted by the PBM depends on the interrelationships among the inputs. The interpretation,
modeling capability and relation of the PBM with the other existing aggregation operators
can be found in [22,26]. Apart from that, one can easily verify that the PBM operator
satisfies the idempotency, monotonicity and boundary conditions.

In [36], authors expressed the PBM operator as a composite n-ary aggregation operator
by generalizing it in terms of other aggregation operators. The generalized PBM (GPBM) is
defined as follows:

Definition 8 ([36]). Let, A : [0, 1]2 → [0, 1], A1 : [0, 1]dn1 → [0, 1], A2 : [0, 1](n−n1) → [0, 1],
A3 : [0, 1]|Pr | → [0, 1] and Mkr : [0, 1](|Pr |−1) → [0, 1] for all k = 1, 2, . . . , |Pr|; r = 1, 2, . . . , dn1

are the different aggregation operators; and K : [0, 1]2 → [0, 1] is the conjunctive aggregation
operator having the inverse diagonal δ−1

K . Then, the generalized version of a composite n-ary
operator GPBM(n) : [0, 1]n → [0, 1], where the criterion set following the partitioned structure
interrelationship pattern is given by
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GPBM(n)(a1, a2, . . . , an)

= A
(

A1(Inter-related criteria), A2(Independent criteria)
)

= A
(

A1

{
(δ−1

K (A3(K(a1r, M1r(ajr|j ∈ IPr \ {1})), K(a2r, M2r(ajr|j ∈ IPr \ {2})), . . . ,

K(a|Pr |r, M|Pr |r(ajr|j ∈ IPr \ {|Pr|}))))) : r = 1, 2, . . . , dn1

}
, A2(an1+1, . . . , an)

)
(3)

where IPr denotes the set of indices of the criteria from the partition set Pr, r ∈ {1, 2, . . . , dn1}.

Here we consider the convention that the aggregation of no information is zero. Thus,
if n1 = n, then this imposes on the aggregation operator A2, and if n1 = 0, then this
imposes on the aggregation operator A1. A detailed study in this regard can be found in
the article [36].

Now if every criterion is related to the rest of the criterion set and there exists no
independent criterion (i.e., n1 = n), then GPBM reduces to the generalized BM (GBM) [37]
operator, as follows:

GBM(n)(a1, a2, . . . , an) = δ−1
K (E(K(a1, M1(aj|j ∈ IC \ {1})), K(a2, M2(aj|j ∈ IC \ {2})), . . . ,

K(an, Mn(aj|j ∈ IC \ {n})))) (4)

where K : [0, 1]2 → [0, 1] is the conjunctive aggregation operator having the inverse
diagonal δ−1

K . E : [0, 1]n → [0, 1] and Mi : [0, 1]n−1 → [0, 1] for i = 1, 2, . . . , n are different
aggregation operators, and IC denotes the index of the criterion set C.

3. Generalized Version of the Multi-Dimensional Extended-PBM Operator

In this section, we try to draft the generalized version of the multi-dimensional ex-
tended aggregation operator following a partitioned structure interrelationship pattern.

We start the process by changing the dimensions of input arguments from n to (n + 1),
i.e., we include one new criteria Cn+1 in the old criterion set C. Hence, the old criterion set
is updated to C∗ = {C1, C2, . . . , Cn, Cn+1}. Suppose an+1 is the degree of satisfaction of the
alternative X under the criteria Cn+1, with the assumption that an+1 ≥ max{a1, a2, . . . , an}.
With this assumption, we can define the α-order between a and a∗; i.e., we can say that
a ≤α a∗, where a∗ = (a1, a2, . . . , an, an+1) is the new input set.

As we are updating the old criterion set C to C∗, in that instance two cases are possible.

• The new criterion Cn+1 may be not interrelated with any of the other criteria {C1, . . . , Cn}.
In that case, the new partition structure is {P1, P2, . . . , Pd, {Cn+1}}.

• Alternatively, Cn+1 is interrelated with all the criteria of a particular partition set, for exam-
ple, Pk, and then the new partition structure is {P1, . . . , Pk−1, Pk ∪ {Cn+1}, Pk+1, . . . , Pdn}.
Following the similar background and notation used for the PBM operator and previ-

ously defined composite n-ary operator, we analyze both cases.

Case I. When the new criterion Cn+1 is not interrelated with any of the other criteria
{C1, . . . , Cn}, then for the input arguments (a1, a2, . . . , an, an+1), we obtain the
aggregated value as

GPBM(n+1)(a1, a2, . . . , an, an+1)

= A
(

A1

{
(δ−1

K (A3(K(a1r, M1r(ajr|j ∈ IPr \ {1})), K(a2r, M2r(ajr|j ∈ IPr \ {2})),

. . . , K(a|Pr |r, M|Pr |r(ajr|j ∈ IPr \ {|Pr|}))))) : r = 1, 2, . . . , dn1

}
, A2(an1+1, . . . , an, an+1)

)
(5)
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where an+1 is the degree of satisfaction of the alternative X under the criterion Cn+1.
Suppose all the different aggregation operators used to define the GPBM operator pos-
sess the property of non-decreasing in each argument. Since A2(an1+1, . . . , an, an+1)
is the convex combination of A2(an1+1, . . . , an) and an+1 with the assumption that
an+1 ≥ max{a1, a2, . . . , an}, we can say

A2(an1+1, . . . , an) ≤ A2(an1+1, . . . , an, an+1)

which implies

GPBM(n)(a1, a2, . . . , an) ≤ GPBM(n+1)(a1, a2, . . . , an, an+1).

Case II. If Cn+1 is interrelated with all the criteria of a particular partition set, say, Pk, then,
partition set Pk is updated to P∗k = Pk ∪ {Cn+1}, and the construction of the rest
of the partition sets will remain same. Suppose |Pk| = m and x = (x1, x2, . . . , xm)
are the collections of inputs associated with the k-th partition set Pk; then we
can modify the aggregation operator for the partition P∗k with input arguments
x∗ = (x1, x2, . . . , xm, an+1) as

APk∗ (aj|j ∈ IPk∗ )

= δ−1
K (E(K(x1, M1(xj, an+1|j ∈ IPk \ {1})), K(x2, M2(xj, an+1|j ∈ IPk \ {2})),

. . . , K(xm, Mm(xj, an+1|j ∈ IPk \ {m})), K(an+1, Mm+1(xj|j ∈ IPk )))). (6)

Thus, a comprehensive composite (n + 1)-ary aggregation operator satisfying the
partitioned structure interrelationship pattern can be mathematically presented as

GPBM(n+1)(a1, a2, . . . , an, an+1)

= A
(

A1

{
AP1(aj|j ∈ IP1), AP2(aj|j ∈ IP2), . . . , APk−1(aj|j ∈ IPk−1), APk∗ (aj|j ∈ IPk∗ ),

APk+1(aj|j ∈ IPk+1), . . . , APdn1+1
(aj|j ∈ IPdn1+1

)

}
, A2(an1+1, . . . , an)

)
. (7)

Since Pk ⊂ P∗k , and from the assumption, we can say an+1 ≥ max{x1, x2, . . . , xm};
hence,

APk (aj|j ∈ IPk ) ≤ APk∗ (aj|j ∈ IPk∗ ),

which implies

GPBM(n)(a1, a2, . . . , an) ≤ GPBM(n+1)(a1, a2, . . . , an, an+1).

Thus, by analyzing case I and case II we can conclude that, for any two collections of
input arguments a = (a1, a2, . . . , an) and a∗ = (a1, a2, . . . , an, an+1) with varying numbers
of components, if a ≤α a∗, then,

GPBM(n)(a1, a2, . . . , an) ≤ GPBM(n+1)(a1, a2, . . . , an, an+1).

By generalizing the above-defined statement for data of various dimensions, we can
establish the property of monotonicity as:

Suppose, for any i, k ∈ {1, 2, . . . , dn1} with i 6= k, there exists some j, s element in
{1, 2, . . . , dn2}with j 6= s where n1 < n2, so that Pn1

i ⊂ Pn2
j and Pn1

k ⊂ Pn2
s . Then, for any two

collections of input arguments (a1, a2, . . . , an1) and (a1, a2, . . . , an2) with varying numbers
of components, GPBM(n1)

(a1, a2, . . . , an1) ≤ GPBM(n2)
(a1, a2, . . . , an2) if (a1, a2, . . . , an1) ≤α

(a1, a2, . . . , an2) and if all the different aggregation operators used to define the GPBM
operator posses the property of not decreasing in each argument.

Similarly, the case when ≤β is considered can be discussed.
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Simultaneously, the idempotency condition of GPBM operator for any fixed number

of input argument can be easily proved, i.e., GPBM(n)(

n times︷ ︸︸ ︷
a, a, . . . , a) = a for all a ∈ [0, 1],

n ≥ 1. Following these two characterizations, we can conclude that the composite varying
dimensional aggregation operator GEPBM satisfying the partitioned structure interrelation-
ship pattern belongs to the class of regular extended aggregation operators on

⋃
n≥1

[0, 1]n.

Following that, we can introduce the formal definition of the GEPBM operator as:

Definition 9. An extended aggregation operator GEPBM :
⋃

n≥1
[0, 1]n → [0, 1] is called a gener-

alized multi-dimensional extended-PBM operator if GEPBM(x) = x, where x ∈ [0, 1] and there
are p, q ≥ 0 and p + q > 0 such that for each n ≥ 2, the restriction GEPBM|[0,1]n is a GPBM(n)
operator related to partition {Pn

1 , Pn
2 , . . . , Pn

dn
} of {1, 2, . . . , n} so that for any n < m and any

i, k ∈ {1, 2, . . . , dn} with i 6= k, there exists some j, s element in {1, 2, . . . , dm} with j 6= s so that
Pn

i ⊂ Pm
j and Pn

k ⊂ Pm
s .

Considering some particular operator for A, A1, A2, K, Mkr for all k = 1, 2, . . . , |Pr| and
r = 1, 2, . . . , dn, the GEPBM operator can be transformed into one of these cases:

I. Let us fix A(x, y) = ( n1
n xp + n−n1

n yp)
1
p , A1 = Arithmetic Mean, A2 = ( 1

n−n1

n
∑

i=n1+1
ap

i )
1
p ,

A3 = Arithmetic Mean, K(x, y) = xpyq, δ−1
K (x) = x

1
p+q , Mkr = ( 1

|Pr |−1 ∑
j∈IPr \{k}

aq
jr)

1
q for

all k = 1, 2, . . . , |Pr| and r = 1, 2, . . . , dn1 . Then, our proposed GEPBM operator reduces
to the EPBM operator proposed by Banerjee et al. [31].

II. If we fix K(x, y) = xpyq, E = Arithmetic Mean and Mi = ( 1
n−1 ∑

j∈Ia\{i}
aq

j )
1
q , then our

proposed GEPBM operator converts to an extended-BM (EBM) operator.

Next, we present an example to illustrate the computational procedure of the proposed
GEPBM operator.

Example 1 (adopted from [38]). Suppose the dean of a high school wants to evaluate four students,
A, B, C and D, based on three subjects: mathematics (Math), physics (Phys) and literature (Lit).
The scores are given on a 0–20 scale, as shown in Table 1. Usually, it is common to see that students
who are good at mathematics are also good at physics, but the performance in literature does not
depend on the performance in mathematics or physics. Considering the relationship among the
subjects, we can partition the criterion set into: P1 = {Math, Phys}, independent criteria: {Lit}.

Let us fix A(x, y) = ( n1
n xp + n−n1

n yp)
1
p , A1 = Arithmetic Mean, A2 = ( 1

n−n1

n
∑

i=n1+1
ap

i )
1
p ,

A3 = Arithmetic Mean, K(x, y) = xpyq, δ−1
K (x) = x

1
p+q , Mkr = ( 1

|Pr |−1 ∑
j∈IPr \{k}

aq
jr)

1
q for all

k = 1, 2, . . . , |Pr| and r = 1, 2, . . . , dn1 . For simplicity, assume p = q = 1, and here, n = 3.
Based on the provided background, the resulting GEPBM is as follows:

GEPBM1,1
(3)(a1, a2, a3) =

2
3
√

a1a2 +
1
3

a3.

The GEPBM of the scores of student A is:

GEPBM1,1
(3)(18, 16, 10) =

2
3
·
√

18.16 +
1
3
· 10 = 14.64.

Similarly, we can calculate the GEPBM of the scores for students B, C and D. The result is
summarized in the following Table 1. Thus, by applying the GEPBM operator, we obtain the final
rank order of the students as C > D > A > B.
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Table 1. Evaluation of the students.

Student/
Subjects

Mathematics
(Math)

Physics
(Phys)

Literature
(Lit)

Choquet
Integral GEPBM

A 18 16 10 15.0 14.64
B 10 14 18 14.0 13.88
C 18 16 14 16.2 15.98
D 18 14 16 16.2 15.91

Next, we compute the overall scores of the four students using the Choquet integral [39]. Since
students who are good at mathematics are in general good at physics, the dean does not want to
overvalue students having good marks in both subjects. Let µ({Math}) = µ({Phys}) = 0.4,
µ({Lit}) = 0.3 and µ({Math, Phys}) = µ({Phys, Lit}) = µ({Math, Lit}) = 0.7. The defined
sub-additive capacities satisfy the dean’s preference when evaluating the four students (details can be
found in [38]). Considering the capacity defined above, the Choquet integral of the scores of student
A is:

Cµ(18, 16, 10)

= (10− 0).µ({Math, Phys, Lit}) + (16− 10).µ({Math, Phys}) + (18− 16).µ({Math})
= (10− 0).1 + (16− 10).0.7 + (18− 16).0.4 = 15.

Similarly, we can calculate the Choquet integral of the scores for students B, C and D (results
are summarized in Table 1). The final ranking order of the students is C = D > A > B.

Clearly, the aggregated value obtained by the Choquet integral differs from that found by the
GEPBM operator. By implementing the Choquet integral, we cannot distinguish between student
C and D; however, the proposed GEPBM operator is capable of doing so. In addition, in order
to evaluate overall scores utilizing GEPBM, the degrees of importance of the different interacting
criteria subsets are not required.

However, the multi-dimensional aspect of the criterion set has not been addressed in the above
example. We will address this issue extensively in Section 6.

4. Weight Determination for the Multi-Dimensional Extended-PBM Operator

Sometimes all the evaluation criteria are not equally important. Thus, to take into
account the variability among them, we need to consider the weight vectors associated
with the criterion set. In this section, we try to determine the condition of weight vectors
satisfied by the weighting triangle ∆ associated with the weighted extended operators.
That is, under which condition are the weighted operators regular extended aggregation
operators? Or under which condition of weight vectors are extended operators monotonic
with respect to α-order and β-order?

By assigning weight vectors, one can rewrite the definition of the extended-PBM
operator as follows.

Definition 10 ([31]). An extended aggregation operator WEPBM :
⋃

n≥1
[0, 1]n → [0, 1] is called

an weighted extended-PBM if WEPBM(x) = x where x ∈ [0, 1] and there are p, q ≥ 0, p + q > 0,
such that for each n ≥ 2 the restriction WEPBM|[0,1]n is a WPBMp,q

(n) operator related to partition
{Pn

1 , Pn
2 , . . . , Pn

dn
} of {1, 2, . . . , n} and defined as

WPBMp,q
(n)(a1, a2, . . . , an) =

1
dn

( dn

∑
r=1

(
1

∑i∈Pn
r

wi,n
∑

i∈Pn
r

wi,nap
i

(
1

∑ j 6=i
j∈Pn

r

wj,n
∑
j 6=i

j∈Pn
r

wj,naq
j

)) 1
p+q
)

(8)
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where for each n ∈ N, there exists a W(n) = (w1,n, w2,n, . . . , wn,n) with
n
∑

i=1
wi,n = 1, so that for

any n < m and any i, k element in {1, 2, . . . , dn}, i 6= k, there are j, s elements in {1, 2, . . . , dm}
with j 6= s so that Pn

i ⊂ Pm
j and Pn

k ⊂ Pm
s .

If all the criteria belong to the same class (i.e., dn = 1), then the WEPBM operator in
Definition 10 transforms to the weighted extended-BM (WEBM) operator. The above-
defined weighted extended-PBM operator on

⋃
n≥1

[0, 1]n is idempotent, bounded and mono-

tonic with respect to ≤π . However, it need not be regular, i.e., monotonic with respect to
α-order and β-order.

In [18], Calvo et al. established the condition for weight vectors to be satisfied by
the weighting triangle ∆ so that the extended aggregation operators (namely, EOWA
and EQLWM) are monotonic with respect to α-order and β-order. With a view of their
results and Definition 4, we may say an EOWA operator is a regular extended aggre-
gation operator if and only if the weighting triangle ∆ associated with EOWA satisfies

r
∑

i=1
wi,n+1 ≤

r
∑

i=1
wi,n ≤

r+1
∑

i=1
wi,n+1 where r = 1, 2, . . . , n, and an EQLWM operator is a regu-

lar extended aggregation operator if and only if the weighting triangle ∆ associated with
EQLWM satisfies wi,n+1 ≤ wi,n.

Now, to find the weighting condition associated with the composite n-ary operator
where the criterion set follows the partitioned structure interrelationship pattern, we first try
to determine the condition for the n-ary operator, following a homogeneous relationship.

Theorem 1. A weighted, extended Bonferroni mean (WEBM) operator WEBM :
⋃

n≥1
[0, 1]n →

[0, 1] is a regular extended aggregation operator if and only if for all n ≥ 1 and r = 1, 2, . . . , n, the
inequality

r

∑
i,j=1;i 6=j

wi,n+1wj,n+1 ≤
r

∑
i,j=1;i 6=j

wi,nwj,n ≤
r+1

∑
i,j=1;i 6=j

wi,n+1wj,n+1 (9)

holds.

Proof. The proof is given in Appendix A.

Next, we define the condition of the weighting triangle for the WEPBM operator.

Theorem 2. A weighted extended-PBM operator WEPBM :
⋃

n≥1
[0, 1]n → [0, 1] is a regular

extended aggregation operator if and only if for all partitions Pr ∈ P with n ≥ 1, the above
inequality satisfying the homogeneous relationship holds.

Proof. The proof is similar to the proof of Theorem 1.

In the literature [18], there exist different ways to determine these weighting triangles.
Next, we recall several methods that are capable of generating weighting triangles.

1. Generation of triangles by means of a quantifier:
Yager [40,41] first proposed the basics of all kinds of relative quantifier Q, named the
regular increasing monotone (RIM) quantifier, where Q is a monotone non-decreasing
operator Q : [0, 1]→ [0, 1] satisfying Q(0) = 0 and Q(1) = 1. The weights generated
by increasing quantifier Q can be defined by

wj,n = Q
(

j
n

)
−Q

(
j− 1

n

)
,

where j = 1, 2, . . . , n and n ≥ 1.



Axioms 2022, 11, 600 11 of 22

2. Generation of triangles by means of a negation operator:
One can obtain the weights of a weighting triangle through a negation N : [0, 1] →
[0, 1], i.e., a monotone non-increasing operator satisfying N(0) = 1 and N(1) = 0,
as follows:

wj,n = N
(

j− 1
n

)
− N

(
j
n

)
where j = 1, 2, . . . , n and n ≥ 1.
There exists a duality relation between an increasing quantifier and a negation,
i.e., N(x) = 1− Q(x). Thus, the weights generated by Q are just reversed to those
generated by its dual N.

3. Generation of triangles by means of sequence:
Consider a sequence of non-negative real numbers λ1, λ2, . . . such that λ1 > 1 and
λi ≥ 0 for i = 2, 3, . . .. Then, one can define a weighting triangle in the following way:

wj,n =
λj

λ1 + λ2 + . . . + λn
,

where j = 1, 2, . . . , n and n ≥ 1. The weighting triangle related to the sequence is
known as the Sierpinski carpet.

With these, all generated weighting triangles, one can easily determine which weight
vector satisfies the conditions of Theorems 1 and 2.

Example 2. For example, consider the "normalized" triangle of Pascal

1
1
2

1
2

1
4

2
4

1
4

1
8

3
8

3
8

1
8

1
16

4
16

6
16

4
16

1
16

. . .

. . .
(

n− 1
k

)
/2n−1 . . . ,

which satisfies the above condition, where k = 0, 1, . . . , n− 1 and W(n) =
1

2n−1 ((
n−1

0 ), (n−1
1 ), (n−1

2 ),
. . . , (n−1

n−1)) for each n ≥ 1, and let A be the WEPBM operator defined by this triangle. Then,
by Theorem 2, we can easily show that the above-defined operator is a regular extended aggrega-
tion operator.

5. Handling the Hierarchy of Criteria with a Multidimensional
Extended-PBM Operator

Hierarchical decomposition basically assists decision makers by providing a ranking
of alternatives, not only considering the whole set of criteria, but also with respect to any
intermediate higher-level point of view. The results at each level of the hierarchy can be
considered a very useful tool in any decision-making process. In a hierarchical system,
the output of each level is dependent on another in a sequential manner. Such a hierarchy
structure of criteria starts with the root criterion at zero levels, which is referred to as a
comprehensive objective, then a set of sub-criteria of the root criterion at level one and so
on. The criteria at the lowest level of the hierarchy are termed elementary criteria. Here,
we assume that the elementary criterion set follows a partition structure interrelationship
pattern where each class of the partition comprises the elementary sub-criteria belonging to
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the same criteria of the immediately upper level. The framework of a hierarchical structure
of criterion set is shown in Figure 1.
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Figure 1. Example of a hierarchical structure of criteria set
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Figure 1. Example of a hierarchical criterion set.

• C0 indicates the main goal or root criterion.
• C is the set of all criteria comprising the elementary sub-criterion set and non-elementary

criterion set, denoted by square boxes in Figure 1, and IC is the set of indices of all
criteria belong to C representing a position of the criteria located at any level of the
hierarchy.

• {cj : j ∈ EL} ⊂ C is the set of all elementary sub-criteria located at the bottom of
hierarchy, where EL is the index set of all elementary sub-criteria and EL ⊂ IC.

• The evaluation value/preference value for any alternative X based on the elementary
criteria in the hierarchical structure is denoted by circles in Figure 1.

Then, the overall aggregated value for an alternative X based on a set of non-elementary
criteria can be defined as

GPBM(n)(a1, a2, . . . , an) = A1(Y1, Y2, . . . , Ydn)

= A1(AP1(aj1 |j1 ∈ IP1), AP2(aj2 |j2 ∈ IP2), . . . , APdn
(ajdn
|jdn ∈ IPdn

)). (10)

where APr : [0, 1]|Pr | → [0, 1] denotes the aggregation operator for r ∈ {1, 2, . . . , dn} and YPr

is defined as:

YPr = APr (ajr |jr ∈ IPr )

= δ−1
K (E(K(a1r , E1(ajr |jr ∈ IPr \ {1r})), K(a2r , E2(ajr |jr ∈ IPr \ {2r})),

. . . , K(a|Pr |r , En(ajr |jr ∈ IPr \ {|Pr|r})))).

This formulation can be viewed as an evaluation of the hierarchical structure of the
criterion set using a composite n-ary aggregation operator GPBM(n). The flowchart of the
proposed aggregation mechanism is illustrated in Figure 2. If we replace the aggregation
operator K with K(x, y) = xpyq, and aggregation operators E, Ei (i = 1, 2, . . . , n) and A1
with arithmetic mean, then GPBM(n) will be reduced to a PBM operator for a fixed number
of inputs n.

Further, if we want to estimate a partial result based on some criteria located at any
intermediate level of the hierarchical structure, then we can utilize GPBM(n)(a1, a2, . . . , an)
to aggregate only that preference information descending from that particular criterion
or the set of criteria, and for rest, we follow the convention that the aggregation of no
information is zero. Thus, the main advantage of the proposed operator is that it can
model the hierarchical structure appropriately in the sense of not only evaluating the
ultimate goal but also producing partial results by characterizing the situations with any
possible partition. Hence, composite operator H can be executed as a different dimensional
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aggregation operator based on the set of criteria by which the decision maker wants to
evaluate the result. Additionally, GPBM(n)(a1, a2, . . . , an) can be considered as a general
aggregation approach where inputs of various sizes can be compared.

Partitioned structure
of the elementary
criterion set

P1 : {aj1 |j1 ∈ IP1}
P2 : {aj2 |j2 ∈ IP2}
P3 : {aj3 |j3 ∈ IP3}

...
Pdn : {ajdn

: jdn ∈ IPdn
}

First stage of the
aggregation process

Y1 = AP1 (aj1 |j1 ∈ IP1 )
Y2 = AP2 (aj2 |j2 ∈ IP2 )
Y3 = AP3 (aj3 |j3 ∈ IP3 )

...
Ydn = APdn

(ajdn
|jdn ∈ IPdn

)

Second stage of the
aggregation process

A1(Y1, Y2, . . . , Ydn )

Figure 2. Aggregation process of hierarchical data.

Example 3. If we consider the hierarchical structure presented in Figure 1, we get the overall
evaluation as:

GPBM(8)(a1, a2, . . . , a8) = A1(Y1, Y2, Y3)

= A1(AP1(a1, a2, a3), AP2(a4, a5), AP3(a6, a7, a8)).

Thus, the proposed aggregation operator is more able to handle situations with any
possible number of input arguments. Thus, it is more flexible in the sense that it can obtain
results in a partial way, i.e., for a sub-criterion or a set of criteria at some intermediate level
of the hierarchy.

In a complex decision-making problem, there may be a case where all the partitions are
not equally important. In this context, depending on the aggregated value of each partition
of the elementary criterion set, the decision maker can assign the weights. When we are
aggregating for alternative X against all root criteria Cj, j ∈ {1, 2, . . . , n′}, suppose that
AP(1) , AP(2) , . . . , AP(dn)

is the permutation of AP1 , AP2 , . . . , APdn
such that AP(1) ≥ AP(2) ≥

. . . ≥ AP(dn)
and wr,dn is the weight assigned to the r-th largest element AP(r) in the tuple

(AP(1) , AP(2) , . . . , AP(dn)
). Using this concept, we can get the aggregated value for alternative

X as

GPBM∗(n)(a1, a2, . . . , an)

= OWA(AP1(aj1 |j1 ∈ IP1), AP2(aj2 |j2 ∈ IP2), . . . , APdn
(ajdn
|jdn ∈ IPdn

)).

We note that, for input argument values in [0, 1], we have GPBM∗(n)(a1, a2, . . . , an) ∈
[0, 1]. It is a standard aggregation operator, where for all ai = 0, we get
GPBM∗(n)(0, 0, . . . , 0) = 0, and for all ai = 1, we get GPBM∗(n)(1, 1, . . . , 1) = 1. The mono-

tonicity of the aggregation operator is straightforward. Now, for the case when wr,dn = 1
dn
∀r

and APr = BM, we get back to Equation (2). To aggregate the value through the OWA
operator, we need the weight vector. Several methods have been proposed in the literature
to determine the weight vector of the OWA operator [42].

To understand the computational aspect of the proposed aggregation operator, we
summarize the decision-making algorithm in a stepwise fashion as follows:

Step 1: Construct the hierarchical structure of the criterion set and identify the set of all
elementary criteria {cj : j ∈ EL} located at the bottom of the hierarchy, and all
non-elementary criteria up to the root criterion C0.
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Step 2: Collect the decision maker’s assessments of the alternative X against the elemen-
tary criterion set {cj : j ∈ EL} and represent them by {aj : j ∈ EL}.

Step 3: Identify the partition structure interrelationship pattern among the criterion set
based on the assumption that elementary sub-criteria belonging to the same criteria
of the immediately upper level will form a partition.

Step 4: Assign the weight information of the criterion set by employing the concept of the
weighting triangle defined in Section 4.

Step 5: Utilize the proposed GEPBM operator or the WEPBM operator to find the overall
performance of alternative X with respect to the whole set of elementary criteria
or partial performance for any subset of elementary sub-criteria.

Step 6: Finally, compare the performances of alternative X based on different sub-criteria
to find out which criteria need more attention to improve overall performance.

Now, to apply the newly proposed aggregation operators developed in the previous
sections, in the following we present a real-life based application of assigning indexes to
the quality of a child’s home environment.

6. An Illustrative Application

Applied behavior analysis (ABA) is a part of psychology that deals with behaviorism,
but its major contribution is measuring behaviors that need to be modified by clearly
observing them. Research suggests that ABA has been understood to be helpful in social,
functional and educational contexts across all ages. Research with parents in the years 2009,
2010, 2011 and 2014 showed positive outcomes with this approach. Therefore, this approach
was used in this work to see if it is effective even during the times of e-learning and e-
adaptation. With the above view, we used the proposed hierarchical aggregation method in
studying preteens’ (9–12 years) home environment index, since in this period it is possible
to produce a major impact on the subsequent development of the personality. The quality
of the home environment, educational style and parenting practices each play a significant
role in influencing the child’s social, adaptive, coping and emotional skills during this
development age. Additionally, this motivated us to analyze the home environment quality
indexes. The development of indexes based on usual statistical techniques does not ensure
an adequate representation, as in the case of a child’s home environment, the criterion set
is hierarchically related, there being an interrelationship among them. Rojas et al. [43]
developed an approach to measuring the quality of the home environment of children
who were between 15 and 30 months. In that particular article, the authors assumed
that information possesses a prioritized hierarchical structure. However, in a hierarchical
system, dependence among the criteria is a significant aspect that needs to be focused on.
Additionally, till now, no conceptual model has been created to invent an exact plan for
evaluation of the quality of the home environment by relating the selected indicators for
this particular age group. Thus, in this section, we analyze the preteens’ home environment
traits for a better understanding of this core component in child rearing, employing our
newly proposed hierarchical extended-PBM operator, where the criterion set follows the
partition structure interrelationship pattern.

With the aid of an expert’s opinion, a 3-layer hierarchical structure of the criterion set
associated with a child’s home environment and behavioral properties was constructed as
shown in Figure 3. Here, the entire criterion set is organized into four broad categorie— C1:
family characteristics, C2: environmental arrangement at home, C3: cognitive simulation
at home, C4: observation of behavior—which are further grouped into a number of sub-
categories. This hierarchical decomposition basically assisted the decision makers to
evaluate the respective home environment index of each participant by not only considering
the whole set of criteria but also any intermediate point of view so that experts could analyze
the child’s home environment with respect to the individual aspects as well to improve the
overall impact.

Based on the structured hierarchical criterion set, a questionnaire was created, and sub-
sequently, a set of data was collected via an online survey through the questionnaire given
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to the parents of children in the age group of 9–12 years, who agreed to participate in the
study. The area of the survey was selected randomly with some degree of proportional
allocation to obtain the desired correlation and comparative study of the impacts of envi-
ronmental factors on behavioral patterns. In order to obtain the parents’ opinion on criteria
related to the child’s home environment, a proper linguistic evaluation scale needed to be
predefined. Then, to estimate a child’s home environment index utilizing our proposed
hierarchical aggregation operator, we needed to transform the linguistic scale into a fuzzy
scale [43]. Considering the expert’s opinion, for each linguistic assessment, a fuzzy set
can be built (see Table 2), keeping in view the fact that the fuzzy values associated with
each linguistic variable are ordered from the optimal case to the worst case for the child
development. Finally, by aggregating parents’ responses using our proposed aggregation
operator, one can obtain an index or set of sub-indexes for each child which will portray
the quality of his or her home environment.
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6. An illustrative application
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Figure 3. Hierarchical structure of the criteria set.

Applied behaviour analysis (ABA) is a part of psychology that deals with behaviourism
but the major contribution over others is in measuring behaviour that needs to be modified
by clearly observing them. Research suggests that ABA has been understood to be helpful
through social, functional, and educational contexts across all ages. Research with parents
in the years 2009, 2010, 2011, and 2014 have shown positive outcomes with this approach.
Therefore, this approach is being used in this work to see if it is effective even during the
times of e-learning and e-adaptation in the present times or not. With the above view, we
use the proposed hierarchical aggregation method in studying the pre-teen’s (9-12 years)
home environment index, since in this period it is possible to produce a major impact on
the subsequent development of the personality. The quality of the home environment, edu-
cational style, and parenting practices play a significant role in influencing the child’s social,
adaptive, coping, and emotional skills during this development age of 9-12 years. And this
motivates us to the analysis of home environment quality indexes. The development of
indexes based on usual statistics techniques does not ensure an adequate representation,
as it is the case of a child’s home environment, its criteria set is hierarchically related
possessing an interrelationship among them. Rojas et al. [? ] developed an approach to
measure the quality of the home environment of children, who were between 15-30 months.
In that particular article, the authors assumed that information possesses a prioritized
hierarchical structure. However, in hierarchical system dependence among the criteria
is a significant aspect that needs to be focused on. Also till now, no conceptual model
has been accomplished to invent an exact plan for evaluation of the quality of the home
environment by relating the selected indicators for this particular age group. Thus in
this section, we attempt to observe and analyze the preteen’s home environment traits
for a better understanding of this core component in child rearing employing our newly
proposed hierarchical extended-PBM operator where the criteria set follows the partition
structure interrelationship pattern.

With the aid of an expert’s opinion, a 3-layer hierarchical structure of the criteria
set associated with a child’s home environment and behavioral properties is constructed
in Fig. ??. Here, the entire criteria set is organized into 4 broad categories C1: Family
characteristics, C2: Environmental arrangement at home, C3: Cognitive simulation at home,
C4: Observation of behaviour; which are further grouped into a number of sub-categories.
This hierarchical decomposition will basically assist the decision-makers to evaluate the
respective home environment index of each participant by not only considering the whole
set of criteria but also for any intermediate point of view. So that experts can analyze the

Figure 3. Hierarchical structure of the criterion set.

Table 2. Transformation of the crisp linguistic variable into a fuzzy set.

Criteria Linguistic Representation of the Criteria

Time spent with child ( c111 & c121 )

I. Less than half an hour→ 0.2
II. Half an hour to one hour→ 0.4

III. Between one hour to two hours→ 0.6
IV. Between two to three hours→ 0.8

V. More than three hours→ 1

Level of happiness ( c212 & c222 )

I. 1→ 0.2
II. 2→ 0.4
III. 3→ 0.6
IV. 4→ 0.8

V. 5→ 1

Behaviour limitation strategies ( c312 )

I. Limit his/her movement→ 0.2
II. Say no’ and expect to obey→ 0.4

III. Distract with activity→ 0.6
IV. Nothing; ignore him/her→ 0.8

V. Say ’no’ and explain why→ 1

Indoor game (c211) I. Yes→ 1
II. No→ 0

Delaying activities (c422) I. Yes→ 0
II. No→ 1
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We present an example to illustrate the computational procedure of the index assigned
to a specific child utilizing the proposed operator.

Example 4. In accordance with the hierarchical structure of the criterion set (Figure 3) associated
with the child’s home environment, suppose for a specific child, by transforming the linguistic
response gathered from the parent into fuzzy set, we obtain the input assessment as a = (1, 0.8, 0.6,
0.4, 0.6, 1, 0.8, 1, 1, 1, 0.8, 0.6, 0.6, 0, 1, 1, 1, 1).

As mentioned earlier, we have hypothesized that the elementary criterion set of the hierarchical
structure follows a partition structure interrelationship pattern, where each class of the partition
comprises elementary sub-criteria belonging to the same criteria of the immediately higher level.
Based on (Figure 3), the criterion set is partitioned into 8 classes: P1 = {c111, c112}, P2 =
{c121, c122, c123}, P3 = {c211, c212}, P4 = {c221, c222}, P5 = {c311, c312}, P6 = {c321, c322},
P7 = {c411, c412, c413}, and P8 = {c421, c422}. It has been assumed that every criterion contributes
to the final result equally. Now, to aggregate the set of values in a at the comprehensive level, we
must use our proposed hierarchical-EPBM operator as:

GPBM(18)(1, 0.8, 0.6, 0.4, 0.6, 1, 0.8, 1, 1, 1, 0.8, 0.6, 0.6, 0, 1, 1, 1, 1)

= A1

(
AP1(1, 0.8), AP2(0.6, 0.4, 0.6), AP3(1, 0.8), AP4(1, 1), AP5(1, 0.8), AP6(0.6, 0.6),

AP7(0, 1, 1), AP8(1, 1)
)

= A1

(
0.8944, 0.5292, 0.8944, 1.0000, 0.8944, 0.6000, 0.5774, 1.0000

)
= 0.7987.

To capture the dependency pattern of each partition set, we have used APr = BM operator,
∀ r ∈ {1, 2, . . . , 8}, and finally, the arithmetic mean to obtain the final aggregated value.
The primary difference between this proposed aggregation process and the classical one is
that in this case the criterion set is assumed to possess a partition structure interrelationship
pattern with varying dimensions.

The main advantage of utilizing the proposed EPBM operator, besides evaluating
the index at a comprehensive level, we can analyze the child’s home environment with
respect to the individual aspects of the main criteria or any particular sub-criteria as well.
The above computation indicates that an aggregated value with respect to the sub-criterion
c12 : Father’s role in child bearing is comparatively on the lower end. Hence, in order to
improve a child’s overall home environment, the criterion “Father’s role in child bearing”
needs to be focused on.

In the above example, it has been assumed that every criterion contributes to the final
result equally. Thus, the weighting triangle associated with the aggregation operator is
generated by the quantifier Q(x) = x, where the corresponding weights are wj,n = 1

n ,
j = 1, 2, . . . , n. It can be presented as

1
1
2

1
2

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
5

1
5

1
5

1
5

1
5

. . .
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Now, depending on the weighting triangle, the evaluations of the index at the compre-
hensive level or sub-indices at any intermediate level will differ. Instead of a weighting
triangle generated by the quantifier Q(x) = x, if we implement a normalized Pascal
weighting triangle, as provided in Example 2, to assign weights of the criterion set, then
the overall evaluation of the quality of the home environment for the particular child
will be 0.8037. Accordingly, the index value with respect to the main criterion set will be
(0.7041, 0.9472, 0.7472, 0.8162).

Thus, depending on different weighting triangles associated with the EPBM operator,
index evaluation will change.

6.1. Comparison with Other Mean Based Operators

Now, we compare our proposed method with some well-known aggregation opera-
tors, including BM, in the context of the home environment computation considered in
Example 4. The aggregation results are shown in Table 3.

Table 3. Evaluation of the home environment based on different aggregation operators.

Operator Evaluation at
Comprehensive Level C0

Evaluations at Intermediate Level

C1 C2 C3 C4

WEAM 0.7889 0.6800 0.9500 0.7500 0.8000
WEGM 0 0.6491 0.9457 0.7326 0
WEBM 0.7862 0.6723 0.9487 0.7439 0.7746

WEPBM 0.7987 0.7118 0.9472 0.7472 0.7887

From Table 3, we can see that if we simply calculate the average of all responses
(1, 0.8, 0.6, 0.4, 0.6, 1, 0.8, 1, 1, 1, 0.8, 0.6, 0.6, 0, 1, 1, 1, 1) using the extended arithmetic mean
operator, then the particular interrelationship pattern among the set criteria is neglected.
Even if we employ an extended-BM operator to aggregate the responses, it considers only
a homogeneous relationship among the whole criterion set and is not able to capture the
exact relationship of the criteria in the hierarchical system. On the other hand, if we employ
an extended geometric mean operator, then since the response against one criterion is zero,
it turns into the overall index evaluation based on the whole criterion set for the child as
zero, which is an undesirable outcome. Additionally, it is not able to differentiate between
the results of the comprehensive level with the results obtained for the criteria C4, since
both have acquired a zero index value. Thus, the hierarchical EPBM operator has a certain
advantage by modeling the partition structure interrelationship pattern among the criterion
set more adequately than other mean-based aggregation operators.

Table 4 shows a comparison of the characteristics of the proposed aggregation operator
with those of other extended aggregation operators.

Table 4. The characteristics of different aggregation operators.

Aggregation
Operators

Consider
Interrelationships

between Input
Values

Consider
Partition
Structure

Interrelationship
Pattern

Consider
Hierarchical

Structure

Constructed
Weighting
Triangle

Condition

EOWA [18] No No No Yes
EQLWM [18] No No No Yes

EHM [19] No No No No
EBM [19] Yes No No No

Proposed operator Yes Yes Yes Yes
Abbreviation: EOWA, extended ordered weighted averaging, EQLWM, extended quasi-linear weighted mean,
EHM, extended Hurwizc mean, EBM, extended Bonferroni mean.
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6.2. Effects of the Parameters p and q

Here we try to analyze the influences of the parameters p and q on the overall eval-
uation of the home environment index. For different values of p and q, the obtained
evaluations for the input a = (1, 0.8, 0.6, 0.4, 0.6, 1, 0.8, 1, 1, 1, 0.8, 0.6, 0.6, 0, 1, 1, 1, 1)
(Example 4) are summarized in Table 5.

Table 5. Evaluation of the home environment with different p and q values.

p, q Values Evaluation at
Comprehensive Level C0

Evaluations at Intermediate Level

C1 C2 C3 C4

p = 1, q = 1 0.7987 0.7118 0.9472 0.7472 0.7887
p = 0, q = 1 0.8125 0.7167 0.9500 0.7500 0.8333
p = 3, q = 0 0.8444 0.7299 0.9555 0.7555 0.9368
p = 1, q = 2 0.8145 0.7150 0.9481 0.7481 0.8467
p = 2, q = 2 0.8222 0.7144 0.9472 0.7472 0.8799

p = 10, q = 0 0.8706 0.7596 0.9713 0.7713 0.9801
p = 0, q = 2 0.8343 0.7236 0.9528 0.7528 0.9082

p = 0.01, q = 10 0.8625 0.7595 0.9712 0.7712 0.9480
p = 5, q = 1 0.8388 0.7299 0.9545 0.7545 0.9163
p = 0, q = 5 0.8558 0.7408 0.9607 0.7607 0.9611

p = 10, q = 2 0.8552 0.7432 0.9606 0.7606 0.9563

With reference to Table 5, we can state that the assigned index values, calculated from
the input a, based on the entire criterion set or any intermediate level perspective, are
insignificantly different from different variants of p and q. However, from the table, we
can see, for all variation of p and q, the aggregated results obtained for criteria C1 are
the meanest. Thus, those particular criteria need more attention to improve the overall
evaluation. Most commonly, we use p = q = 1 for the simplicity of the calculation.

7. Conclusions

In this contribution, we have presented a composite aggregation operator called the
generalized multi-dimensional extended partitioned Bonferroni mean (GEPBM). In multi-
dimensional aggregation, the proposed operator can help decision makers to acknowledge
the significance of each criterion in the aggregation process. Further, we have established
the condition of weight vectors satisfied by the weighting triangle ∆ associated with the
WEPBM operator. We have implemented this new concept to handle the hierarchical
structure of a criterion set for evaluation of a child’s home environment, where the decision
maker can evaluate the child’s home environment quality not only based on the whole set
of criteria but also for any intermediate higher-level point of view. In the future, the GEPBM
operator can be further explored by taking specific prerequisites within each partition set.

We can summarize the main contributions of this study as follows:

• We have proposed the GEPBM operator, which can capture the partition structure
interrelationship pattern within the data of various dimensions and can model specific
relationships within each partition set in multi-dimensional data aggregation.

• We have established the weighting condition associated with the proposed multi-
dimensional aggregation operator.

• We have extended the concept of the proposed operator for accommodating the
hierarchical structure of the criterion set.

Proposed operators can be used to deal with multi-criteria group decision-making
problems [44] or two-sided matching decision-making problems [45]. In the future, we will
also try to model outer dependency relationship [46] among the criteria of different layers
of a hierarchical system. To do so, we could make an attempt to adapt the concept of a
heterogeneous relationship [47] to a hierarchical system of criterion set. We could study
more interesting properties of the proposed operator when combined with other operators
like the Choquet integral. In addition, we could extend our proposed operator to imprecise
membership grades to handle real-life decision-making problems.
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Appendix A

Proof of the Theorem 1

Proof. Let us suppose that WEBM operator WEBM :
⋃

n≥1
[0, 1]n → [0, 1] is monotone

with respect to α, β and π-ordering. According to Proposition 4 presented in [19], any
extended aggregation operator A :

⋃
n≥1

[0, 1]n → [0, 1] is monotone with respect to α, β and

π-ordering if and only if A(a1, a2, . . . , an,
∧

ai) ≤ A(a1, a2, . . . , an) ≤ A(a1, a2, . . . , an,
∨

ai)
for all (a1, a2, . . . , an) ∈ [0, 1]nm where n ≥ 1 holds.

To find out the condition of weight vectors satisfied by the weighting triangles asso-
ciated with the WEBM operator, we first take the values 0 and 1 adequately to the input
arguments a1, a2, . . . , an.

For example, by considering input argument as (1, 1, 0, 0, . . . , 0), we get

WBMp,q
(n+1)(

n+1 arguments︷ ︸︸ ︷
1, 1, 0, 0, . . . , 0, 0) ≤WBMp,q

(n)(

n arguments︷ ︸︸ ︷
1, 1, 0, 0, . . . , 0) ≤WBMp,q

(n+1)(

n+1 arguments︷ ︸︸ ︷
1, 1, 0, 0, . . . , 0, 1)

i.e., (w1,n+1w2,n+1) ≤ (w1,nw2,n) ≤ (w1,n+1w2,n+1 + w1,n+1wn+1,n+1 + w2,n+1wn+1,n+1). (A1)

Similarly, taking the input argument as (1, 1, 1, 0, . . . , 0), we get

WBMp,q
(n+1)(

n+1 arguments︷ ︸︸ ︷
1, 1, 1, 0, . . . , 0, 0) ≤WBMp,q

(n)(

n arguments︷ ︸︸ ︷
1, 1, 1, 0, . . . , 0) ≤WBMp,q

(n+1)(

n+1 arguments︷ ︸︸ ︷
1, 1, 1, 0, . . . , 0, 1)

(w1,n+1w2,n+1 + w1,n+1w3,n+1 + w2,n+1w3,n+1) ≤ (w1,nw2,n + w1,nw3,n + w2,nw3,n) ≤
(w1,n+1w2,n+1 + w1,n+1w3,n+1 + w2,n+1w3,n+1 + w1,n+1wn+1,n+1 + w2,n+1wn+1,n+1 (A2)

+w3,n+1wn+1,n+1).

This continues.
Generalizing, we get the condition for weighting triangle ∆ as

r

∑
i,j=1;i 6=j

wi,n+1wj,n+1 ≤
r

∑
i,j=1;i 6=j

wi,nwj,n ≤
r+1

∑
i,j=1;i 6=j

wi,n+1wj,n+1.

Thus, we can come to the conclusion that, if the extended aggregation operator BM is
monotone with respect to α, β and π-ordering, then the above condition holds.

Now to prove the reverse part, suppose the condition (9) holds. To prove WEBM
is monotone with respect to α, β and π-ordering, we need to show that for for all a =
(a1, a2, . . . , an) ∈ [0, 1]n with n ≥ 1:

WBMp,q
(n+1)(a1, a2, . . . , an,

∧
ai) ≤WBMp,q

(n)(a1, a2, . . . , an) ≤WBMp,q
(n+1)(a1, a2, . . . , an,

∨
ai)

holds.
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Now for any r ∈ {1, 2, . . . , n} with n ≥ 1,

WBMp,q
(n)(a1, a2, . . . , an) =

(
1

n
∑

i,j=1
i 6=j

wi,nwj,n

n

∑
i,j=1
i 6=j

wi,nwj,nap
i aq

j

) 1
p+q

.

Now denoting
∨

ai = an+1 = max{a1, a2, . . . , an}. Thus,

WBMp,q
(n+1)(a1, a2, . . . , an, an+1) =

(
1

n+1
∑

i,j=1
i 6=j

wi,n+1wj,n+1

n+1

∑
i,j=1
i 6=j

wi,n+1wj,n+1ap
i aq

j

) 1
p+q

.

As an+1 = max{a1, a2, . . . , an}, we have Equation (A3).

n
∑

i,j=1
i 6=j

wi,nwj,nap
i aq

j

n
∑

i,j=1
i 6=j

wi,nwj,n

≤

n
∑

i,j=1
wn+1,n+1wj,n+1ap

n+1 aq
j + wi,n+1wn+1,n+1 ap

i aq
n+1

n
∑

i,j=1
wn+1,n+1wj,n+1 + wi,n+1wn+1,n+1

(A3)

i.e., ( n

∑
i,j=1

wn+1,n+1wj,n+1 + wi,n+1wn+1,n+1

)( n

∑
i,j=1
i 6=j

wi,nwj,nap
i aq

j

)
≤

( n

∑
i,j=1
i 6=j

wi,nwj,n

)( n

∑
i,j=1

wn+1,n+1wj,n+1ap
n+1 aq

j + wi,n+1wn+1,n+1 ap
i aq

n+1

)
.

Now, by adding
(

n
∑

i,j=1
i 6=j

wi,nwj,n

)(
n
∑

i,j=1
i 6=j

wi,nwj,nap
i aq

j

)
on both sides of the inequality

and applying the condition
n
∑

i,j=1;i 6=j
wi,nwj,n ≤

n+1
∑

i,j=1;i 6=j
wi,n+1wj,n+1, we get

( n+1

∑
i,j=1
i 6=j

wi,n+1wj,n+1

)( n

∑
i,j=1
i 6=j

wi,nwj,nap
i aq

j

)
≤
( n

∑
i,j=1
i 6=j

wn
i wn

j

)( n+1

∑
i,j=1
i 6=j

wi,n+1wj,n+1ap
i aq

j

)
.

Thus,

1
n
∑

i,j=1
i 6=j

wi,nwj,n

n

∑
i,j=1
i 6=j

wi,nwj,nap
i aq

j ≤
1

n+1
∑

i,j=1
i 6=j

wi,n+1wj,n+1

n+1

∑
i,j=1
i 6=j

wi,n+1wj,n+1ap
i aq

j .

Finally,

(
1

n
∑

i,j=1
i 6=j

wi,nwj,n

n

∑
i,j=1
i 6=j

wi,nwj,nap
i aq

j

) 1
p+q

≤
(

1
n+1
∑

i,j=1
i 6=j

wi,n+1wj,n+1

n+1

∑
i,j=1
i 6=j

wi,n+1wj,n+1ap
i aq

j

) 1
p+q
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which implies

WBMp,q
(n)(a1, a2, . . . , an) ≤WBMp,q

(n+1)(a1, a2, . . . , an,
∨

ai).

For the remaining part, the proof is very similar, and we omit it.
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32. Corrente, S.; Greco, S.; Słowiński, R. Multiple criteria hierarchy process in robust ordinal regression. Decis. Support Syst. 2012,
5, 660–674. [CrossRef]
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