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Abstract: Decision-making problems involve imprecise and incomplete information that can be
modelled well using intuitionistic fuzzy numbers (IFNs). Various IFNs are available in the literature
for modelling such problems. However, trapezoidal intuitionistic fuzzy numbers (TrIFNs) are widely
used. It is mainly because of the flexibility in capturing the incompleteness that occurs in the data.
Aggregation operators play a vital role in real-life decision-making problems (modelled under an
intuitionistic fuzzy environment). Different aggregation operators are available in the literature
for better decision-making. Various aggregation operators are introduced in the literature as a
generalization to the conventional aggregation functions defined on the set of real numbers. Each
aggregation operator has a specific purpose in solving the problems effectively. In recent years,
the power average (PA) operator has been used to reduce the effect of biased data provided by
decision-makers. Similarly, the Heronian mean (HM) operator has a property that considers the
inter-relationship among various criteria available in the decision-making problem. In this paper, we
have considered both the operators (HM, PA) to introduce a new aggregation operator (on the set of
TrIFNs), which takes advantage of both properties of these operators. In this study, firstly, we propose
the idea of a trapezoidal intuitionistic fuzzy power Heronian aggregation (TrIFPHA) operator and
a trapezoidal intuitionistic fuzzy power weighted Heronian aggregation (TrIFPWHA) operator by
combining the idea of the Heronian mean operator and power average operator in real numbers.
Secondly, we study different mathematical properties of the proposed aggregation operators by
establishing a few essential theorems. Thirdly, we discuss a group decision-making algorithm for
solving problems modelled under a trapezoidal intuitionistic fuzzy environment. Finally, we show
the applicability of the group decision-making algorithm by solving a numerical case problem, and
we compare the proposed method’s results with existing methods.

Keywords: trapezoidal intuitionistic fuzzy set; Heronian mean; power average operator; trapezoidal
intuitionistic fuzzy power weighted Heronian aggregation (TrIFPWHA) operator; multiple-attribute
group decision-making

MSC: 03B52; 03E72; 94D05

1. Introduction

Real-life problems mainly deal with either imprecise data or the combination of vari-
ous types of data. Solving such problems with imprecise information is not an easy task.
If a problem consists of precise (real number) data, it would be easy to solve such a problem
using conventional decision-making algorithms. However, the problem with imprecise
information and the problems with incomplete or adequate information cannot be solvable
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by using various conventional decision-making algorithms. Fuzzy numbers can represent
decision-making problems involving imprecise information; hence, they can be solved
using various fuzzy decision-making techniques. However, problems with imprecise and
incomplete information can be modelled better using intuitionistic fuzzy numbers ([1–3])
than fuzzy numbers or real numbers. Further, trapezoidal intuitionistic fuzzy numbers
(TrIFNs) were widely used to model problems with imprecise, adequate and qualitative
information. Many decision-making algorithms are available to solve these problems mod-
elled under an intuitionistic fuzzy environment. If the problem is modelled using TrIFNs,
it is necessary to study the ranking principle to compare arbitrary TrIFNs. The ranking of
TrIFNs [4,5] plays a vital role in solving problems modelled using trapezoidal intuitionistic
fuzzy numbers. Researchers worldwide have introduced various ranking principles for
comparing two arbitrary trapezoidal intuitionistic fuzzy numbers. However, none yield a
total ordering on the class of trapezoidal intuitionistic fuzzy numbers. In 2016, Nayagam
et al. [6] introduced eight different score functions in the class of TrIFNs and defined a total
ordering principle by using those eight score functions. The total ordering principle on
the class of TrIFNs makes the decision-making algorithm more efficient. Similarly, the ag-
gregation operators will be used to find the aggregated performance of any alternatives
concerning multiple attributes, which plays another important role in any decision-making
algorithm. The same decision-making algorithm may give different results based on nu-
merous aggregation operators. Many intuitionistic fuzzy aggregation operators developed,
such as the intuitionistic fuzzy weighted averaging operator, intuitionistic fuzzy ordered
weighted averaging operator, intuitionistic fuzzy hybrid aggregation operator, Heronian
mean, Bonferroni mean, Dombi, trigonometric, Frank and power aggregation operator [7].
Each of these aggregation operators has its specific purposes, some of which can mitigate
the specific influences of irrational data generated by biased decision-makers, such as the
power aggregation operator, by allocating the weighted vector based on the degree of
support between the input arguments to aggregate the input data and accomplish this
purpose. The interrelationship of the aggregated arguments, such as the Heronian mean
and Bonferroni mean, can also be considered by certain aggregation operators. In this
paper, our main aim is to introduce a new aggregation operator on the set of trapezoidal
intuitionistic fuzzy numbers by considering both power aggregation and the Heronian
mean operator.

Vojinovic et al. [8] have developed the novel integrated Improved Fuzzy Stepwise
Weight Assessment Ratio Analysis (IMF SWARA) method, Fuzzy Dombi weighted geomet-
ric averaging (FDWGA) operator and PESTEL. They have considered five decision-makers
for evaluating six main elements of the PESTEL analysis and 30 elements more (five for
each group). In total, they have created 35 models based on the developed model. Addi-
tionally, the usefulness of the developed integrated model has been demonstrated using a
case example.

Riaz et al. [9] proposed two aggregation operators, namely picture fuzzy hybrid
weighted arithmetic geometric aggregation (PFHWAGA) operator and picture fuzzy hy-
brid ordered weighted arithmetic geometric aggregation (PFHOWAGA) operator, and
studied their mathematical properties. The proposed operators outperform the current
PFN-defined operators. Further, they have shown the applicability of the proposed aggre-
gation operators by solving an MCDM problem on third-party logistic provider selection.
Sahu et al. [10] proposed two hybridization approaches based on the Hausdorff and Ham-
ming distance measures. They demonstrated two case studies to validate the applicability
of the proposed idea.

Zhou et al. [11] have used the hesitant fuzzy sets (HFSs) to depict the uncertainty in
risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) opera-
tor was adopted to fuse the risk evaluation for FMEA experts. Additionally, they have
developed the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator.
Finally, they have solved a real example of the risk priority evaluation of power transformer
parts to show the applicability and feasibility of the proposed hybrid FMEA framework.
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Ali et al. [12] have proposed Einstein Geometric Aggregation Operators by using a Novel
Complex Interval-valued Pythagorean Fuzzy Setting. They have applied the proposed
model for solving the problem in Green Supplier Chain Management. Deveci et al. [13]
proposed a novel extension of CoCoSo with the logarithmic method and the power Hero-
nian function. Additionally, they have applied the proposed model to real-time traffic
management problems. Deveci et al. [14] introduced an Ordinal Priority Approach (OPA)
method for determining the criteria weights and application of a fuzzy Dombi Bonferroni
(DOBI) methodology for the evaluation of alternatives.

Erdogan et al. [15] proposed hybrid power Heronian functions in which the linear
normalization method is improved by applying the inverse sorting algorithm for rational
and objective decision-making. Additionally, they have developed a new multi-criteria
decision-making model to determine the best smart charging scheduling that meets electric
vehicle (EV) user considerations at the work-places. Jeevaraj [16] has introduced the
idea of interval-valued Fermatean fuzzy sets which is a generalization to many different
generalized classes of fuzzy sets [17] and a total ordering principle on the class of IVFFNs
by presenting four different score functions. Pratibha et al. [18] proposed a new score
function for comparing arbitrary interval-valued Fermatean fuzzy numbers. Further, they
have introduced a new interval-valued Fermatean fuzzy Einstein aggregation operator
to combine various IVFFNs. Finally, an illustrative case study was discussed to assess
the performance quality of the developed methodology. In addition, as the complexity
of decision-making problems is increasing in the real world, we need to synchronously
consider the following conditions in one decision-making problem to choose an optimal
alternative. To alleviate these influences, we can select the PA operator to achieve this
purpose by assigning the different weights generated by the support measures. We also
consider the objective interrelationships between input values in certain cases, and then
this function can be completed by the Heronian mean or Bonferroni mean ([19]). Since HM
has some advantages over BM, however, we may expand HM to account for interactions.

The purpose of this paper is, therefore, to combine the PA operator and HM and extend
them to trapezoidal intuitionist fuzzy environments and to, propose some of the power
Heronian aggregation operators for trapezoidal intuitionistic fuzzy numbers (TrIFNs)
and apply them to solve MAGDM problems to meet the two needs as mentioned earlier.
The remainder of this paper is shown as follows to do:

1. We briefly study some basic concepts of the TrIFS, PA operator and HM in Section 2.
2. Section 3 suggests some of the power Heronian aggregation operators for TrIFNs and

addresses some of these operators’ useful properties and special cases.
3. We establish a Multi-attribute Group Decision-Making (MAGDM) algorithm in Section 4

based on the proposed operators.
4. To illustrate the validity of the proposed method, Section 5 gives a numerical example.
5. We give the concluding remarks in Section 6.

2. Preliminaries

Some basic definitions are given in this section. Here, we give a brief review of some
preliminaries.

Definition 1 (Atanassov, [20]). Consider A to be a set that is not empty. An intuitionistic fuzzy
set (IFS) In in A is represented with In = {〈a, yIn(a), zIn(a)〉|a ∈ A}, wheresoever yIn(a) :
A → [0, 1] and zIn(a) : A → [0, 1], a ∈ A including the constraints 0 ≤ yIn(a) + zIn(a) ≤
1, ∀a ∈ A. The values yIn(a) and zIn(a) in the range [0, 1] signify the degree of membership and
non-membership of a in In, correspondingly. The hesitation degree of a to lie in In is defined as
πIn(a) = 1− yIn(a)− zIn(a) for any intuitionistic fuzzy subset In in A.
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Definition 2 (Grzegorzewski, [21]). In the set of real numbers R, an intuitionistic fuzzy number
In = (yIn, zIn) is described by

yIn(a) =


kIn(a) when p ≤ a ≤ q1

1 when q1 ≤ a ≤ q2

lIn(a) when q2 ≤ a ≤ r
0 for rest of the cases

and

yIn(a) =


mIn(a) when s ≤ a ≤ u1

0 when u1 ≤ a ≤ u2

nIn(a) when u2 ≤ a ≤ v
1 for rest of tha cases

0 ≤ yIn(a) + zIn(a) ≤ 1 is such that p, q1, q2, r, s, u1, u2, v ∈ <, and kIn, lIn, mIn, nIn :
< → [0, 1] is the legs of the membership function yIn and the nonmembership function zIn. Non-
decreasing continuous functions kIn and nIn, as well as non-increasing continuous functions mIn
and lIn, exist.

An intuitionistic fuzzy number {(p, q1, q2, r), (s, u1, u2, v)}with (s, u1, u2, v) ≤ (p, q1, q2, r)c

is shown in Figure 1.

Figure 1. Intuitionistic fuzzy number.

Definition 3 (Nehi and Maleki, [22]). In the set of real numbers <, Tr = {(p, q1, q2, r), (s, u1,
u2, v)} is an intuitionistic fuzzy set that is trapezoidal type Tr, which holds the s ≤ p, u1 ≤ q1 ≤
q2 ≤ u2, r ≤ v conditions. Below is its membership, and non-membership functions are given.

yTr(a) =


a−tr11

tr12−tr11
whenever tr11 ≤ a ≤ tr12

1 whenever tr12 ≤ a ≤ tr13
tr14−a

tr14−tr13
whenever tr13 ≤ a ≤ tr14

0 for rest of the cases
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zTr(a) =


a−tr22

tr21−tr22
whenever tr21 ≤ a ≤ tr22

0 whenever tr22 ≤ a ≤ tr23
a−tr23

tr24−tr23
whenever tr23 ≤ a ≤ tr24

1 for rest of the cases

The triangular intuitionistic fuzzy numbers are a special case of the trapezoidal intuitionistic
fuzzy numbers if tr12 = tr13(and tr22 = tr23) in a trapezoidal intuitionistic fuzzy number Tr.

In Figure 2, Tr = {(p, q1, q2, r), (s, u1, u2, v)} is an intuitionistic fuzzy set which is a
trapezoidal type, which holds the u1 ≤ q1, u2 ≥ q2, s ≤ p, and v ≥ r conditions.

x

y

(0, 1)

(p, 0) (r, 0)

(q1, 1) (q2, 1)(p, 1)

(q1, 0)(q2, 0)

(r, 1)

(0,0)

(s, 1)

(u1, 0)(s, 0) (u2, 1)

(v, 1)

(v, 0)

yr
Tr

yTr zTr

Figure 2. Intuitionistic fuzzy set of trapezoidal type.

We note that the condition (s, u1, u2, v) ≤ (p, q1, q2, r)c of the trapezoidal intuitionistic
fuzzy number Tr = {(p, q1, q2, r), (s, u1, u2, v)} whose membership and nonmembership
fuzzy numbers of Tr are (p, q1, q2, r) and (s, u1, u2, v) implies u1 ≤ q1, u2 ≥ q2, s ≤ p,
and v ≥ r on the legs of trapezoidal intuitionistic fuzzy number.

Definition 4 (Atanassov & Gargov, [23]). Consider S[0, 1] to be the set among all closed subin-
tervals of [0, 1]. An interval valued intuitionistic fuzzy set on a set A 6= φ is provided by
IV = {〈a, yIV(a), zIV(a)〉 : a ∈ A}, where yIV : A → S[0, 1], zIV : A → S[0, 1], where
0 < supayIV(a) + supazIV(a) ≤ 1 is the condition.

The yIV(a) and zIV(a) intervals express the degree of belongingness and non-belongingness
of the element a to the set IV, respectively. a ∈ A, yIV(a) and zIV(a) are therefore closed
intervals, with yIVL(a), zIVU (a) and yIVL(x), zIVU (a) denoting the lower and upper end
points, respectively. We express IV =

{〈
a, [yIVL(a), zIVU (a)], [yIVL(a), zIVU (a)]

〉
: a ∈ A

}
wherever 0 < yIV(a) + zIV(a) ≤ 1.

We can calculate the unknown degree (hesitance degree) of belongingness πIV(a)
to IV as πIV(a) = 1− yIV(a) − zIV(a) = [1− yIVU (a) − zIVU (a), 1− yIVL(a) − zIVL(a)]
for each element a ∈ A. For simplicity, an intuitionistic fuzzy interval number (IFIN) is
indicated as IV = ([p, q], [r, s]).

Definition 5. Assume ˜tr1 = ([p1, q11, q12, r1], [s1, u11, u12, v1]), and ˜tr2 =
(
[p2, q21, q22, r2],

[s2, u21, u22, v2]
)

and γ ≥ 0. Below, the TrIFNs operations are listed (Atanassov and Gargov [23],
Jun Ye [24])

˜tr1
⊕ ˜tr2 = ([1− (1− p1)(1− p2), 1− (1− q11)(1− q21), 1− (1− q12)(1− q22),

1− (1− r1)(1− r2)], [s1s2, u11u21, u12u22, v1v2])
(1)
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˜tr1
⊗ ˜tr2 = ([p1 p2, q11q21, q12q22, r1r2], [1− (1− s1)(1− s2), 1− (1− u11)(1− u21),

1− (1− u12)(1− u22), 1− (1− v1)(1− v2)]))
(2)

γ ˜tr1 = ([1− (1− p1)
γ, 1− (1− q11)

γ, 1− (1− q12)
γ, 1− (1− r1)

γ], [sγ
1 , uγ

11, uγ
12, vγ

1 ]) (3)

˜tr1
γ
= ([pγ

1 , qγ
11, qγ

12, rγ
1 ], [1− (1− s1)

γ, 1− (1− u11)
γ, 1− (1− u12)

γ, 1− (1− v1)
γ]) (4)

Definition 6 (Nayagam et al., [6]). Consider T̃rI = ([p, q1, q2, r], [s, u1, u2, v]) to be a TrIFN.
Then, the membership (L), non-membership (LG), vague (P), imprecise (IP), widespread (WS),
complete (J6), comprehensive (J7), and exact (J8) score functions for TrIFN TrI are defined as follows:

L(TrI) =
(2(p + q1 + q2 + r)− 2(s + u1 + u2 + v) + (p + q1)(s + u1) + (q2 + r)(u2 + v))

8

LG(TrI) =
(−2(p + q1 + q2 + r) + 2(s + u1 + u2 + v) + (p + q1)(s + u1) + (q2 + r)(u2 + v))

8

P(TrI) =
(2(p + q1)− 2(q2 + r)− 2(s + u1) + 2(u2 + v) + (p + q1)(s + u1) + (q2 + r)(u2 + v))

8

IP(TrI) =
(−2(p + q1) + 2(q2 + r)− 2(s + u1) + 2(u2 + v)− (p + q1)(s + u1) + (q2 + r)(u2 + v))

8

WS(TrI) =
((p + q2)− (q1 + r) + (s + u2)− (u1 + v) + (p + q2)(s + u2)− (q1 + r)(u1 + v))

8

J6(TrI) =
((p + q2)− (q1 + r)− (s + u2) + (u1 + v) + (p + q2)(u1 + v)− (q1 + r)(s + u1))

8

J7(TrI) =
((q2 − p) + (q1 − r)− (u2 − s)− (u1 − v)− (p + r)(u1 + u2) + (q1 + q2)(s + v))

8

J8(TrI) =
((q2 − p) + (q1 − r) + (u2 − s) + (u1 − v)− (p + r)(s + v) + (q1 + q2)(u1 + u2))

8

Definition 7 (Nayagam et al., [6]). (Ordering principle in the class of TrIFNs). Let ˜Tr1I =
([p1, q11, q12, r1], [s1, u11, u12, v1]) and ˜Tr2I = ([p2, q21, q22, r2], [s2, u21, u22, v2]) be two TrIFN.
A relation ‘Less than’ (‘<’) denoted by Tr1I < Tr2I on the entire class of TrIFNs is defined as follows:

if L(Tr1I) < L(Tr2I) then Tr1I < Tr2I or
if L(Tr1I) = L(Tr2I) and LG(Tr1I) > LG(Tr2I) then Tr1I < Tr2I or
if L(Tr1I) = L(Tr2I), LG(Tr1I) = LG(Tr2I) and P(Tr1I) < P(Tr2I) then Tr1I < Tr2I or
if L(Tr1I) = L(Tr2I), LG(Tr1I) = LG(Tr2I), P(Tr1I) = P(Tr2I) and IP(Tr1I) > IP(Tr2I) then
Tr1I < Tr2I or
if L(Tr1I) = L(Tr2I), LG(Tr1I) = LG(Tr2I), P(Tr1I) = P(Tr2I), IP(Tr1I) = IP(Tr2I) and
WS(Tr1I) > WS(Tr2I) then Tr1I < Tr2I or
if L(Tr1I) = L(Tr2I), LG(Tr1I) = LG(Tr2I), P(Tr1I) = P(Tr2I), IP(Tr1I) = IP(Tr2I), WS(Tr1I)
= WS(Tr2I) and J6(Tr1I) < J6(Tr2I) then Tr1I < Tr2I or
if L(Tr1I) = L(Tr2I), LG(Tr1I) = LG(Tr2I), P(Tr1I) = P(Tr2I), IP(Tr1I) = IP(Tr2I), WS(Tr1I)
= WS(Tr2I), J6(Tr1I) = J6(Tr2I) and J7(Tr1I) > J7(Tr2I) then Tr1I < Tr2I or
if L(Tr1I) = L(Tr2I), LG(Tr1I) = LG(Tr2I), P(Tr1I) = P(Tr2I), IP(Tr1I) = IP(Tr2I), WS(Tr1I)
= WS(Tr2I), J6(Tr1I) = J6(Tr2I), J7(Tr1I) = J7(Tr2I) and J8(Tr1I) < J8(Tr2I) then Tr1I < Tr2I or
if L(Tr1I) = L(Tr2I), LG(Tr1I) = LG(Tr2I), P(Tr1I) = P(Tr2I), IP(Tr1I) = IP(Tr2I), WS(Tr1I)
= WS(Tr2I), J6(Tr1I) = J6(Tr2I), J7(Tr1I) = J7(Tr2I), J8(Tr1I) = J8(Tr2I) then Tr1I = Tr2I .

2.1. The Power Average Operator

The power average (PA), first proposed by Yager [25], is a useful aggregation operator
that can mitigate some of the negative consequences of decision makers’ overly large or
small arguments. The classic PA, which is described as follows, may aggregate a collection
of crisp integers where the weighting vectors solely depend on the input data.
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Definition 8 (Yager [25]). Consider Tr = {tra|a = 1, 2, . . ., h} to be a set of non-negative real
numbers, and the power average (PA) operator is defined as

PA(tr1, tr2, . . ., trh) =
∑h

a=1(1 + T(tra))tra

∑h
a=1(1 + T(tra))

(5)

where
T(tra) = ∑

b=1,b 6=a
Sup(tra, trb) (6)

and the support degree for tr1 from tr2 is Sup(tr1, tr2). It has the properties listed below.
(1) Sup(tr1, tr2) ∈ [0,1]; (2) Sup(tr1, tr2) = Sup(tr2, tr1); (3) Sup(tr1, tr2) ≥ Sup(tr3, tr4),
if |tr1 − tr2| < |tr3 − tr4|.

2.2. Heronian Mean (HM) Operator

The Heronian mean (HM) is a useful aggregation operator for capturing the interrela-
tionships between the input parameters (Liu and Pei [26]). It can be defined as follows:

Definition 9 (Liu and Pei [26]). Consider I = [0,1], e,f ≥ 0 , He, f : Ih → I, if He, f satisfies:

He, f (tr1, tr2, . . ., trh) =

(
2

h(h + 1)

h

∑
a=1

h

∑
b=a

tre
atr f

b

) 1
e+ f

(7)

The Heronian mean (HM) operator with parameter is therefore defined as He, f .
The HM operator has been shown to have the properties of idempotency, monotonicity,

and boundedness (Liu and Pei [26]).

3. The Trapezoidal Intuitionistic Fuzzy Power Heronian Aggregation Operators

According to operation rules defined for TrIFNs, We introduce the trapezoidal intu-
itionistic fuzzy power Heronian aggregation (TrIFPHA) operator and trapezoidal intuition-
istic fuzzy power weighted Heronian aggregation (TrIFPWHA) operator in this section.

Definition 10. Let Tr = { ˜trb|b = 1, 2, . . ., h} (where ˜trb = ([pb, q1b, q2b, rb], [sb, u1b, u2b, vb]))
be the set of TrIFNs and e, f ≥ 0, and TrIFPHA : θh → θ, if

TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) =

(
2

h(h+1) ∑h
a=1 ∑h

b=a

(
h (1+I( ˜tra))

∑h
c=1(1+I( ˜trc))

˜tra

)e
⊗H

(
h (1+I( ˜trb))

∑h
c=1(1+I( ˜trc))

˜trb

) f
) 1

e+ f

(8)

where θ is the collection of each TrIFNs, θc = (1+I( ˜tr1))

∑h
c=1(1+I( ˜trc))

and ∑h
c=1 θc = 1.

I( ˜trc) = ∑h
a=1,i 6=k Sup( ˜trc, ˜tra), and the support degree for ˜trc from ˜tra is Sup( ˜trc, ˜tra),

which consist of the resulting properties. (1) Sup( ˜trc, ˜tra) ∈ [0, 1]; (2) Sup( ˜trc, ˜tra) = Sup( ˜tra, ˜trc);
(3) Sup( ˜tr1, ˜tr2) ≥ Sup(ã, b̃), if d( ˜tr1, ˜tr2) < d(ã, b̃) in which d( ˜tr1, ˜tr2) is the distance among
TrIFNs ˜tr1 and ˜tr2. Therefore, TrIFPHA is called the Trapezoidal intuitionistic fuzzy power Hero-
nian aggregation operator.

The expression (8) can be simplified. For that, we can determine

θc =
(1 + I( ˜tr1))

∑h
c=1(1 + I( ˜trc))

(9)

and call (θ1, θ2, . . ., θh) a power weighting vector. Certainly, we hold θc ≥ 0, ∑h
c=1 θc = 1. Thus,

The expression (8) can be written as:

TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) =

(
2

h(h + 1)

h

∑
a=1

h

∑
b=a

(
hθa ˜tra

)e ⊗H
(
hθb ˜trb

) f
) 1

e+ f

(10)
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According to operation rules defined for TrINFS in Equations (1)–(4), Theorem 1’s result is
driven as shown below.

Theorem 1. Let Tr = { ˜trb|b = 1, 2, . . ., h} (where ˜trb = ([pb, q1b, q2b, rb], [sb, u1b, u2b, vb]))
be the set of TrIFNs and e, f ≥ 0. Then, the trapezoidal intuitionistic fuzzy power Heronian
aggregation operator (TrIFPHA) obtained by using Equation (10) is a TrIFN, and also

TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) =

([(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− pa)
hθa)e(1− (1− pb)

hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q1a)
hθa)e(1− (1− q1b)

hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q2a)
hθa)e(1− (1− q2b)

hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− ra)
hθa)e(1− (1− rb)

hθb) f )

) 2
h(h+1)

) 1
e+ f
]

,

[
1−

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− shθa
a )e(1− shθb

b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− uhθa
1a )e(1− uhθb

1b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− uhθa
2a )e(1− uhθb

2b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− vhθa
a )e(1− vhθb

b ) f )

) 2
h(h+1)

) 1
e+ f
])

(11)

Proof. Let Tr = { ˜trb|b = 1, 2, . . ., h} (where ˜trb = ([pb, q1b, q2b, rb], [sb, u1b, u2b, vb])) be the
set of TrIFNs and e, f ≥ 0. By using Equations (1)–(4), we obtain

hθa ˜tra = ([1− (1− pa)hθa , 1− (1− q1a)
hθa , 1− (1− q2a)

hθa , 1− (1− ra)hθa ], [shθa
a , uhθa

1a , uhθa
2a , vhθa

a ])

So, (hθa ˜tra)e = ([(1− (1− pa)hθa)e, (1− (1− q1a)
hθa)e, (1− (1− q2a)

hθa)e, (1− (1− ra)hθa)e],
[1− (1− shθa

a )e, 1− (1− uhθa
1a )e, 1− (1− uhθa

2a )e, 1− (1− vhθa
a )e]).

Furthermore, we hold, (hθb ˜trb)
f = ([(1− (1− pb)

hθb) f , (1− (1− q1b)
hθb) f , (1− (1−

q2b)
hθb) f , (1− (1− rb)

hθb) f ], [1− (1− shθb
b ) f , 1− (1−uhθb

1b ) f , 1− (1−uhθb
2b ) f , 1− (1− vhθb

b ) f ])

Thus, we have (hθa ˜tra)e ⊗H (hθb ˜trb)
f =

(
[(1− (1− pa)hθa)e(1− (1− pb)

hθb) f , (1−
(1− q1a)

hθa)e(1− (1− q1b)
hθb) f , (1− (1− q2a)

hθa)e(1− (1− q2b)
hθb) f , (1− (1− ra)hθa)e(1−

(1− rb)
hθb) f ], [1− (1− shθa

a )e(1− shθb
b ) f , 1− (1−uhθa

1a )e(1−uhθb
1b ) f , 1− (1−uhθa

2a )e(1−uhθb
2b ) f ,

1− (1− vhθa
a )e(1− vhθb

b ) f ]
)
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also

∑h
a=1 ∑h

b=a((hθa ˜tra)e ⊗H (hθb ˜trb)
f ) =([

1−∏h
a=1 ∏h

b=a(1− (1− (1− pa)hθa)e(1− (1− pb)
hθb) f ),

1−∏h
a=1 ∏h

b=a(1− (1− (1− q1a)
hθa)e(1− (1− q1b)

hθb) f ),
1−∏h

a=1 ∏h
b=a(1− (1− (1− q2a)

hθa)e(1− (1− q2b)
hθb) f ),

1−∏h
a=1 ∏h

b=a(1− (1− (1− ra)hθa)e(1− (1− rb)
hθb) f )

]
,[

∏h
a=1 ∏h

b=a(1− (1− shθa
a )e(1− shθb

b ) f ), ∏h
a=1 ∏h

b=a(1− (1− uhθa
1a )e(1− uhθb

1b ) f ),

∏h
a=1 ∏h

b=a(1− (1− uhθa
2a )e(1− uhθb

2b ) f ), ∏h
a=1 ∏h

b=a(1− (1− vhθa
a )e(1− vhθb

b ) f )

])

⇒ 2
h(h+1) ∑h

a=1 ∑h
b=a((hθa ˜tra)e ⊗H (hθb ˜trb)

f ) =

([
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− pa)hθa)e(1− (1− pb)

hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− q1a)
hθa)e(1− (1− q1b)

hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− q2a)
hθa)e(1− (1− q2b)

hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− ra)hθa)e(1− (1− rb)
hθb) f )

) 2
h(h+1)

]
,[(

∏h
a=1 ∏h

b=a(1− (1− shθa
a )e(1− shθb

b ) f )

) 2
h(h+1)

,(
∏h

a=1 ∏h
b=a(1− (1− uhθa

1a )e(1− uhθb
1b ) f )

) 2
h(h+1)

,(
∏h

a=1 ∏h
b=a(1− (1− uhθa

2a )e(1− uhθb
2b ) f )

) 2
h(h+1)

,(
∏h

a=1 ∏h
b=a(1− (1− vhθa

a )e(1− vhθb
b ) f )

) 2
h(h+1)

])
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Therefore, (
2

h(h+1) ∑h
a=1 ∑h

b=a((hθa ˜tra)e ⊗h (hθb ˜trb)
f )

) 1
e+ f

=([(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− pa)hθa)e(1− (1− pb)

hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q1a)

hθa)e(1− (1− q1b)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q2a)

hθa)e(1− (1− q2b)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− ra)hθa)e(1− (1− rb)

hθb) f )

) 2
h(h+1)

) 1
e+ f
]

,[
1−

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− shθa

a )e(1− shθb
b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− uhθa
1a )e(1− uhθb

1b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− uhθa
2a )e(1− uhθb

2b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− vhθa
a )e(1− vhθb

b ) f )

) 2
h(h+1)

) 1
e+ f
])

We have to calculate the support degree Sup( ˜trc, ˜tra) to determine the power weighted
vector θ. Usually, the similarity degree among ˜trc and ˜tra can equivalently represented as
the support degree Sup( ˜trc, ˜tra). Various similarity measures are available on the class of
intuitionistic fuzzy numbers and IVIFNs [27].

Let us consider two IFNs as ˜tr1 = (y1, z1) and ˜tr2 = (y2, z2). Different similarity
measures between the two IFNs are given below.

(1) Chen’s [28] similarity definition is stated as mentioned below.

S0 = 1− 1
2
(|y1 − y2|+ |z1 − z2|) (12)

(2) Song et al.’s [29] similarity definition is stated as mentioned below.

S1 =
1
2

(
√

y1y2 + 2
√

z1z2 +
√

π1π2 +
√
(1− z1)(1− z2)

)
(13)

(3) Nguyen’s [30] similarity definition is stated as mentioned below.

S2 = 1− |KF( ˜tr1)− KF( ˜tr2)| (14)

where, the knowledge measures of ˜tr1 and ˜tr2 are KF( ˜tr1) and KF( ˜tr2), each.

KF( ˜tr1) =

√
y2

1 + z2
1 + (1− π1)2

2
, KF( ˜tr2) =

√
y2

2 + z2
2 + (1− π2)2

2
(15)
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The above-mentioned similarity definitions can be extended to TrIFNs using the fuzzy
extension principle. Below are the definitions mentioned for them.

Consider ˜tr1 = ([p1, q11, q12, r1], [s1, u11, u12, v1]) and ˜tr2 = ([p2, q21, q22, r2], [s2, u21,
u22, v2]) be any two trapezoidal fuzzy (intuitionistic type) numbers, thus the definitions
are as follows

S0 = 1− 1
4

(
|p1 − p2|+ |q11 − q21|+ |q12 − q22|+ |r1 − r2|+ |s1 − s2|+ |u11 − u21|+ |u12 − u22|+ |v1 − v2|

)
(16)

S1 =
1
4

(
√

p1 p2 +
√

q11q21 +
√

q12q22 +
√

r1r2 + 2
√

s1s2 + 2
√

u11u21 + 2
√

u12u22 + 2
√

v1v2

+
√
(1− p1 − s1)(1− p2 − s2) +

√
(1− q11 − u11)(1− q21 − u21)

+
√
(1− q12 − u12)(1− q22 − u22) +

√
(1− r1 − v1)(1− r2 − v2)

) (17)

S2 = 1− |K f ( ˜tr1)− K f ( ˜tr2)| (18)

where, the knowledge measures of ˜tr1 and ˜tr2 are KF( ˜tr1) and KF( ˜tr2), each.

K f ( ˜tr1) =

√
p2

1 + q2
11 + q2

12 + r2
1 + s2

1 + u2
11 + u2

12 + v2
1 + (p1 + s1)2 + (q11 + u11)2 + (q12 + u12)2 + (r1 + v1)2

4
(19)

K f ( ˜tr2) =

√
p2

2 + q2
21 + q2

22 + r2
2 + s2

2 + u2
21 + u2

22 + v2
2 + (p2 + s2)2 + (q21 + u21)2 + (q22 + u22)2 + (r2 + v2)2

4
(20)

In this paper, we use a similarity measure between ˜trc, and ˜tra for finding Sup( ˜trc, ˜tra).
Further, Some TrIFPHA operator’s properties will be discussed.

Theorem 2 (Idempotency). Let T̃r = { ˜trb| f or all b = 1, . . ., h} be a collection of TrIFNs,
and ˜trb = t̃r for each b = 1, 2, . . ., h where t̃r = ([p, q1, q2, r], [s, u1, u2, v]). Then, TrIFPHAe, f

( ˜tr1, ˜tr2, . . ., ˜trh) = t̃r.

Proof. From our assumption, we have, ˜trb = t̃r = ([p, q1, q2, r], [s, u1, u2, v]) for all b =
1, 2, . . ., h.

Sup( ˜trc, ˜tra) = 1 for all a, c = 1, 2, . . . , h (21)

(Since Sup( ˜trc, ˜tra) is replaced with a similarity measure between ˜trc and ˜tra).
Equation (21) and Definition 10 imply that, θc =

1
h for all c = 1, 2, . . ., h

Then, from Definition 10, we obtain

TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) = TrIFPHAe, f (t̃r, t̃r, . . ., t̃r)

=

([(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− p)h 1

h )e(1− (1− p)h 1
h ) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q1)

h 1
h )e(1− (1− q1)

h 1
h ) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q2)

h 1
h )e(1− (1− q2)

h 1
h ) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− r)h 1

h )e(1− (1− r)h 1
h ) f )

) 2
h(h+1)

) 1
e+ f
]

,
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[
1−

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− sh 1

h )e(1− sh 1
h ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− u
h 1

h
1 )e(1− u

h 1
h

1 ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− u
h 1

h
2 )e(1− u

h 1
h

2 ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− vh 1
h )e(1− vh 1

h ) f )

) 2
h(h+1)

) 1
e+ f
])

=

([(
1−

(
∏h

a=1 ∏h
b=a(1− pe+ f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− qe+ f

1 )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− qe+ f

2 )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− re+ f )

) 2
h(h+1)

) 1
e+ f
]

,

[
1−

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− s)e+ f )

) 2
h(h+1)

) 1
e+ f

, 1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1−

u1)
e+ f )

) 2
h(h+1)

) 1
e+ f

, 1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− u2)
e+ f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− v)e+ f )

) 2
h(h+1)

) 1
e+ f
])

=

([(
1−

(
(1− pe+ f )

)) 1
e+ f

,

(
1−

(
(1− qe+ f

1 )

)) 1
e+ f

,

(
1−

(
(1− qe+ f

2 )

) 2
h(h+1)

)
,

(
1−

(
(1− re+ f )

)) 1
e+ f
]

,

[
1−

(
1−

(
(1− (1− s)e+ f )

)) 1
e+ f

, 1−
(

1−
(
(1− (1− u1)

e+ f )

)) 1
e+ f

,

1−
(

1−
(
(1− (1− u2)

e+ f )

)) 1
e+ f

, 1−
(

1−
(
(1− (1− v)e+ f )

)) 1
e+ f
])

= ([p, q1, q2, r], [s, u1, u2, v]).
Hence the proof.

Theorem 3 (Boundedness). Let T̃r = { ˜tr1, ˜tr2, . . ., ˜trh} be a set of TrIFNs, and ˜trl = min( ˜tr1, ˜tr2,
. . ., ˜trh) = ([p, q1, q2, r], [s, u1, u2, v]), ˜trm = max( ˜tr1, ˜tr2, . . ., ˜trh) = ([p, q1, q2, r], [s, u1, u2, v]).

Then, the following condition holds:
l̃ ≤ TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) ≤ m̃

In which l̃ =

([(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− p)hθa)e(1− (1− p)hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q1)

hθa)e(1− (1− q1)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q2)

hθa)e(1− (1− q2)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,
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(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− r)hθa)e(1− (1− r)hθb) f )

) 2
h(h+1)

) 1
e+ f
]

,

[
1−

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− shθa)e(1− shθb) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− uhθa
1 )e(1− uhθb

1 ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− uhθa
2 )e(1− uhθb

2 ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− vhθa)e(1− vhθb) f )

) 2
h(h+1)

) 1
e+ f
])

and m̃ =

([(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− p)hθa)e(1− (1− p)hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q1)

hθa)e(1− (1− q1)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q2)

hθa)e(1− (1− q2)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− r)hθa)e(1− (1− r)hθb) f )

) 2
h(h+1)

) 1
e+ f
]

,

[
1−

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− shθa)e(1− shθb) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− u1
hθa)e(1− u1

hθb) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− u2
hθa)e(1− u2

hθb) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− vhθa)e(1− vhθb) f )

) 2
h(h+1)

) 1
e+ f
])

Proof. From the Definition 10, we obtain
hθa ˜tra = ([1− (1− pa)hθa , 1− (1− q1a)

hθa , 1− (1− q2a)
hθa , 1− (1− ra)hθa ], [shθa

a , uhθa
1a , uhθa

2a , vhθa
a ])

≥ ([1− (1− p)hθa , 1− (1− q1)
hθa , 1− (1− q2)

hθa , 1− (1− r)hθa ], [shθa , uhθa
1 , uhθa

2 , vhθa ])

⇒ (hθa ˜tra)e =
(
[(1− (1− pa)hθa)e, (1− (1− q1a)

hθa)e, (1− (1− q2a)
hθa)e, (1− (1−

ra)hθa)e], [1− (1− shθa
a )e, 1− (1− uhθa

1a )e, 1− (1− uhθa
2a )e, 1− (1− vhθa

a )e]
)

≥ ([(1− (1− p)hθa)e, (1− (1− q1)
hθa)e, (1− (1− q2)

hθa)e, (1− (1− r)hθa)e], [1−
(1− shθa)e, 1− (1− uhθa

1 )e, 1− (1− uhθa
2 )e, 1− (1− vhθa)e])

Likewise, we obtain
(hθb ˜trb)

f = ([(1− (1− pb)
hθb) f , (1− (1− q1b)

hθb) f , (1− (1− q2b)
hθb) f , (1− (1− rb)

hθb) f ],

[1− (1− shθb
b ) f , 1− (1− uhθb

1b ) f , 1− (1− uhθb
2b ) f , 1− (1− vhθb

b ) f ])

≥ ([(1− (1− p)hθb) f , (1− (1− q1)
hθb) f , (1− (1− q2)

hθb) f , (1− (1− r)hθb) f ], [1−
(1− shθb) f , 1− (1− uhθb

1 ) f , 1− (1− uhθb
2 ) f , 1− (1− vhθb) f ])
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Thus,

(hθa ˜tra)e⊗H (hθb ˜trb)
f =

(
[(1− (1− pa)hθa)e(1− (1− pb)

hθb) f , (1− (1− q1a)
hθa)e(1− (1−

q1b)
hθb) f , (1− (1− q2a)

hθa)e(1− (1− q2b)
hθb) f , (1− (1− ra)hθa)e(1− (1− rb)

hθb) f ],

[1 − (1 − shθa
a )e(1 − shθb

b ) f , 1 − (1 − uhθa
1a )e(1 − uhθb

1b ) f , 1 − (1 − uhθa
2a )e(1 − uhθb

2b ) f , 1 − (1 −

vhθa
a )e(1 − vhθb

b ) f ]

)
≥
(
[(1 − (1 − p)hθa)e(1 − (1 − p)hθb) f , (1 − (1 − q1)

hθa)e(1 − (1 −

q1)
hθb) f , (1 − (1 − q2)

hθa)e(1 − (1 − q2)
hθb) f , (1 − (1 − r)hθa)e(1 − (1 − r)hθb) f ], [1 − (1 −

shθa)e(1− shθb) f , 1− (1− uhθa
1 )e(1− uhθb

1 ) f , 1− (1− uhθa
2 )e(1− uhθb

2 ) f , 1− (1− vhθa)e(1−

vhθb) f ]

)
Additionally, we obtain

∑h
a=1 ∑h

b=a((θa ˜tra)e ⊗H (θb ˜trb)
f )

=

([
1−∏h

a=1 ∏h
b=a(1− (1− (1− pa)hθa)e(1− (1− pb)

hθb) f ),

1−∏h
a=1 ∏h

b=a(1− (1− (1− q1a)
hθa)e(1− (1− q1b)

hθb) f ),
1−∏h

a=1 ∏h
b=a(1− (1− (1− q2a)

hθa)e(1− (1− q2b)
hθb) f ),

1−∏h
a=1 ∏h

b=a(1− (1− (1− ra)hθa)e(1− (1− rb)
hθb) f )

]
,[

∏h
a=1 ∏h

b=a(1− (1− shθa
a )e(1− shθb

b ) f ), ∏h
a=1 ∏h

b=a(1− (1− uhθa
1a )e(1− uhθb

1b ) f ),

∏h
a=1 ∏h

b=a(1− (1− uhθa
2a )e(1− uhθb

2b ) f ), ∏h
a=1 ∏h

b=a(1− (1− vhθa
a )e(1− vhθb

b ) f )

])

≥
([

1−∏h
a=1 ∏h

b=a(1− (1− (1− p)hθa)e(1− (1− p)hθb) f ),

1−∏h
a=1 ∏h

b=a(1− (1− (1− q1)
hθa)e(1− (1− q1)

hθb) f ),
1−∏h

a=1 ∏h
b=a(1− (1− (1− q2)

hθa)e(1− (1− q2)
hθb) f ),

1−∏h
a=1 ∏h

b=a(1− (1− (1− r)hθa)e(1− (1− r)hθb) f )

]
,[

∏h
a=1 ∏h

b=a(1− (1− shθa)e(1− shθb) f ), ∏h
a=1 ∏h

b=a(1− (1− uhθa
1 )e(1− uhθb

1 ) f ),

∏h
a=1 ∏h

b=a(1− (1− uhθa
2 )e(1− uhθb

2 ) f ), ∏h
a=1 ∏h

b=a(1− (1− vhθa)e(1− vhθb) f )

])

Moreover,

2
h(h+1) ∑h

a=1 ∑h
b=a((hθa ˜tra)e ⊗H (hθb ˜trb)

f )

=

([
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− pa)hθa)e(1− (1− pb)

hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− q1a)
hθa)e(1− (1− q1b)

hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− q2a)
hθa)e(1− (1− q2b)

hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− ra)hθa)e(1− (1− rb)
hθb) f )

) 2
h(h+1)

]
,
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[(
∏h

a=1 ∏h
b=a(1− (1− shθa

a )e(1− shθb
b ) f )

) 2
h(h+1)

,

(
∏h

a=1 ∏h
b=a(1− (1− uhθa

1a )e(1− uhθb
1b ) f )

) 2
h(h+1)

,(
∏h

a=1 ∏h
b=a(1− (1− uhθa

2a )e(1− uhθb
2b ) f )

) 2
h(h+1)

,

(
∏h

a=1 ∏h
b=a(1− (1− vhθa

a )e(1− vhθb
b ) f )

) 2
h(h+1)

])

≥
([

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− p)hθa)e(1− (1− p)hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− q1)
hθa)e(1− (1− q1)

hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− q2)
hθa)e(1− (1− q2)

hθb) f )

) 2
h(h+1)

,

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− r)hθa)e(1− (1− r)hθb) f )

) 2
h(h+1)

]
,[(

∏h
a=1 ∏h

b=a(1− (1− shθa)e(1− shθb) f )

) 2
h(h+1)

,(
∏h

a=1 ∏h
b=a(1− (1− uhθa

1 )e(1− uhθb
1 ) f )

) 2
h(h+1)

,(
∏h

a=1 ∏h
b=a(1− (1− uhθa

2 )e(1− uhθb
2 ) f )

) 2
h(h+1)

,

(
∏h

a=1 ∏h
b=a(1− (1− vhθa)e(1− vhθb) f )

) 2
h(h+1)

])
Therefore,

TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) =

(
2

h(h+1) ∑h
a=1 ∑h

b=a((hθa ˜tra)e ⊗H (hθb ˜trb)
f )

) 1
e+ f

=

([(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− pa)hθa)e(1− (1− pb)

hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q1a)

hθa)e(1− (1− q1b)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q2a)

hθa)e(1− (1− q2b)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− ra)hθa)e(1− (1− rb)

hθb) f )

) 2
h(h+1)

) 1
e+ f
]

,[
1−

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− shθa

a )e(1− shθb
b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− uhθa
1a )e(1− uhθb

1b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− uhθa
2a )e(1− uhθb

2b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− vhθa
a )e(1− vhθb

b ) f )

) 2
h(h+1)

) 1
e+ f
])
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≥
([(

1−
(

∏h
a=1 ∏h

b=a(1− (1− (1− p)hθa)e(1− (1− p)hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q1)

hθa)e(1− (1− q1)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− q2)

hθa)e(1− (1− q2)
hθb) f )

) 2
h(h+1)

) 1
e+ f

,(
1−

(
∏h

a=1 ∏h
b=a(1− (1− (1− r)hθa)e(1− (1− r)hθb) f )

) 2
h(h+1)

) 1
e+ f
]

,[
1−

(
1−

(
∏h

a=1 ∏h
b=a(1− (1− shθa)e(1− shθb) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− uhθa
1 )e(1− uhθb

1 ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− uhθa
2 )e(1− uhθb

2 ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

∏h
a=1 ∏h

b=a(1− (1− vhθa)e(1− vhθb) f )

) 2
h(h+1)

) 1
e+ f
])

= l̃

Likewise, we can also demonstrate that TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) ≤ m̃
Therefore, we are able to obtain

l̃ ≤ TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) ≤ m̃

Though, TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) monotonicity cannot be proven by that.
This is how we can describe it:
Consider T̃r = { ˜tr1, ˜tr2, . . ., ˜trh} and T̃r′ =

{
˜tr′1, ˜tr′2, . . ., ˜tr′h

}
are two sets of TrIFNs.

If ˜trb ≤ ˜tr′b for each b = 1, 2, . . ., h, then hθa ˜tra = ([1− (1− pa)hθa , 1− (1− q1a)
hθa , 1−

(1− q2a)
hθa , 1− (1− ra)hθa ], [shθa

a , uhθa
1a , uhθa

2a , vhθa
a ]), and hθ′a

˜tr′a = ([1− (1− p′a)hθ′a , 1− (1−
q′1a)

hθ′a , 1− (1− q′2a)
hθ′a , 1− (1− r′a)hθ′a ], [s′hθ′a

a , uhθ′a
1a′ , uhθ′a

2a′ , v′hθ′a
a ])

( ˜tr1, ˜tr2, . . ., ˜trh) and ( ˜tr′1, ˜tr′2, . . ., ˜tr′h)’s support degrees represented as oa and o′a, re-
spectively, and which do not have any inequality relationship among them. This implies
that we cannot obtain hθ′a

˜tr′a ≤ hθa ˜tra and hence it is not possible to obtain

TrIFPHAe, f ( ˜tr′1, ˜tr′2, . . ., ˜tr′h) ≤ TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh)

According to the parameter e and f , here we discuss four special cases of the proposed
operator (TrIFPHAe, f ).

(1) A trapezoidal intuitionistic fuzzy power generalized linear descending weighted
operator can be generated from Theorem 1 Formula (1) by letting f → 0, and it is
shown below.
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TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) =

([(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− pa)
hθa)e(1− (1− pb)

hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q1a)
hθa)e(1− (1− q1b)

hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q2a)
hθa)e(1− (1− q2b)

hθb) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− ra)
hθa)e(1− (1− rb)

hθb) f )

) 2
h(h+1)

) 1
e+ f
]

,

[
1−

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− shθa
a )e(1− shθb

b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− uhθa
1a )e(1− uhθb

1b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− uhθa
2a )e(1− uhθb

2b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− vhθa
a )e(1− vhθb

b ) f )

) 2
h(h+1)

) 1
e+ f
])

TrIFPHAe,0( ˜tr1, ˜tr2, . . ., ˜trh) =

([(
1−

(
h

∏
a=1

(1− (1− (1− pa)
hθa)e)h+1−a

) 2
h(h+1)

) 1
e

,

(
1−

(
h

∏
a=1

(1− (1− (1− q1a)
hθa)e)h+1−a

) 2
h(h+1)

) 1
e

,

(
1−

(
h

∏
a=1

(1− (1− (1− q2a)
hθa)e)h+1−a

) 2
h(h+1)

) 1
e

,

(
1−

(
h

∏
a=1

(1− (1− (1− ra)
hθa)e)h+1−a

) 2
h(h+1)

) 1
e
]

,

[
1−

(
1−

(
h

∏
a=1

(1− (1− shθa
a )e)h+1−a

) 2
h(h+1)

) 1
e

,

1−
(

1−
(

h

∏
a=1

(1− (1− uhθa
1a )e)h+1−a

) 2
h(h+1)

) 1
e

,

1−
(

1−
(

h

∏
a=1

(1− (1− uhθa
2a )e)h+1−a

) 2
h(h+1)

) 1
e

,

1−
(

1−
(

h

∏
a=1

(1− (1− vhθa
a )e)h+1−a

) 2
h(h+1)

) 1
e
])

(22)

By Equation (22), we understand that TrIFPHAe,0( ˜tr1, ˜tr2, . . ., ˜trh) can use a heavy
weight vector (h, h− 1, . . ., 1) to measure the information ((hθ1 ˜tr1)

e, (hθ2 ˜tr2)
e, . . ., (hθh ˜trh)

e).
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(2) A trapezoidal intuitionistic fuzzy power generalized linear ascending weighted
operator can be generated from Theorem 1 Formula (1) by letting e→ 0, and it is shown below.

TrIFPHA0, f ( ˜tr1, ˜tr2, . . ., ˜trh) =

([(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− pb)
hθb) f )

) 2
h(h+1)

) 1
f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q1b)
hθb) f )

) 2
h(h+1)

) 1
f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q2b)
hθb) f )

) 2
h(h+1)

) 1
f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− rb)
hθb) f )

) 2
h(h+1)

) 1
f
]

,

[
1−

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− shθb
b ) f )

) 2
h(h+1)

) 1
f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− uhθb
1b ) f )

) 2
h(h+1)

) 1
f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− uhθb
2b ) f )

) 2
h(h+1)

) 1
f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− vhθb
b ) f )

) 2
h(h+1)

) 1
f
])

(23)

By Equation (23), we understand that TrIFPHA0, f ( ˜tr1, ˜tr2, . . ., ˜trh) can use a heavy
weight vector (1, 2, . . ., h) to measure the information ((hθ1 ˜tr1)

f , (hθ2 ˜tr2)
f , . . ., (hθh ˜trh)

f ).
TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) operator can act as linear weighted function if we consider

e = 0 or f = 0. Further, we also understand that the parameters e and f cannot be
substituted for one another according to the Equations (22) and (23).

(3) A trapezoidal intuitionistic fuzzy power basic Heronian (TrIFPBH) operator can be
generated from Theorem 1 Formula (1) by keeping e = f = 1

2 . The TrIFPBH operator is
shown below.

TrIFPHA
1
2 , 1

2 ( ˜tr1, ˜tr2, . . ., ˜trh) =

([(
1−

(
∏h

a=1 ∏h
b=a(1−

√
(1− (1− pa)hθa)(1− (1− pb)hθb))

) 2
h(h+1)

)
,(

1−
(

∏h
a=1 ∏h

b=a(1−
√
(1− (1− q1a)hθa)(1− (1− q1b)hθb))

) 2
h(h+1)

)
,(

1−
(

∏h
a=1 ∏h

b=a(1−
√
(1− (1− q2a)hθa)(1− (1− q2b)hθb))

) 2
h(h+1)

)
,(

1−
(

∏h
a=1 ∏h

b=a(1−
√
(1− (1− ra)hθa)(1− (1− rb)hθb))

) 2
h(h+1)

)]
,[((

∏h
a=1 ∏h

b=a(1−
√
(1− shθa

a )(1− shθb
b ))

) 2
h(h+1)

)
,

((
∏h

a=1 ∏h
b=a(1−

√
(1− uhθa

1a )(1− uhθb
1b ))

) 2
h(h+1)

)
,((

∏h
a=1 ∏h

b=a(1−
√
(1− uhθa

2a )(1− uhθb
2b ))

) 2
h(h+1)

)
,

((
∏h

a=1 ∏h
b=a(1−

√
(1− vhθa

a )(1− vhθb
b ))

) 2
h(h+1)

)])

(24)
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(4) A trapezoidal intuitionistic fuzzy power line Heronian mean operator can be
generated from Theorem 1 Formula (1) by assigning e = f = 1 and it is shown below.

TrIFPHA1,1( ˜tr1, ˜tr2, . . ., ˜trh) =

([(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− pa)
hθa)(1− (1− pb)

hθb))

) 2
h(h+1)

) 1
2

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q1a)
hθa)(1− (1− q1b)

hθb))

) 2
h(h+1)

) 1
2

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q2a)
hθa)(1− (1− q2b)

hθb))

) 2
h(h+1)

) 1
2

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− ra)
hθa)(1− (1− rb)

hθb))

) 2
h(h+1)

) 1
2
]

,

[
1−

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− shθa
a )(1− shθb

b ))

) 2
h(h+1)

) 1
2

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− uhθa
1a )(1− uhθb

1b ))

) 2
h(h+1)

) 1
2

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− uhθa
2a )(1− uhθb

2b ))

) 2
h(h+1)

) 1
2

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− vhθa
a )(1− vhθb

b ))

) 2
h(h+1)

) 1
2
])

(25)

We just take into account the weight vector dependent on the power operator and the
interrelationships of input TrIFNs in TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) operator, and we ignore
the value of each individual input TrIFN. This weight, however, is a critical parameter
in many real-life decision-making situations. In a MADM problem, for example, it will
be the attribute weight, which will have a significant impact on ranking the alternatives.
As a result, we will define a trapezoidal intuitionistic fuzzy power weighted Heronian
aggregation (TrIFPWHA) operator in the following definition.

Definition 11. Let ˜trb = ([pb, q1b, q2b, rb], [sb, u1b, u2b, vb]) be a set of TrIFNs, further e, f ≥ 0,
also TrIFPWHA: Θh → Θ, when

TrIFPWHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) =

(
2

h(h + 1)

h

∑
a=1

h

∑
b=a

((
hθaoa

∑h
c=1 θcoc

˜tra)

)e

⊗H

(
hθbob

∑h
c=1 θcoc

˜trb

) f)) 1
e+ f

(26)

where, each TrIFN is a collection for Θ, θc =
(1+I( ˜trc))

∑h
c=1(1+I( ˜trc))

and ∑h
c=1 θc = 1

I( ˜trc) = ∑h
a=1,a 6=c Sup( ˜trc, ˜tra), and support degree for ˜trc from ˜tra is Sup( ˜trc, ˜tra) that

has the properties mentioned below. (1) Sup( ˜trc, ˜tra) ∈ [0, 1]; (2) Sup( ˜trc, ˜tra) = Sup( ˜tra, ˜trc);
(3) Sup( ˜tr1, ˜tr2) ≥ Sup(ã, b̃), if d( ˜tr1, ˜tr2) < d(ã, b̃), and d( ˜tr1, ˜tr2) is the distance among
TrIFNs ˜tr1 and ˜tr2. Additionally, o = (oa, o2, . . ., oh)

T is the weight vector of ( ˜tr1, ˜tr2, . . ., ˜trh),
θb ∈ [0, 1], ∑h

b=1 ob = 1, also h is a balance parameter. Thus, the trapezoidal intuitionistic fuzzy
power weighted Heronian aggregation operator is then known as TrIFPWHA.

Theorem 4 is based on the operational laws of the TrIFNs described in Equations (1)–(4).
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Theorem 4. Let T̃r = { ˜trb| ˜trb = ([pb, q1b, q2b, rb], [sb, u1b, u2b, vb]), where b = 1, 2, . . ., h} be
a set of TrIFNs, and e, f ≥ 0. The product of combining the results of Definitions 11 is still a
TrIFN, and

TrIFPWHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh)

=

([(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− pa)
hθaoa

∑h
c=1 θcoc )e(1− (1− pb)

hθbob
∑h

c=1 θcoc ) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q1a)
hθaoa

∑h
c=1 θcoc )e(1− (1− q1b)

hθbob
∑h

c=1 θcoc ) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− q2a)
hθaoa

∑h
c=1 θcoc )e(1− (1− q2b)

hθbob
∑h

c=1 θcoc ) f )

) 2
h(h+1)

) 1
e+ f

,

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− (1− ra)
hθaoa

∑h
c=1 θcoc )e(1− (1− rb)

hθbob
∑h

c=1 θcoc ) f )

) 2
h(h+1)

) 1
e+ f
]

,

[
1−

(
1−

(
h

∏
a=1

h

∏
b=a

(1− (1− s
hθaoa

∑h
c=1 θcoc

a )e(1− s

hθbob
∑h

c=1 θcoc

b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− u
hθaoa

∑h
c=1 θcoc

1a )e(1− u

hθbob
∑h

c=1 θcoc

1b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− u
hθaoa

∑h
c=1 θcoc

2a )e(1− u

hθbob
∑h

c=1 θcoc

2b ) f )

) 2
h(h+1)

) 1
e+ f

,

1−
(

1−
(

h

∏
a=1

h

∏
b=a

(1− (1− v
hθaoa

∑h
c=1 θcoc

a )e(1− v

hθbob
∑h

c=1 θcoc

b ) f )

) 2
h(h+1)

) 1
e+ f
])

(27)

Proof. Proof of this theorem is similar to Theorem 1, and hence it is omitted.

If o =

(
1
h

,
1
h

, . . .,
1
h

)T

, then TrIFPWHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) operator is obviously re-

duced to the TrIFPHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) operator.
Note: It is simple to demonstrate that the TrIFPWHAe, f ( ˜tr1, ˜tr2, . . ., ˜trh) operator just

has the property of boundedness and lacks the properties of monotonicity and idempotency.

4. A Group Decision-Making Method Based on the Trapezoidal Intuitionistic Fuzzy
Power Heronian Aggregation Operator and Trapezoidal Intuitionistic Fuzzy Power
Weighted Heronian Aggregation Operator

The implementations of the proposed trapezoidal intuitionistic fuzzy power Hero-
nian aggregation operator which generalizes interval-valued intuitionistic fuzzy power
Heronian aggregation operator [31] and trapezoidal intuitionistic fuzzy power weighted
Heronian aggregation operator in solving the Multi-attribute Group Decision-Making
(MAGDM) problem will be discussed in this section.

The data which we have considered in this paper has been taken from the literature [32]
and modified based on the need of a problem. Initially, the linguistic terms were given
by the experts for evaluating the performance of alternatives. Then, the linguistic terms
were converted into a trapezoidal intuitionistic fuzzy number. These TrIFN equivalents for
various linguistic terms were identified from the literature and modified based on the case
study problem.
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Assume there are h alternatives p1, p2, . . ., ph and g attributes (x1, x2, . . ., xg), and o =
(o1, o2, . . ., og) is the weight vector of the attribute xa(a = 1, 2, . . ., g), here oa ≥ 0, a =

1, 2, 3, . . ., g, ∑
g
a=1 oa = 1, in a MAGDM issue with TrIFNs. Assume there are c decision

makers (r1, r2, . . ., rc) and γ = (γ1, γ2, . . ., γc) is the weight vector of them with γp ≥
0(p = 1, 2, . . ., c), ∑c

p=1 γp = 1. Assume that D̃p =
[ ˜dba

p]
h×g is the decision matrix, where

˜dba
p
=
([

pp
ba, qp

ba, rp
ba, sp

ba
]
,
[
tp
ba, up

ba, vp
ba, wp

ba
])

has the form of a TrIFN, the decision maker’s
statement dp, for alternative pb with respect to attribute xa. After that, it is time to rank
the alternative.

The TrIFPHA and TrIFPwHA operators are used to solve MAGDM problems in the
following sections, and the following are the thorough decision-making steps:

Step 1 The attribute values should be normalised.
Usually, there are two kinds of attribute values: benefit and cost. We should transform

them to the same form, with the benefit being translated to cost. If the a-th attribute xa
is cost type, the attribute values ˜dba

p
=
([

pp
ba, qp

ba, rp
ba, sp

ba
]
,
[
tp
ba, up

ba, vp
ba, wp

ba
])

b = 1, 2, . . ., h;
p = 1, 2, . . ., c, The following formula can be used to translate it to a beneficial one.
( ˜dba

p continues to express transformed attribute values.)

˜dba
p
=
([

tp
ba, up

ba, vp
ba, wp

ba
]
,
[
pp

ba, qp
ba, rp

ba, sp
ba
])

(28)

Step 2 Compute the supports.

Sup( ˜dba
p, ˜dba

t
) = 1− |KF( ˜dba

p
)− KF( ˜dba

t
)|, p, t = 1, 2, . . ., c; b = 1, 2, . . ., h; a = 1, 2, . . ., g (29)

here,

KF( ˜dba
p
) =

√√√√√
(

x1 + x2
)

4
Where, x1 = (pp

ba)
2 + (qp

ba)
2 + (rp

ba)
2 + (sp

ba)
2 + (tp

ba)
2 + (up

ba)
2 + (vp

ba)
2 + (wp

ba)
2

x2 = (pp
ba + tp

ba)
2 + (qp

ba + up
ba)

2 + (rp
ba + vp

ba)
2 + (sp

ba + wp
ba)

2

(30)

KF( ˜dba
t
) =

√√√√√
(

x1 + x2
)

4
Where, x1 = (pt

ba)
2 + (qt

ba)
2 + (dt

ba)
2 + (st

ba)
2 + (tt

ba)
2 + (ut

ba)
2 + (vt

ba)
2 + (wt

ba)
2

x2 = (pt
ba + tt

ba)
2 + (qt

ba + ut
ba)

2 + (dt
ba + vt

ba)
2 + (st

ba + wt
ba)

2

(31)

Step 3 Compute I( ˜dba
p
)

I( ˜dba
p
) =

c

∑
t=1,t 6=p

Sup( ˜dba
p, ˜dba

t
); p = 1, 2, . . ., c; b = 1, 2, . . ., h; a = 1, 2, . . ., g (32)

Step 4 Compute the power operator’s weight vector θba
p

linked with the TrIFN ˜dba
p

θba
p
=

(1 + I( ˜dba
p
))

∑c
p=1(1 + I( ˜dba

p
))

; p = 1, 2, . . ., c; b = 1, 2, . . .m; a = 1, 2, . . .n (33)

Step 5 Aggregate the results of each expert’s evaluations into a single report.

˜dba = TrIFPWHAe, f ( ˜dba
1, ˜dba

2, . . ., ˜dba
l
) (34)

to gather information in a group. Here, b = 1, 2, . . ., h; a = 1, 2, . . ., g.
Step 6 Compute I( ˜dba)

I( ˜dba) =
g

∑
t=1,t 6=i

Sup( ˜dba, ˜dbt); b = 1, 2, . . ., h; a = 1, 2, . . ., g (35)
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Step 7 Compute the power operator’s weight vector θba linked with the TrIFN ˜dba

θba =
(1 + I( ˜dba))

∑
g
a=1(1 + I( ˜dba))

; b = 1, 2, . . ., h; a = 1, 2, . . ., g (36)

Step 8 Alternative’s total evaluation value:
From the following formula, we can determine each alternative’s total evaluation value.

ỹb = TrIFPWHAe, f ( ˜db1, ˜db2, . . ., ˜dbg) (37)

where b = 1, 2, . . ., h;
Step 9 Using Definitions 6 and 7, we rank ỹb(b = 1, 2, . . ., h) in descending order.
Step 10 In accordance with the order of ỹb(b = 1, 2, . . ., h), rank all the alternatives and
choose the best one(s).
Step 11 End.

5. An Illustrative Example

In this section, we show the applicability of the proposed decision-making method in
solving a problem discussed in Zhang et al. [32].

Example 1 ([32]). Assume that a company’s data centre needed to upgrade the management
information system in order to boost productivity. Four alternatives (software system) trb(a =
1, 2, 3, 4) may be examined after preliminary sampling, and there were four assessment attributes
taken into consideration. They are x1: System costs, which include both hardware and software.
x2: The dependability of outsourcing companies’ software growth. x3 : The contribution to the
success of the company. x4: The effort to migrate from old systems to modern systems. Where
x1 is an expense attribute and the others are value attributes, and the attributes’ weight vector is
o = (0.5, 0.3, 0.1, 0.1). Three experts rc(c = 1, 2, 3) with a weight vector of γ = (0.2, 0.5, 0.3)
have been requested to join a panel to evaluate these alternatives on each attribute. The assessment
values provided by the requested experts are represented by TrIFNs, and given in Tables 1–3.

Table 1. Expert r1’s decision matrix D̃1.

x1 x2 x3 x4

tr1
([0.2,0.4,0.6,0.8],
[0.15,0.3,0.7,0.9])

([0.15,0.25,0.45,0.6],
[0.1,0.2,0.6,0.7])

([0.15,0.35,0.5,0.65],
[0.1,0.25,0.55,0.7])

([0.1,0.3,0.45,0.6],
[0,0.25,0.55,0.65])

tr2
([0.3,0.35,0.55,0.7],
[0.1,0.25,0.7,0.85])

([0.1,0.25,0.45,0.65],
[0,0.15,0.5,0.7])

([0.5,0.65,0.8,0.9],
[0.3,0.45,0.85,0.9])

([0.5,0.6,0.7,0.8],
[0.4,0.55,0.75,0.85])

tr3
([0.4,0.55,0.75,0.9],
[0.2,0.35,0.8,0.9])

([0.1,0.2,0.3,0.4],
[0,0.15,0.35,0.45])

([0.15,0.3,0.4,0.6],
[0.1,0.25,0.45,0.65])

([0.1,0.2,0.3,0.4],
[0,0.15,0.35,0.5])

tr4
([0.4,0.5,0.8,0.9],
[0.2,0.4,0.8,0.9])

([0.5,0.65,0.8,0.9],
[0.3,0.45,0.85,0.9])

([0,0.25,0.45,0.6],
[0,0.15,0.5,0.65])

([0.2,0.35,0.5,0.65],
[0.1,0.25,0.55,0.7])

Table 2. Expert r2’s decision matrix D̃2.

x1 x2 x3 x4

tr1
([0.15,0.35,0.5,0.65],
[0.1,0.25,0.55,0.7])

([0.1,0.25,0.45,0.55],
[0.1,0.15,0.5,0.65])

([0.25,0.4,0.55,0.7],
[0.15,0.3,0.6,0.75])

([0.2,0.3,0.45,0.6],
[0.2,0.3,0.6,0.7])

tr2
([0.25,0.35,0.5,0.65],
[0.15,0.25,0.55,0.65])

([0.2,0.3,0.5,0.6],
[0.1,0.2,0.6,0.7])

([0.45,0.6,0.75,0.9],
[0.3,0.45,0.8,0.9])

([0.4,0.55,0.75,0.85],
[0.25,0.4,0.8,0.9])

tr3
([0.45,0.55,0.65,0.75],
[0.25,0.45,0.7,0.8])

([0.25,0.45,0.6,0.75],
[0.15,0.35,0.65,0.85])

([0.1,0.25,0.45,0.6],
[0,0.15,0.5,0.7])

([0.15,0.35,0.45,0.6],
[0,0.3,0.5,0.7])

tr4
([0.25,0.35,0.55,0.75],

[0.15,0.3,0.6,0.8])
([0.4,0.6,0.75,0.9],
[0.2,0.45,0.8,0.9])

([0.2,0.4,0.5,0.6],
[0.1,0.3,0.6,0.7])

([0,0.25,0.4,0.65],
[0,0.15,0.45,0.7])
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Table 3. Expert r3’s decision matrix D̃3.

x1 x2 x3 x4

tr1
([0.25,0.45,0.65,0.8],
[0.15,0.3,0.7,0.85])

([0.1,0.2,0.3,0.4],
[0,0.1,0.4,0.5])

([0,0.2,0.35,0.5],
[0,0.1,0.4,0.5])

([0.45,0.55,0.6,0.65],
[0.4,0.55,0.65,0.75])

tr2
([0.18,0.29,0.34,0.47],

[0.1,0.2,0.4,0.55])
([0.2,0.4,0.55,0.7],

[0.15,0.25,0.6,0.75])
([0.4,0.6,0.7,0.8],
[0.3,0.5,0.7,0.8])

([0.4,0.55,0.75,0.85],
[0.35,0.4,0.8,0.9])

tr3
([0.3,0.45,0.65,0.7],
[0.2,0.4,0.75,0.9])

([0.3,0.4,0.5,0.6],
[0.1,0.3,0.6,0.7])

([0.2,0.4,0.6,0.75],
[0.15,0.35,0.65,0.75])

([0,0.25,0.5,0.6],
[0,0.15,0.6,0.7])

tr4
([0.3,0.45,0.65,0.75],

[0.2,0.35,0.7,0.8])
([0.4,0.7,0.8,0.9],
[0.3,0.6,0.8,0.9])

([0.1,0.3,0.5,0.7],
[0,0.2,0.6,0.8])

([0,0.2,0.4,0.6],
[0,0.15,0.5,0.65])

5.1. Steps in Making a Decision

The following measures are involved in obtaining the right alternative(s):
(1) The attribute values should be normalised.

Since x1 is a cost form, all x1 attribute values must be converted (28).
(2) Compute the supports Sup( ˜dba

p, ˜dba
t
) p, t = 1, 2, 3. b, a = 1, 2, 3, 4 from Formulas (29)–(31).

(For the sake of clarity, we’ll use the abbreviation ) Sup( ˜dba
p, ˜dba

t
) with Spt

ba, and obtain
S12

11 = S21
11 = 0.7245, S13

11 = S31
11 = 0.9897, S23

11 = S32
11 = 0.7143,

S12
12 = S21

12 = 0.9049, S13
12 = S31

12 = 0.6550, S23
12 = S32

12 = 0.7501,
S12

13 = S21
13 = 0.8839, S13

13 = S31
13 = 0.6668, S23

13 = S32
13 = 0.5508,

S12
14 = S21

14 = 0.9235, S13
14 = S31

14 = 0.6089, S23
14 = S32

14 = 0.6854,
S12

21 = S21
21 = 0.8144, S13

21 = S31
21 = 0.5459, S23

21 = S32
21 = 0.7316,

S12
22 = S21

22 = 0.9389, S13
22 = S31

22 = 0.8218, S23
22 = S32

22 = 0.8829,
S12

23 = S21
23 = 0.9425, S13

23 = S31
23 = 0.8134, S23

23 = S32
23 = 0.8709,

S12
24 = S21

24 = 0.9817, S13
24 = S31

24 = 0.9973, S23
24 = S32

24 = 0.9844,
S12

31 = S21
31 = 0.8647, S13

31 = S31
31 = 0.8363, S23

31 = S32
31 = 0.9716,

S12
32 = S21

32 = 0.3336, S13
32 = S31

32 = 0.5361, S23
32 = S32

32 = 0.7974,
S12

33 = S21
33 = 0.9777, S13

33 = S31
33 = 0.6985, S23

33 = S32
33 = 0.7208,

S12
34 = S21

34 = 0.6482, S13
34 = S31

34 = 0.6447, S23
34 = S32

34 = 0.9965,
S12

41 = S21
41 = 0.6532, S13

41 = S31
41 = 0.7674, S23

41 = S32
41 = 0.8857,

S12
42 = S21

42 = 0.9201, S13
42 = S31

42 = 0.9840, S23
42 = S32

42 = 0.9042,
S12

43 = S21
43 = 0.8485, S13

43 = S31
43 = 0.8099, S23

43 = S32
43 = 0.9613,

S12
44 = S21

44 = 0.8817, S13
44 = S31

44 = 0.8419, S23
44 = S32

44 = 0.9602,

(3) Compute I( ˜dba
p
) b, a = 1, 2, 3, 4, p = 1, 2, 3. (For the sake of clarity, we’ll use the

abbreviation I( ˜dba
p
) with Ip

ba from Equation (32), and obtain
I1
11 = 1.7143, I2

11 = 1.4388, I3
11 = 1.7040, I1

12 = 1.5600, I2
12 = 1.6550, I3

12 = 1.4052,
I1
13 = 1.5508, I2

13 = 1.4347, I3
13 = 1.2176, I1

14 = 1.5324, I2
14 = 1.6089, I3

14 = 1.2944,
I1
21 = 1.3603, I2

21 = 1.5459, I3
21 = 1.2775, I1

22 = 1.7606, I2
22 = 1.8218, I3

22 = 1.7046,
I1
23 = 1.7560, I2

23 = 1.8134, I3
23 = 1.6843, I1

24 = 1.9790, I2
24 = 1.9662, I3

24 = 1.9817,
I1
31 = 1.7010, I2

31 = 1.8363, I3
31 = 1.8079, I1

32 = 0.8697, I2
32 = 1.1310, I3

32 = 1.3336,
I1
33 = 1.6762, I2

33 = 1.6985, I3
33 = 1.4192, I1

34 = 1.2928, I2
34 = 1.6447, I3

34 = 1.6412,
I1
41 = 1.4206, I2

41 = 1.5389, I3
41 = 1.6532, I1

42 = 1.9042, I2
42 = 1.8243, I3

42 = 1.8882,
I1
43 = 1.6584, I2

43 = 1.8099, I3
43 = 1.7712, I1

44 = 1.7236, I2
44 = 1.8419, I3

44 = 1.8020,

(4) Using Formula (33), compute the power weights θba
p
(b, a = 1, 2, 3, 4. p = 1, 2, 3)

and obtain
θ11

1
= 0.3455, θ11

2
= 0.3104, θ11

3
= 0.3442, θ12

1
= 0.3359, θ12

2
= 0.3484, θ12

3
= 0.3156,

θ13
1
= 0.3541, θ13

2
= 0.3380, θ13

3
= 0.3079, θ14

1
= 0.3406, θ14

2
= 0.3509, θ14

3
= 0.3086,

θ21
1
= 0.3286, θ21

2
= 0.3544, θ21

3
= 0.3170, θ22

1
= 0.3331, θ22

2
= 0.3405, θ22

3
= 0.3264,

θ23
1
= 0.3339, θ23

2
= 0.3409, θ23

3
= 0.3252, θ24

1
= 0.3337, θ24

2
= 0.3323, θ24

3
= 0.3340,

θ31
1
= 0.3237, θ31

2
= 0.3399, θ31

3
= 0.3365, θ32

1
= 0.2952, θ32

2
= 0.3364, θ32

3
= 0.3684,

θ33
1
= 0.3434, θ33

2
= 0.3462, θ33

3
= 0.3104, θ34

1
= 0.3025, θ34

2
= 0.3490, θ34

3
= 0.3485,

θ41
1
= 0.3180, θ41

2
= 0.3335, θ41

3
= 0.3485, θ42

1
= 0.3370, θ42

2
= 0.3278, θ42

3
= 0.3352,



Axioms 2022, 11, 588 24 of 29

θ43
1
= 0.3226, θ43

2
= 0.3410, θ43

3
= 0.3363, θ44

1
= 0.3255, θ44

2
= 0.3396, θ44

3
= 0.3349,

(5) Aggregate the results of each expert’s evaluations into a single report from Formula (34)
(consider e = f = 2).

To make it easier, we will start by calculating the ξs
ba =

lθba
s
γs

∑c
p=1 θba

p
γp

ξ1
11 = 0.6328, ξ2

11 = 1.4215, ξ3
11 = 0.9457, ξ1

12 = 0.5997, ξ2
12 = 1.555, ξ3

12 = 0.8452,
ξ1

13 = 0.6396, ξ2
13 = 1.5263, ξ3

13 = 0.8341, ξ1
14 = 0.608, ξ2

14 = 1.5658, ξ3
14 = 0.8262,

ξ1
21 = 0.5832, ξ2

21 = 1.5727, ξ3
21 = 0.8441, ξ1

22 = 0.597, ξ2
22 = 1.5256, ξ3

22 = 0.8774,
ξ1

23 = 0.5984, ξ2
23 = 1.5273, ξ3

23 = 0.8743, ξ1
24 = 0.6011, ξ2

24 = 1.4963, ξ3
24 = 0.9025,

ξ1
31 = 0.5786, ξ2

31 = 1.5191, ξ3
31 = 0.9023, ξ1

32 = 0.5243, ξ2
32 = 1.494, ξ3

32 = 0.9816,
ξ1

33 = 0.6152, ξ2
33 = 1.5507, ξ3

33 = 0.8341, ξ1
34 = 0.5346, ξ2

34 = 1.5416, ξ3
34 = 0.9238,

ξ1
41 = 0.5697, ξ2

41 = 1.4937, ξ3
41 = 0.9366, ξ1

42 = 0.6094, ξ2
42 = 1.4816, ξ3

42 = 0.9091,
ξ1

43 = 0.5763, ξ2
43 = 1.5227, ξ3

43 = 0.901, ξ1
44 = 0.5823, ξ2

44 = 1.519, ξ3
44 = 0.8986,

After that, by ˜dba = TrIFPWHA2,2( ˜dba
1, ˜dba

2, ˜dba
3
), and obtain

D =
([0.1288,0.2827,0.6375,0.8084], [0.1964,0.384,0.542,0.6862]),
([0.1523,0.2586,0.56,0.6828], [0.239,0.3294,0.4442,0.5831]),

([0.2505,0.4407,0.7359,0.8545], [0.3842,0.5064,0.6431,0.7303]),
([0.1811,0.3422,0.6796,0.8203], [0.2881,0.3923,0.581,0.7447]),

([0.1157,0.2575,0.4366,0.5378], [0,0.1507,0.471,0.5951]),
([0.207,0.3394,0.5189,0.6449], [0,0.2083,0.5701,0.6945]),
([0.2741,0.4338,0.5556,0.674], [0,0.2874,0.5672,0.7087]),
([0.4288,0.6459,0.7739,0.8908], [0.2512,0.4765,0.7922,0.8923]),

([0.232,0.3762,0.5132,0.6486], [0,0.2148,0.5184,0.6472]),
([0.4591,0.6145,0.7439,0.8628], [0.3002,0.4535,0.7612,0.8588]),
([0.1436,0.3138,0.5013,0.6532], [0,0.2238,0.5083,0.6859]),
([0.189,0.38,0.5056,0.6384], [0,0.2338,0.5706,0.6971]),

([0.2943,0.3971,0.5069,0.6197], [0,0.3362,0.5867,0.6851]),
([0.4291,0.5663,0.7384,0.8322], [0.3028,0.4127,0.781,0.8856]),

([0.1439,0.3358,0.4682,0.5893], [0,0.2159,0.4864,0.6535]),
([0.0779,0.2686,0.4294,0.6397], [0,0.1751,0.466,0.6707]),


(6) From Formula (35), compute I( ˜dba) (b, a = 1, 2, 3, 4) (For the sake of clarity, we’ll use the
abbreviation I( ˜dba) with Iba ), obtain
I11 = 2.414, I12 = 2.2855, I13 = 2.6109, I14 = 2.6109,
I21 = 1.9169, I22 = 1.9928, I23 = 1.9472, I24 = 1.9928,
I31 = 1.9041, I32 = 2.4479, I33 = 2.4479, I34 = 2.3277,
I41 = 2.1308, I42 = 1.4902, I43 = 2.1308, I44 = 1.9031,

(7) From Formula (36), compute the power weights θba (b, a = 1, 2, 3, 4), and obtain
θ11 = 0.2452, θ12 = 0.236, θ13 = 0.2594, θ14 = 0.2594,
θ21 = 0.2462, θ22 = 0.2526, θ23 = 0.2487, θ24 = 0.2526,
θ31 = 0.2212, θ32 = 0.2626, θ33 = 0.2626, θ34 = 0.2535,
θ41 = 0.2686, θ42 = 0.2137, θ43 = 0.2686, θ44 = 0.2491,

(8) From the Formula (37), we can determine each alternative’s total evaluation value
(let take e = f = 2), and obtain
ỹ1 = ([0.1663, 0.3238, 0.5849, 0.7061], [0, 0.2731, 0.4932, 0.621])
ỹ2 = ([0.239, 0.3697, 0.5993, 0.7114], [0, 0.2941, 0.4776, 0.5919])
ỹ3 = ([0.2839, 0.4568, 0.6526, 0.7524], [0, 0.3501, 0.5668, 0.6852])
ỹ4 = ([0.297, 0.4786, 0.6882, 0.801], [0, 0.36, 0.5699, 0.7178])
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(9) Using Definition 6, compute the necessary score functions of TrIFN ỹb(b = 1, 2, 3, 4),
and obtain

L(ỹ1) = 0.2949, L(ỹ2) = 0.3366, L(ỹ3) = 0.3882, and L(ỹ4) = 0.4289.
Since all the values of score function L for all TrIFNs are unique, we can rank them

according to their respective score values.

(10) Rank the alternatives
By using Definition 7, we obtain the ranking as follows,

Tr4 > Tr3 > Tr2 > Tr1

Note: Here the ranking is based on the membership score (L). We have used only
the membership score function, since it differentiates all the TrIFNs given in the problem
effectively. In general, we may need other score functions for proper ranking of alternatives.

5.2. Discussion

Further, in Table 4, we have shown a ranking outcome for the above discussed example
for different values of e and f . We have considered e and f values in steps (5) and (8) to
rank the alternatives.

Table 4. Ranking outcome for different values of e and f .

e and f Score Function ỹb(b = 1, 2, 3, 4) Ranking

e = f = 1
2

L(ỹ1) = 0.1476, L(ỹ2) = 0.2327,
L(ỹ3) = 0.2017, L(ỹ4) = 0.2563 Tr4 > Tr2 > Tr3 > Tr1

e = 1
2 , f = 0 L(ỹ1) = 0.3373, L(ỹ2) = 0.3664,

L(ỹ3) = 0.3934, L(ỹ4) = 0.4723 Tr4 > Tr3 > Tr2 > Tr1

e = 0, f = 1
2

L(ỹ1) = 0.0555, L(ỹ2) = 0.1918,
L(ỹ3) = 0.1174, L(ỹ4) = 0.1474 Tr2 > Tr4 > Tr3 > Tr1

e = 1, f = 0 L(ỹ1) = 0.3623, L(ỹ2) = 0.3879,
L(ỹ3) = 0.4328, L(ỹ4) = 0.5019 Tr4 > Tr3 > Tr2 > Tr1

e = 0, f = 1 L(ỹ1) = 0.0929, L(ỹ2) = 0.2132,
L(ỹ3) = 0.1658, L(ỹ4) = 0.2052 Tr2 > Tr4 > Tr3 > Tr1

e = 1, f = 1 L(ỹ1) = 0.2004, L(ỹ2) = 0.2696,
L(ỹ3) = 0.2715, L(ỹ4) = 0.3258 Tr4 > Tr3 > Tr2 > Tr1

e = 1, f = 2 L(ỹ1) = 0.2313, L(ỹ2) = 0.2883,
L(ỹ3) = 0.3156, L(ỹ4) = 0.3692 Tr4 > Tr3 > Tr2 > Tr1

e = 2, f = 1 L(ỹ1) = 0.2869, L(ỹ2) = 0.3354,
L(ỹ3) = 0.3731, L(ỹ4) = 0.4136 Tr4 > Tr3 > Tr2 > Tr1

e = 1, f = 5 L(ỹ1) = 0.3615, L(ỹ2) = 0.3781,
L(ỹ3) = 0.4614, L(ỹ4) = 0.4996 Tr4 > Tr3 > Tr2 > Tr1

e = 5, f = 1 L(ỹ1) = 0.4327, L(ỹ2) = 0.461,
L(ỹ3) = 0.542, L(ỹ4) = 0.5507 Tr4 > Tr3 > Tr2 > Tr1

e = 5, f = 5 L(ỹ1) = 0.4539, L(ỹ2) = 0.4695,
L(ỹ3) = 0.5691, L(ỹ4) = 0.5781 Tr4 > Tr3 > Tr2 > Tr1

Table 4, Using the TrIFPWHA operator, we can see that the ranking outcomes for alter-
natives are different if we consider different parameters e and f for them. From the above
result, we can say the best alternative is Tr4 or Tr2. By choosing the high values of e and f ,
there is more emphasis on the interactions of attribute values. For the linear weighting, we
consider simple values like we can choose e = f = 0, or for simple computation, we can
consider values like e = f = 1 or e = f = 1

2 . We can conclude that parameters e and f in
the TrIFPWHA operator provide flexibility for decision-making. This flexibility will help
choose the most suitable alternative in decision-making problems, as we can consider the
best possible values of e and f for the decision-making problems.
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5.3. Comparison of Proposed Method with the Existing Methods
The Advantages of the Proposed Method

(1) Comparison with the method proposed by Peide Liu and Ying Liu [33]
The Peide Liu and Ying Liu [33] method is built on PA operators, but the proposed

method is based on PA operators as well as it considers relationships of the aggregate argu-
ments. The PA operators help in minimizing the influence of irrational data. Below, we will
show the result of the intuitionistic trapezoidal fuzzy power generalized weighted average
(ITFPGWA) operator for different values of λ. Further, we will deliver the advantage (as
discussed above) of the proposed method using the above-discussed example.

5.4. Results and Discussion

Using Table 5, we can see that the ITFPGWA operator does not have the impact of Λ.
However, our proposed method has the impact of e and f values. Tr2 as best alternative
produce by ITFPGWA operator. As we know, the ITFPGWA operator did not consider the
relationships of the aggregated attributes. Using Table 4, we can see that in the proposed
methods, by choosing the high values of e and f , there is more emphasis on the interactions
of attribute values. The proposed method that gives the best alternative is Tr4 or Tr2.
Additionally, the ITFPGWA operator has only four parameters in its trapezoidal sets, i.e., it
considers more generalized trapezoidal fuzzy numbers. It is denoted as

p̃ = ([p, q, r, s]; u p̃, v p̃)

However, the proposed method considers a more specific representation of the trape-
zoidal sets, and it considers the 8 parameter for its representation and is denoted as

p̃ = ([p, q1, q2, r], [s, u1, u2, v])

So, it is evident that the proposed has more advantages in handling problems more
precisely.

Table 5. The impact of the parameters Λ on the ranking outcome of example 1 for ITFPGWA operator.

Λ
Expected Values
ỹb(b = 1, 2, 3, 4) Ranking

Λ = 0.5 I(ỹ1) = 0.421, I(ỹ2) = 0.563,
I(ỹ3) = 0.385, I(ỹ4) = 0.501 Tr2> Tr4> Tr1> Tr3

Λ = 1 I(ỹ1) = 0.441, I(ỹ2) = 0.58,
I(ỹ3) = 0.405, I(ỹ4) = 0.527 Tr2> Tr4> Tr1> Tr3

Λ = 2 I(ỹ1) = 0.471, I(ỹ2) = 0.608,
I(ỹ3) = 0.432, I(ỹ4) = 0.562 Tr2> Tr4> Tr1> Tr3

Λ = 3 I(ỹ1) = 0.497, I(ỹ2) = 0.63,
I(ỹ3) = 0.45, I(ỹ4) = 0.588 Tr2> Tr4> Tr1> Tr3

Λ = 4 I(ỹ1) = 0.521, I(ỹ2) = 0.648,
I(ỹ3) = 0.463, I(ỹ4) = 0.608 Tr2> Tr4> Tr1> Tr3

Λ = 5 I(ỹ1) = 0.543, I(ỹ2) = 0.661,
I(ỹ3) = 0.473, I(ỹ4) = 0.624 Tr2> Tr4> Tr1> Tr3

Λ = 6 I(ỹ1) = 0.561, I(ỹ2) = 0.672,
I(ỹ3) = 0.482, I(ỹ4) = 0.637 Tr2> Tr4> Tr1> Tr3

Λ = 7 I(ỹ1) = 0.578, I(ỹ2) = 0.682,
I(ỹ3) = 0.489, I(ỹ4) = 0.648 Tr2> Tr4> Tr1> Tr3

Λ = 8 I(ỹ1) = 0.592, I(ỹ2) = 0.689,
I(ỹ3) = 0.495, I(ỹ4) = 0.657 Tr2> Tr4> Tr1> Tr3

Λ = 10 I(ỹ1) = 0.614, I(ỹ2) = 0.701,
I(ỹ3) = 0.505, I(ỹ4) = 0.671 Tr2> Tr4> Tr1> Tr3

Λ = 5000 I(ỹ1) = 0.25, I(ỹ2) = 0.472,
I(ỹ3) = 0.234, I(ỹ4) = 0.469 Tr2> Tr4> Tr1> Tr3

Our proposed method is more compatible with real-world problems because, in MADM
problems, there is usually a relationship among the attributes.

In a term, the method proposed can take advantage of the operators of the PA and
BM, i.e., it can take into account the relationships of the aggregated claims and remove the
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power weighting effect of the unreasonable data, and it can provide a more logical ranking
results than some current methods. Of course, the estimation of the suggested approach is
somewhat complicated due to the simultaneous consideration of the PA and BM operators.

Depending upon the problem, aggregation operators have specific purposes. Some
aggregation operators can mitigate the specific influences of incomplete and inadequate
data generated by the decision-makers with different confidence levels. Aggregation
operators, such as the PA operator, allocate the weighted vector based on the degree of
support between the input arguments to aggregate the input data and accomplish this
purpose. Certain aggregation operators consider the interrelationship among various ag-
gregated arguments. More specifically, based on the complexity of many decision-making
problems, we shall choose our aggregation operators, which provide more accurate, intu-
itive/believable results. In this paper, we selected the PA operator by assigning different
weights to alleviate the influences of various parameters. Additionally, we considered
the interrelationships between input values in a few cases, and then this function was
completed by the Heronian mean/Bonferroni mean. The proposed aggregation opera-
tor/group decision-making algorithm can be used for many real-life problems. For example,
the proposed group decision-making method can be applied to Supply Chain Management
problems in manufacturing industries. Especially in recent years, many manufacturing
organizations have thrived in the post-COVID-19 scenario dealing with incomplete and im-
precise information. They are trying to perform well in the market by introducing/utilizing
various strategies to tackle the present disruption. The supplier selection problem can
be considered as a multi-criteria decision-making problem. If we consider the example
defined here, then the selection of the best supplier will be based on different criteria such
as cost, quality and social sustainability dimensions, etc. Here, a few qualitative criteria can
be modelled better using TrIFNs. The traditional MCDM models or fuzzy MCDM models
cannot solve problems with incomplete information. The proposed group decision-making
model presents an effective way to select resilient suppliers under an intuitionistic fuzzy en-
vironment. To select the best supplier, we shall utilize the proposed group decision-making
model, which utilizes TrIFPHA and TrIFWPHA operators.

6. Conclusions and Future Scope

In this paper, we merged the power average operator with the Heronian mean op-
erator and introduced the trapezoidal intuitionistic fuzzy power Heronian aggregation
(TrIFPHA) operator, and trapezoidal intuitionistic fuzzy power weighted Heronian aggre-
gation (TrIFPWHA) operator. These operators can make full use of the benefits of the PA
operator and the Heronian mean, i.e., they can take into account the relationships of the
aggregated arguments and remove the power weighting influences of the unreasonable
data. In addition, we studied some of the properties of these new aggregation operators,
addressed some special cases, and developed a new approach based on these operators
for solving MAGDM problems with TrIFNs. Finally, to demonstrate the efficacy of the
developed method, we gave a numerical example and explained its benefits by contrasting
it with the existing methods. In future studies, we may extend the idea of the proposed
model to the class of interval-valued Fermatean fuzzy sets and Q-rung orthopair fuzzy sets,
which are generalizations of interval-valued intuitionistic fuzzy numbers. Additionally, we
shall define a power aggregation operator on several new classes of fuzzy numbers, such
as neutrosophic numbers (Liu et al. [33,34]), interval type-2 fuzzy sets (Celik et al. [35]),
and hesitant fuzzy numbers (Hu et al. [36]). In this framework, we have used the exist-
ing similarity measures. The available similarity measures are defined by using distance
measures, and many of the available distance measures are not ultra-metric. So, one can
think of introducing a new similarity measure based on ultra-metric, and they can change
the existing similarity measures with the ultra-metric similarity measure and study the
performance of a decision-making algorithm. We will also explore some applications in
supply chain management, and energy and environment evaluations (Huang and Yu, [37];
Liu et al. [38]; Shaw and Roy, [39]; Zha and Kavuri [40]) simultaneously.



Axioms 2022, 11, 588 28 of 29

Author Contributions: Conceptualization, J.S. and S.H.Z.; methodology, P.G.; software, P.G.; valida-
tion, J.S. and P.G.; formal analysis, J.S.; investigation, P.G.; resources, J.S. and S.H.Z.; data curation, J.S.
and P.G.; writing—original draft preparation, J.S. and P.G.; writing—review and editing, J.S., P.G. and
S.H.Z.; visualization, J.S.; supervision, J.S.; project administration, J.S. and S.H.Z.; funding acquisition,
J.S. and S.H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atanassov, K.T. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 33, 37–46. [CrossRef]
2. Atanassov, K.T. Two theorems for Intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 110, 267–269. [CrossRef]
3. Deschrijver, G.; Kerre, E.E. On the relationship between intuitionistic fuzzy sets and some other extensions of fuzzy set theory. J.

Fuzzy Math. 2002, 10, 711–724.
4. Nayagam, V.L.G.; Jeevaraj, S.; Geetha, S. Ranking of incomplete trapezoidal information. Soft Comput. 2017, 21, 7125–7140.

[CrossRef]
5. Nayagam, V.L.G.; Jeevaraj, S.; Ponnialagan, D. A new ranking principle for ordering trapezoidal intuitionistic fuzzy numbers.

Complexity 2017, 2017, 3049041.
6. Nayagam, V.L.G.; Jeevaraj, S.; Dhanasekaran, P. A linear ordering on the class of Trapezoidal intuitionistic fuzzy numbers.

Expert Syst. Appl. 2016, 60, 269–279.
7. He, Y.D.; Chen, H.Y.; Zhou, L.G.; Liu, J.P.; Tao, Z.F. Generalized Interval-Valued Atanassov’s Intuitionistic Fuzzy Power

Operators and Their Application to Group decision-making. Int. J. Fuzzy Syst. 2013, 15, 401–411.
8. Vojinovic, N.; Stevic, Ž.; Tanackov, I. A Novel IMF SWARA-FDWGA-PESTEL Analysis for Assessment of Healthcare System.

Oper. Res. Eng. Sci. Theory Appl. 2022, 5, 139–151. [CrossRef]
9. Riaz, M.; Athar Farid, H.M. Picture fuzzy aggregation approach with application to third-party logistic provider selection

process. Rep. Mech. Eng. 2022, 3, 318–327. [CrossRef]
10. Sahu, R.; Dash, S.R.; Das, S. Career selection of students using hybridized distance measure based on picture fuzzy set and

rough set theory. Decis. Making: Appl. Manag. Eng. 2021, 4, 104–126. [CrossRef]
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