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Abstract: In the article, we investigate entanglement dynamics defined by time-dependent linear
generators. We consider multilevel quantum systems coupled to an environment that induces
decoherence and dissipation, such that the relaxation rates depend on time. By applying the condition
of partial commutativity, one can precisely describe the dynamics of selected subsystems. More
specifically, we investigate the dynamics of entangled states. The concurrence is used to quantify the
amount of two-qubit entanglement in the time domain. The framework appears to be an efficient tool
for investigating quantum evolution of entangled states driven by time-local generators. In particular,
non-Markovian effects can be included to observe the restoration of entanglement in time.
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1. Introduction

The dynamics of open quantum systems remains a topic of intensive research [1–4].
Quantum evolution can be described by differential equations (master equations) that con-
vey information about the interactions between the system and its environment. However,
quite often, master equations are not exactly solvable due to their complexity. Therefore,
searching for new methods to integrate quantum evolution equations remains a crucial
problem within the theory of open quantum systems.

A celebrated master equation describes evolution of open quantum systems gov-
erned by a linear operator L : Md(C) → Md(C), where we assume that the space is
finite-dimensional [5–8]. The linear operator L is commonly referred to as the Gorini–
Kossakowski–Sudarshan–Lindblad (GKSL) generator, or Lindbladian for short. In such a
case, the dynamical map is equivalent to a semigroup:

ρ(t) = eLt [ρ(0)], (1)

where ρ(0) denotes the initial density matrix. A master equation with the GKSL generator
is the most general type of Markovian and time-homogeneous evolution that preserves
the trace and positivity. This type of quantum generator has been intensively studied, for
example, in the context of quantum transport efficiency [9], open system symmetries [10],
or quantum state tomography with continuous measurement [11].

A generalized master equation can be obtained if we assume that the linear generator
depends on time:

dρ(t)
dt

= L(t) [ρ(t)], (2)

where L(t) is defined on some time interval I . The dynamics (2) can be solved by imple-
menting a time ordering operator, which, in other words, is called “Dyson series” [12].
The formal solution does not appear practical for physical applications since we strive
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to obtain closed-form dynamical maps. Therefore, fundamental problems of the theory
of open quantum systems relate to algebraic properties of L(t) which guarantee that the
solution generates a legitimate physical evolution [1].

In particular, we can discuss a time-dependent GKSL generator such that its dissipative
part changes over time. More specifically, we investigate L(t) in the form [13]:

L(t) [ρ(t)] = −i[H, ρ(t)] + ∑
k

γk(t)
(

Vkρ(t)V†
k −

1
2

{
V†

k Vk, ρ(t)
})

, (3)

where V†
k stands for the conjugate transpose of Vk. This generator involves a physical

model, where the jump operators, Vk, are represented by constant matrices while the
relaxation rates, γk(t), are time-dependent. The operator H is hermitian, and it can be
interpreted as the effective Hamiltonian that accounts for the unitary evolution. The time-
local generator (3) is Hermiticity- and trace-preserving, but for negative relaxation rates
it may lead to non-Markovian effects [14,15]. In this work, we mostly consider positive
relaxation rates, which means that the evolution can be called time-dependent Markovian.
However, non-Markovianity is also investigated as a separate case.

The master equation of the form (3) can be implemented for an analysis of quantum
systems immersed within an engineered environment [16]. This approach allows one to
address the problem of controllability by the environment (i.e., control by γk(t)), which
affects a system through dissipative dynamics and can be used to steer the system from an
initial state (pure or a mixed) towards a designated state [17]. Therefore, research on time-
dependent quantum generators is strongly motivated by a large number of applications of
quantum control, including quantum computation, quantum engineering, and management
of decoherence processes [18].

To solve master equations with generators (3), we implement the condition of partial
commutativity [19]. This method can be considered a generalization of functional and
integral commutativity [20–22]. If a generator L(t) is partially commutative, one can write
the closed-form solution for initial density matrices that belong to a subset determined by
this condition. The framework for implementation of partial commutativity in dynamics of
open quantum systems has already been introduced and applied to specific examples [23].
The present contribution substantially broadens the scope of the framework by applying it
to investigate the dynamics of entangled states. The model allows one to precisely track
different characteristics of entanglement in the time domain.

In this paper, we focus on entangled states, which are a crucial resource in quantum
communication, computation, and teleportation [24–28]. Entanglement is a key example
of non-classical correlations meaning that a quantum state of the entire system cannot
be factorized as a product of states of its local constituents. In this context, we usually
consider compound quantum systems that feature nonlocal correlations, which can be
verified experimentally by detecting multiparticle quantum interference [29]. However,
multipartite systems are not necessary to exhibit entanglement since one photon is sufficient
to encode a Bell state [30]. The amount of entanglement can change in time due to the
coupling between the system and the environment. For two-qubit states, one can directly
compute a measure to quantify entanglement versus time. In particular, one can implement
the concurrence [31–33] or the tangle [34].

The analysis of bipartite entanglement may involve two qubits embedded in a com-
mon environment [35] or two independent baths [36]. One specific example involves a
nonequilibrium environment [37–39], where one can observe non-Markovian effects that
bring an increase in the amount of entanglement due to information backflows [40]. In
addition, the problem of transferring quantum systems through spin chain systems have
been discussed in the context of non-Markovianity [41]. In particular, a model where two
ends of a spin chain are independently immersed in two bosonic baths has proved to
enhance the fidelity evolution in the non-Markovian regime [42].
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In Section 2, we revise the condition of partial commutativity from the point of view
of open quantum systems. Then, in Sections 3 and 4, we implement the framework
to investigate the dynamics of two-qubit and three-qubit entangled states, respectively,
governed by time-dependent dissipative generators. Next, in Section 5, we study the
evolution of two entangled qutrits subject to the same bath. The framework allows one
to track how the amount of entanglement declines as the system undergoes a relaxation
toward the ground state. Finally, in Section 6, we consider non-Markovian evolution. The
scheme proves to be an efficient tool for observing a backflow of information for specific
time-local quantum generators. Such a phenomenon can lead to the restoration of an
entangled state over time.

2. Partially Commutative Open Quantum Systems

For some generators of evolution, the dynamics (2) allows a closed-form solution:

ρ(t) = exp
(∫ t

0
L(τ)dτ

)
[ρ(0)]. (4)

However, a necessary condition for the generator L(t) to guarantee a solution in the
closed form remains unknown. Up to now, only a few classes of linear differential equations
are known to be solvable in closed forms, which justifies further research into the concept
of integrability.

In the literature, some sufficient conditions for integrability of the master equation
have been determined. In particular, we know that if the generator L(t) is functionally
commutative, one can obtain the closed-form solution (see, e.g., Ref. [43–46]). The class of
functionally commutative systems (also known as the Lappo–Danilevsky systems) is well-
described in the existing literature, and was also studied in connection to open quantum
systems [21]. A typical subclass of the functionally commutative operators contains such
generators L(t) that commute with their integrals [47,48].

In the present article, we investigate the condition of partial commutativity [43,49],
which can be considered a generalization of the Lappo–Danilevsky systems. Partial commu-
tativity allows one to follow the closed-form solution for a subset of initial states determined
by this criterion. The theorem, which was introduced by Fedorov in 1960, remained un-
known for almost 60 years until it was reestablished by Kamizawa in 2018 [19]. In 2020, it
was implemented for quantum dynamics to investigate dissipative multilevel systems with
decoherence rates depending on time [23]. It appears that the applicability of this technique
is extensive, which makes it worth studying with reference to evolution of physical systems.

First, the dynamics (2) can always be transformed into a standard matrix equation,
where the matrix representation of the generator L(t) multiplies the vectorized density
matrix vec[ρ(t)]. For any matrix M, the operator vec[M] should be understood as a vector
constructed by stacking the columns of M one underneath the other. Thus, let us consider
the master Equation (2) in the vectorized form, i.e.,:

vec[ρ̇(t)] = L(t) vec[ρ(t)]. (5)

Particularly, the generator (3) can be represented as a matrix by following the Roth’s
column lemma [50,51]. For any three matrices A, B, C (such that product ABC is com-
putable), we can prove :

vec [ABC] =
(

CT ⊗ A
)

vec[B]. (6)

By implementing the Roth’s column lemma (6), one transforms the generator (3) into
its matrix form:

L(t) = i
(

HT ⊗ Id − Id ⊗ H
)
+ ∑

k
γk(t)

(
Vk ⊗Vk −

1
2
Id ⊗V†

k Vk −
1
2

VT
k Vk ⊗ Id

)
, (7)

where Vk denotes the complex conjugate of the jump operator Vk.
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Then, we can formulate the condition of partial commutativity, which is alternatively
called the Fedorov theorem [49].

Theorem 1 (Fedorov theorem). If the matrix representation of the generator L(t) satisfies the
condition:

[L(t), Bn(t) ] α = 0 ∀ n = 1, 2, 3, . . . and ∀ t ∈ I , (8)

where B(t) =
∫ t

0 L(τ)dτ and α is a constant vector, then there exists a closed-form solution of (5):

vec[ρ(t)] = eB(t) α. (9)

The proof of the Fedorov theorem can be found in Ref. [23]. The major limitation of
the Fedorov theorem concerns the fact that the closed-form solution is admissible only for
vectors α that satisfy the condition (8). This means that we need to determine the subspace
of all allowable initial vectors:

M :=
⋂
t∈I

µ−1⋂
n=1

Ker[L(t), Bn(t) ], (10)

where µ stands for the degree of the minimal polynomial of B(t) (i.e., the matrix polynomial
of the lowest degree, such that B(t) is a root of the polynomial). In the definition ofM
we treat t as an independent parameter, which means that the result should be fixed. This
allows us to obtain a solution that holds for all t ∈ I .

The Formula (10) cannot be easily calculated. However, one can use the approach
introduced by Shemesh to transform this expression into a form that can be computed
straightforwardly [52,53]:

M =
⋂
t∈I

Ker
µ−1

∑
n=1

[L(t), Bn(t) ]†[L(t), Bn(t) ]. (11)

To sum up, if one wants to apply the Fedorov theorem to obtain a closed-form solution
of a differential equation with a time-dependent generator L(t), one needs to prove that the
subspaceM defined by (10) is non-empty, which can be done effectively by implementing
the Shemesh criterion (11). Then, one gets the closed-form solution according to (9). The
solution defines a legitimate trajectory in the state set if α can be considered a vectorized
density matrix, i.e., α ≡ vec[ρ(0)]. In other words, we operate only within the physically
admissible subset of initial vectors: α ∈ M∩ vec [S(H)], where S(H) denotes the set of all
legitimate density matrices (Hermitian, positive semi-definite of trace one) associated with
the Hilbert spaceH. In the present paper, we assume that the Hilbert space of the system
H is finite-dimensional, and we operate in the standard basis. Time-dependent generators
L(t) that correspond to a non-empty subspaceM can be called partially commutative.

3. Two-Qubit Entangled States

We consider cascade systems with three energy levels described by quantum states:
|1〉, |2〉, |3〉 [54,55]. Therefore, we operate in the 3−dimensional Hilbert space and, for
simplicity, we assume that the vectors {|1〉, |2〉, |3〉} constitute the standard basis in H.
Two types of transition are possible: |3〉 → |2〉 and |2〉 → |1〉. In other words, the model
describes a relaxation toward the ground state |1〉. Let us assume that this process is
governed by a time-local generator [23]:

L(t) = i
(

HT ⊗ I3 − I3 ⊗ H
)
+ sin2ωt

(
E23 ⊗ E23 −

1
2
I3 ⊗ E33 −

1
2

E33 ⊗ I3

)
+ cos2ωt

(
E12 ⊗ E12 −

1
2
I3 ⊗ E22 −

1
2

E22 ⊗ I3

)
,

(12)
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where H denotes the unperturbed Hamiltonian with three symmetric energy levels, i.e.
H = diag(−E , 0, E) and Eij = |i〉〈j| represents the jump operator. Additionally, ω stands
for the angular frequency characterizing the dynamics.

The dynamics governed by (12) has a closed-form solution for such initial states that
have zero probability of occupying the highest energy level [23]. Thus, the condition of
partial commutativity allows one to precisely describe the evolution of two-level systems
immersed within the 3−dimensional Hilbert space. This fact gives the gist of the Fedorov
theorem—dynamical maps in the closed forms are obtainable only for a restricted subset
of states.

Furthermore, if we have a pair of two-level systems (denoted by A and B) and each of
them is subject to (12), we can describe the dynamics by a joint two-qubit generator:

L2q(t) = L(A)(t)⊗ I(B)
9 + I(A)

9 ⊗L(B)(t), (13)

which is known as the Kronecker sum: L2q(t) ≡ L(A)(t)⊕ L(B)(t). For any initial state
ρAB(0) such that neither of the subsystems can be found in the highest energy level, we
can follow the closed-form trajectory

ρAB(t) = exp
(∫ t

0
L2q(τ)dτ

)
[ρAB(0)]. (14)

Therefore, starting from three-level dynamics (12), we can describe the dynamics of
two-qubit entangled states within the framework of partial commutativity.

3.1. Example 1: Evolution of |Φ(φ)〉
Let us consider the dynamics of bipartite entanglement subject to the generator (13)

with the initial state given as ρAB(0) = |Φ(φ)〉〈Φ(φ)|, where

|Φ(φ)〉 = 1√
2

(
|1〉A ⊗ |1〉B + eiφ|2〉A ⊗ |2〉B

)
(15)

with 0 ≤ φ < 2π standing for the relative phase. This class of entanglement includes the
two celebrated Bell states: |Φ+〉 and |Φ−〉. Such an initial state satisfies the condition of
partial commutativity since (15) is a superposition of the middle and the ground state. This
implies that the dynamical map can be computed in the closed-form based on (14). We
neglect the elements of the density matrix that relate to the highest energy level since it
cannot be occupied. Then, by implementing a mathematical software to solve (14), one
obtains a 4× 4 density matrix that describes the dynamics of two-qubit entanglement:

ρAB(t) =
1
2


1 + (1− ξ(t))2 0 0 ξ(t) ei(φ+2E t)

0 ξ(t)(1− ξ(t)) 0 0
0 0 ξ(t)(1− ξ(t)) 0

ξ(t) e−i(φ+2E t) 0 0 ξ2(t)

 (16)

where ξ(t) = exp
(
− 2ωt+sin 2ωt

4ω

)
.

First, by pij(t), we denote the joint probability of finding upon measurement the
subsystems A and B in the states described by the vectors |i〉 and |j〉, respectively. Then,
one can track the probabilities versus time, which is presented in Figure 1 for an arbitrary ω.
We observe that p11(t) gradually increases whereas p22(t) declines, which reflects the fact
that the dynamics describe the relaxation towards the ground level. However, for t > 0, we
notice non-zero values of p12(t) (and p21(t)), which implies that the states are not perfectly
correlated. It may happen that the A−system has already decayed to the ground level, but
the B−system remains in the middle level (or vice versa).
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p11(t)

p12(t)=p21(t)

p22(t)
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Figure 1. Plots present the probability of finding a two-qubit system in one of the possible states. The
initial state is represented by (15).

The diagonal elements of the density matrix (16) are not affected by E or φ. The energy
levels of the unperturbed Hamiltonian govern the evolution of the phase factor on the
complex plane. Assuming φ = π and ω is fixed arbitrarily, one can follow the trajectories
of the off-diagonal elements of the density matrix ρAB(t). In Figure 2, two trajectories are
presented. One can agree that the dynamics of ρAB

14 (t) features two aspects. First, the phase
factor rotates on the complex plane, which is caused by E . Secondly, ρAB

14 (t) approaches
zero as time grows, which can be interpreted as a phase-damping effect brought about by
the dissipative part of the generator of evolution.
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Figure 2. Trajectories of the phase factor, ρAB
14 (t), presented on the complex plane for two values of E .

Furthermore, we investigate how the amount of entanglement changes over time.
Thus, the concurrence, denoted by C[ρAB(t)], is computed [56,57]. For any two-qubit
density matrix ρ, the concurrence can be expressed as

C[ρ] = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

}
, (17)

where λi are the eigenvalues of a non-Hermitian matrix ρ (σ3 ⊗ σ3) ρ∗ (σ3 ⊗ σ3) arranged in
decreasing order. By convention, σ3 represents one of the Pauli matrices and ρ∗ denotes the
complex conjugate taken in the standard basis.

The results are presented in Figure 3. The properties of C[ρAB(t)] are influenced by
ω (and not by E ). For this reason, three plots corresponding to different values of ω are
shown. For every plot, we have C[ρAB(0)] = 1 since the initial state is maximally mixed
(irrespective of φ). One can notice that all plots are non-increasing and converge to zero
with time, which stems from the properties of the generator of evolution. However, the
pace of entanglement decline is different. Based on the plots, one can predict how much
entanglement is preserved after a given period of time.
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Figure 3. Concurrence, C[ρAB(t)], of the two-qubit density matrix with the initial state (15) for three
values of ω.

3.2. Example 2: Evolution of |Ψ(φ)〉
Let us consider another class of maximally entangled two-qubit states:

ρAB(0) = |Ψ(φ)〉〈Ψ(φ)|, (18)

where
|Ψ(φ)〉 = 1√

2

(
|1〉A ⊗ |2〉B + eiφ|2〉A ⊗ |1〉B

)
, (19)

which includes the other two famous Bell states: |Ψ+〉 and |Ψ−〉. For any relative phase,
the state (19) represents perfectly anti-correlated results, which means that if the subsystem
A is measured to be in the state |1〉, the subsystem B is bound to be in |2〉 (and vice versa).

For input states of the form (18), we obtain a closed-form solution according to (14).
Since the highest energy level is forbidden, we can reduce the output density matrix by
eliminating the elements related to |3〉. Thus, in the same vein as in the above example,
we obtain a 4× 4 density matrix that describes two-qubit entanglement immersed in a
higher-dimensional Hilbert space:

ρAB(t) =
1
2


2
(

1− e−
2ωt+sin 2ωt

4ω

)
0 0 0

0 e−
2ωt+sin 2ωt

4ω e−
2(t+2φi)ω+sin 2ωt

4ω 0

0 e−
2(t−2φi)ω+sin 2ωt

4ω e−
2ωt+sin 2ωt

4ω 0
0 0 0 0

. (20)

First, one can notice that p22(t) = 0, which come as a natural consequence of the initial
quantum state (19). Thus, only three configurations of the system are possible. For an
arbitrary ω, the probabilities corresponding to the admissible configurations are presented
in Figure 4. One can observe that the probability of the anti-correlated configurations
declines while p11(t) increases.

Furthermore, the concurrence is investigated as a function of time. For three values of
ω, the concurrence is depicted in Figure 5. The plots interlace with one another.
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Figure 4. Plots present the probability of finding a two-qubit system in one of the possible states. The
initial state is represented by (19).
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Figure 5. Concurrence, C[ρAB(t)], of the two-qubit density matrix with the initial state (19) for three
values of ω.

4. Three-Qubit Entangled States

The framework based on partial commutativity can also be applied to three-qubit
entangled states. Let us assume that there is a tripartite system with respective components
denoted by A, B, and C. We introduce a time-dependent three-qubit generator of evolution:

L3q(t) = L(A)(t)⊗ I(B)
9 ⊗ I(C)9 + I(A)

9 ⊗L(B)(t)⊗ I(C)9 + I(A)
9 ⊗ I(B)

9 ⊗L(C)(t), (21)

where L(i)(t) stands for a generator of the form (12). Just as before, the generator L(i)(t)
describes the evolution of a three-level system. However, to make to master equation
solvable, we cannot admit the highest energy level. Therefore, each subsystem allows for
a realization of a qubit state. For input states satisfying this condition, ρABC(0), one can
follow the closed-form solution

ρABC(t) = exp
(∫ t

0
L3q(τ)dτ

)
[ρABC(0)]. (22)

4.1. Example 1: Evolution of the GHZ State

In particular, we can consider an initial state: ρABC(0) = |GHZ〉〈GHZ|, where

|GHZ〉 = 1√
2

(
|1〉A ⊗ |1〉B ⊗ |1〉C + eiφ|2〉A ⊗ |2〉B ⊗ |2〉C

)
. (23)

and 0 ≤ φ < 2π. For φ = 0, the vector (23) represents the Greenberger–Horne–Zeilinger
state (GHZ state) [58], which is celebrated for its importance in quantum information, in-
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cluding quantum teleportation [59], quantum secret sharing [60], or quantum
cryptography [61]. By applying the dynamical map (22), one can track the evolution of the
GHZ state with an arbitrary phase. Having reduced the density matrix by eradicating the
forbidden level, one obtains a 8× 8 density matrix that describes the three-qubit state:

ρABC(t) =

1
2



1 +
(

1− e−
2ωt+sin 2ωt

4ω

)3
0 0 0 0 0 0 e(−

3
4+3E i)t−iφ− 3 sin 2ωt

8ω

0 Ξ(t) 0 0 0 0 0 0
0 0 Ξ(t) 0 0 0 0 0
0 0 0 Σ(t) 0 0 0 0
0 0 0 0 Ξ(t) 0 0 0
0 0 0 0 0 Σ(t) 0 0
0 0 0 0 0 0 Σ(t) 0

e(−
3
4+3E i)t+iφ− 3 sin 2ωt

8ω 0 0 0 0 0 0 e−
3t
2 −

3 sin 2ωt
4ω


.

(24)

where

Ξ(t) = e−
2ωt+sin 2ωt

4ω

(
1− e−

2ωt+sin 2ωt
4ω

)2
,

Σ(t) = e−
2ωt+sin 2ωt

2ω

(
1− e−

2ωt+sin 2ωt
4ω

)
.

(25)

In Figure 6, one finds the probabilities of finding the system in one of the possible
configurations. We observe that the probability corresponding to |1〉A ⊗ |1〉B ⊗ |1〉C grows
whereas the probability for |2〉A ⊗ |2〉B ⊗ |2〉C declines, which as an expected tendency.
Interestingly, non-zero probabilities relate to other possible configurations. Although all
three subsystems are subject to the same bath, it may happen that only one party has
already relaxed to the ground state and the other two have not, or two subsystems have
collapsed, and one remains in the middle energy level.

p111(t)

p222(t)

p112(t)=p121(t)=p211(t)

p122(t)=p212(t)=p221(t)
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Figure 6. Plots present the probability of finding a three-qubit system in one of the possible states.
The initial state is represented by (23).

Then, one can also study the time evolution of the phase factor on the complex plane,
which is primarily governed by E . In Figure 7, one finds two trajectories of ρABC

18 (t) for a
fixed value of ω. In this case, we can observe similar tendencies as presented in Figure 2.
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Figure 7. Trajectories of the phase factor, ρABC
18 (t), presented on the complex plane for two values of E .

Furthermore, to describe the decline in entanglement as the initial state evolves, we
compute the Bures distance that is given by

D(ρABC(t)) = 2
(

1−
√
F (ρABC(t), ρ111)

)
, (26)

where ρ111 = |111〉〈111| and, for any two quantum states ρ and σ, F (ρ, σ) denotes the
quantum fidelity defined as [62,63]

F (ρ, σ) =

[
tr
√√

ρ σ
√

ρ

]2
. (27)

The Bures distance can be implemented to define a geometric measure of entangle-
ment [64]. In our application, we consider it a simplified figure to quantify the amount
of entanglement. Since the initial state converges to |111〉 in time, it appears justified to
interpret the distance between an instantaneous state ρABC(t) and the final state |111〉 as a
measure of entanglement. In Figure 8, one can find three plots obtained for different values
of ω. This approach allows us to investigate entanglement dynamics in terms of geomet-
ric approaching to the final (separable) state, which reflects the amount of entanglement
preserved in the system at a given time.
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Figure 8. Plots present the Bures distance, D(ρABC(t)), for three values of ω. Initially, the system was
represented by the GHZ state.

4.2. Example 2: Evolution of the W State

Next, we consider an input state ρABC(t) = |W〉〈W|, where

|W〉 = 1√
3
(|1〉A|1〉B|2〉C + |1〉A|2〉B|1〉C + |2〉A|1〉B|1〉C), (28)
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which is commonly referred to as the W state. The states |GHZ〉 and |W〉 represent two
very different kinds of tripartite entanglement that cannot be transformed into each other
by local operations [65]. The W state was proposed as a resource for several applications,
including secure quantum communication [66].

By applying the dynamical map (22), one obtains the evolution of the W state:

ρABC(t) =
1
3



3
(

1− e−
2ωt+sin 2ωt

4ω

)
0 0 0 0 0 0 0

0 e−
2ωt+sin 2ωt

4ω e−
2ωt+sin 2ωt

4ω 0 e−
2ωt+sin 2ωt

4ω 0 0 0
0 e−

2ωt+sin 2ωt
4ω e−

2ωt+sin 2ωt
4ω 0 e−

2ωt+sin 2ωt
4ω 0 0 0

0 0 0 0 0 0 0 0
0 e−

2ωt+sin 2ωt
4ω e−

2ωt+sin 2ωt
4ω 0 e−

2ωt+sin 2ωt
4ω 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (29)

Then, in Figure 9, we provide the probabilities of finding the three-qubit system in all
admissible states. One observes that the probability of measuring the system in the state
|111〉 grows gradually from zero towards 1.
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Figure 9. Plots present the probability of finding a three-qubit system in one of the possible states.
The initial state is represented by (28).

Finally, we can study how the entanglement declines in time by computing the Bures
distance between ρABC(t) and the ultimate state |111〉, as introduced in (26). In Figure 10,
one finds the plots of D(ρABC(t)) for three values of ω, assuming the initial state of the
system was given by (28). As one can notice, the plots feature distinct shapes, which implies
that the decay of entanglement is correlated with the parameters describing the dynamics.
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Figure 10. Plots present the Bures distance, D(ρABC(t)), for three values of ω. Initially, the system
was represented by the W state.
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5. Two-Qutrit Entangled States

To describe a qutrit evolution, we introduce a four-level cascade model that represents
a physical process when the system can relax from the highest energy level |4〉 into the
lower state |3〉, then into the state |2〉, and finally into the ground state denoted by |1〉.
Three kinds of transition are allowable, which implies that we have three jump operators:
E34 := |3〉〈4|, E23 := |2〉〈3| and E12 := |1〉〈2|. We assume that the corresponding relaxation
rates are given by: γ34(t) := e−ωt and γ23(t) = γ12(t) = sin2(3 ωt). This results in the
generator of evolution in the matrix representation:

L4L(t) = i
(

HT
4L ⊗ I4 − I4 ⊗ H4L

)
+ e−ωt

(
E34 ⊗ E34 −

1
2
I4 ⊗ E44 −

1
2

E44 ⊗ I4

)
+ sin2(3 ω t)

(
E23 ⊗ E23 −

1
2
I4 ⊗ E33 −

1
2

E33 ⊗ I4

)
+

+ sin2(3 ω t)
(

E12 ⊗ E12 −
1
2
I4 ⊗ E22 −

1
2

E22 ⊗ I4

)
,

(30)

where H4L denotes a four-level unperturbated Hamiltonian. The energy levels are assumed
to be symmetric, i.e., H4L = diag(−E2,−E1, E1, E2) for E1, E2 > 0.

It can be demonstrated that the closed-form solution of a master equation with the
generator (30) is legitimate for such initial states that do not involve the highest energy
level [23]. Therefore, the framework of partial commutativity allows one to study the
dynamics of genuine qutrit states that are spanned by the vectors {|1〉, |2〉, |3〉}.

To implement the framework for entangled qutrits, we introduce a two-qutrit generator

L2Q = L(A)
4L (t)⊗ I(B)

16 + I(A)
16 ⊗L(B)

4L (t). (31)

Then, for any bipartite system described by an initial state ρAB(0) such that neither of
the subsystems involves the highest energy level, one can follow the closed-form dynami-
cal map:

ρAB(t) = exp
(∫ t

0
L2Q(τ)dτ

)
[ρAB(0)]. (32)

This method allows us to study the dynamics of two-qutrit entangled states such
that each subsystem is realized as a combination of three energy levels: {|1〉, |2〉, |3〉}. In
particular, we choose to investigate the dynamics of a maximally entangled two-qutrit
state [67]:

|Θ〉 = 1√
3
(|1〉A ⊗ |1〉B + |2〉A ⊗ |2〉B + |3〉A ⊗ |3〉B). (33)

For ρAB(0) = |Θ〉〈Θ|, we obtain a solution based on (32), but the exact form of ρAB(t)
is not presented due to its complexity. Instead, in Figure 11, we present the probabilities
of finding the system in all of the possible configurations. As one can notice, the input
state (33) featured perfect correlations, which means that if subsystem A is found after
measurement to be in a state |j〉, the subsystem B is determined to be in the very same state.
However, these correlations are disturbed by the dissipative generator of evolution as for
t > 0 we observe non-zero probabilities pij(t) corresponding to i 6= j. To conclude, before
the maximally entangled state (33) collapses into the ground level |11〉, it gets decorrelated
due to the evolution governed by the time-local generator (31).
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Figure 11. Plots present the probability of finding a two-qutrit system in one of the possible states.
The initial state is represented by (33).

Moreover, we investigate the dynamics of entanglement by computing the Bures
distance between ρAB(t) and the final state |11〉 (we proceed analogously as in (26)). Again,
since the state ρAB(t) approaches the separable state |11〉 ≡ |1〉A ⊗ |1〉B with time, we
consider the Bures distance as a simplified measure of entanglement. In Figure 12, one finds
the plots of D(ρAB(t)) for the initial state (33) and three values of ω. Based on the plots,
one can observe that entanglement vanishes at different rates depending on the parameters
characterizing the generator of evolution. In addition, the functions D(ρAB(t)) present
different shapes. Such analysis allows one to track the decline of entanglement in the time
domain for a given parameter.
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Figure 12. Plots present the Bures distance, D(ρAB(t)), for three values of ω.

6. Non-Markovian Evolution of Two-Qubit Entangled States

Let us generalize the operator (12) by including an additional real parameter η:

Lnm(t) = i
(

HT ⊗ I3 − I3 ⊗ H
)
+ (sin2ωt− η)

(
E23 ⊗ E23 −

1
2
I3 ⊗ E33 −

1
2

E33 ⊗ I3

)
+ (cos2ωt− η)

(
E12 ⊗ E12 −

1
2
I3 ⊗ E22 −

1
2

E22 ⊗ I3

)
,

(34)

which implies that, depending on the value of η, the generator (34) may lead to: Markovian
evolution, non-Markovian dynamics, or a non-physical map. Irrespective of the type
of evolution, the generator (34) is partially commutative, which allows one to write a
closed-form solution provided the highest energy state |3〉 is not included in the input state.

To guarantee a physical evolution, we need to verify whether the map
exp

(∫ t
0 Lnm(τ)dτ

)
≡ Λt is completely positive and trace-preserving (CPTP). Conser-

vation of the trace is provided by the algebraic structure of the operator (34), which is a
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time-dependent GKSL generator [5,6,14]. By following the Choi’s theorem on completely
positive maps [68], we know that Λt is CP iff (Id ⊗Λt)[Pd] ≥ 0, where Pd denotes a projec-
tor corresponding to a maximally entangled state. In our case, d = 2 and P2 = |Φ+〉〈Φ+|
since we reduce the dimension of the Hilbert space due to the partial commutativity con-
straint. However, general criteria for the map Λt to be CPTP cannot be established because
of the number of parameters. Therefore, we verify numerically that for η = 0.39 and three
selected values of ω the map Λt is CPTP for all t ≥ 0.

Non-Markovian behavior of the map Λt can be demonstrated by following the criterion
given by Breuer, Lane, and Piilo (henceforth: BLP criterion) [14,15]. They constructed a
general measure for the degree of non-Markovianity in open quantum systems. According
to the BLP criterion, a dynamical map Λt is Markovian iff

σ(ρ1, ρ2; t) :=
1
2

d
d t
‖Λt[ρ1 − ρ2]‖ ≤ 0 (35)

for all pairs of input states ρ1 and ρ2. In (35), we use ‖.‖ to denote the trace norm, i.e.,
‖X‖ = tr

√
X†X. If X is self-adjoint, the trace norm can be expressed as the sum of the

modulus of the eigenvalues of X (denoted by λi), including multiplicities: ‖X‖ = ∑i |λi|.
This norm allows one to define a natural measure for the distance between two arbitrary
quantum states ρ1 and ρ2, which is known as the trace distance: Dtr(ρ1, ρ2) := 1/2 ‖ρ1− ρ2‖
[69]. An important property of the trace distance relates to the fact that any CPTP map Λ is
a contraction for the trace distance, which means that [70]

Dtr(Λ[ρ1], Λ[ρ2]) ≤ Dtr(ρ1, ρ2). (36)

For a Markovian dynamics Λt, the trace distance Dtr(Λt[ρ1], Λt[ρ2]) decreases mono-
tonically for all pairs of initial states and for all t ≥ 0. On the other hand, if there exists
a pair of states ρ1 and ρ2 such that the trace distance is nonmonotonic in time, then we
encounter non-Markovianity. Therefore, the BLP criterion (35) can be conveniently imple-
mented to demonstrate non-Markovian effects. The figure σ(ρ1, ρ2; t) can be interpreted as
an information flow and, as a results, σ(ρ1, ρ2; t) ≤ 0 implies that the information is lost
over time. On the other hand, σ(ρ1, ρ2; t) > 0 indicates a backflow of information from the
environment to the system, which is a proof of non-Markovian effects. In our application,
we select ρ1 = |Φ+〉〈Φ+| and ρ2 = 1/2 |Φ+〉〈Φ+|+ 1/2 I4. To demonstrate that our map
Λt features non-Markovianity, we plot σ(ρ1, ρ2; t), for three exemplary values of ω. The
results are presented in Figure 13. One can observe that we have both positive and negative
values of σ(ρ1, ρ2; t), which means that during evolution, information can flow in both
directions (from the system to the environment and vice versa).
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Figure 13. Information flow, σ(ρ1, ρ2; t), for three values of ω.

Then, we study the joint dynamics of a two-qubit system: ρAB(t) = (Λt⊗Λt)
[
ρAB(0)

]
,

where as the input state we take ρAB(0) = |Φ+〉〈Φ+|.
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In Figure 14, one can observe the concurrence versus time for three specific values
of ω (the same as those used to depict Figure 13). The plots feature clear non-Markovian
effects. We start from a maximally entangled state and, initially, the concurrence decreases.
However, we observe a backflow of information from the environment to the system during
the dynamics. After the first decline, the entanglement is restored by non-Markovianity,
and the concurrence again reaches its maximum value. Then, the concurrence oscillates,
and the local maxima can be attributed to non-Markovianity.
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Figure 14. Concurrence, C[ρAB(t)], for three values of ω and the initial state: ρAB(0) =
∣∣Φ+

〉〈
Φ+
∣∣.

The backflow of information caused by non-Markovianity can also be observed by
studying the probabilities corresponding to finding the system (upon measurement) in
an admissible state. In Figure 15, we present plots for a selected value of ω. In particular,
the first backflow is evident, when the probabilities return to their initial values, and the
entanglement is regained. Later on, the probabilities oscillate.
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Figure 15. Plots present the probability of finding the system ρAB(t) in one of the possible states,
assuming ω = 2 (arb. units).

7. Discussion and Outlook

In the article, we implemented the framework of partial commutativity to study
the dynamics of entangled states governed by time-dependent generators. The method
allows one to obtain a closed-form solution of a master quantum equation for a subset
of initial states determined by the Fedorov theorem. Consequently, one can investigate
the dynamics of lower-dimensional subsystems immersed in the original Hilbert space.
In particular, the framework proved to be an efficient tool for entanglement analysis. In
this paper, we investigated two-qubit and three-qubit entangled states, as well as the
evolution of entangled qutrits. In each case, the framework enabled us to study in detail
the dynamics of celebrated types of entanglement, which demonstrates how nonunitary
forms of decoherence affect entanglement.
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Entangled states are considered a key resource in quantum computation and commu-
nication. Therefore, one would like to preserve a sufficient degree of entanglement for the
longest achievable period of time. On the other hand, the theory of open quantum systems
indicates that interactions between the system and its environment can lead to a decrease in
the amount of entanglement. Therefore, it appears relevant to study the impact of different
evolution models on the amount of entanglement. The framework of partial commutativity
allows one to follow the decay of entanglement driven by time-local dissipative generators
with positive relaxation rates.

For negative decoherence rates, the framework allows one to witness non-Markovian
effects. In the Markovian regime, there is a continuous flow of information from the system
to the environment. However, if we go beyond this approximation, one can observe a
backflow of information, which leads to an increase of the concurrence during the evolution
and, as a result, entanglement can be restored. These findings are in accordance with other
studies devoted to non-Markovian effects on the dynamics of entanglement [71]. Howbeit,
in the present work, we demonstrated that the maximum degree of entanglement could be
regained due to the dynamics governed by a time-local generator.

Recent advances in experimental techniques and fabrication of quantum materials
have led us to circumstances where non-Markovian effects became crucial, opening new
arenas for scientific exploration. Non-Markovian dynamics of open quantum systems is of-
ten studied within the memory kernel approach [72], which utilizes the Nakajima-Zwanzig
equation [73,74]. However, the present paper indicates that partial commutativity can also
be an efficient tool for examining the properties of non-Markovian evolution emerging
from time-local quantum generators. In particular, the framework can be implemented to
transfer an input state to the target state strictly along the designed trajectory, including a
non-Markovian reservoir, cf. Ref. [75].

The framework described in this article is versatile and can be implemented to other
multilevel systems. For a given quantum generator, the condition of partial commutativity
allows one to cut out a subset of initial quantum states for which the dynamical map can
be written in the closed form. This aspect is connected with reducing the dimension, which
implies that certain levels have to be dropped for the closed-form solution to be legitimate.
The subsets of allowable states may have different structures, depending on the algebraic
properties of the generator of evolution as well as on specific values of the parameters
characterizing dynamics.

In the future, the framework will be developed to investigate dynamics governed
by other classes of time-dependent generators, including non-Markovian evolution. In
addition, for tripartite systems, it is worth studying how the entanglement between the
particles is shared over time. Such analysis will involve taking into account different
monogamy relations and entanglement measures [76–79].

Another goal of further research is to go beyond dissipative generators that describe
the process of relaxation. The framework is expected to provide significant insight into
atom-photon interactions. The ability to control quantum dynamics in such processes as
laser cooling can contribute to the advancement in quantum computing with single atoms.
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