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Abstract: Testing multivariate normality is an ever-lasting interest in the goodness-of-fit area since
the classical Pearson’s chi-squared test. Among the numerous approaches in the construction of tests
for multivariate normality, normal characterization is one of the common approaches, which can
be divided into the necessary and sufficient characterization and necessary-only characterization.
We construct a test for multivariate normality by combining the necessary-only characterization
and the idea of statistical representative points in this paper. The main idea is to transform a high-
dimensional sample into a one-dimensional one through the necessary normal characterization and
then employ the representative-point-based Pearson’s chi-squared test. A limited Monte Carlo study
shows a considerable power improvement of the representative-point-based chi-square test over the
traditional one. An illustrative example is given to show the supplemental function of the new test
when used together with existing ones in the literature.

Keywords: chi-squared test; multivariate normality; representative points; spherical distribution;
Student’s t-distribution
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1. Introduction

The multivariate normal distribution can be characterized many different ways. For ex-
ample, (1) one of the most well-known characterizations is that a p-dimensional random
vector x = (X1, . . . , Xp)′ (p× 1) has a p-dimensional normal distribution if and only if all
of its linear combinations a′x (a ∈ Rp, the p-dimensional Euclidean space) has a univari-
ate normal distribution; (2) Anderson [1] gave the multivariate normal characterizations
by its mean vector and its covariance matrix, respectively; (3) Shao and Zhou [2] gave a
characterization for a random vector without a multivariate normal distribution; to name a
few. Most of the existing tests for MVN (multivariate normality) in the literature are more
or less based on some kind of characterizations for MVN ([3,4]); some are based on neces-
sary and sufficient characterizations for MVN; some others are only based on necessary
characterizations for MVN ([5–17]). An MVN test based on a necessary characterization
is called a necessary test in the literature. By reviewing a wide class of MVN tests, Ebner
and Henze [18] discuss many of the most updated tests for MVN, which consists of mostly
necessary ones. Necessary tests for MVN are usually easier to construct and their exact null
distributions or asymptotic null distributions are easier to obtain with simple analytical
expressions. However, a common drawback of all necessary tests for MVN is that if the
null hypothesis of MVN is not rejected, there is no guarantee of MVN for the original data.
Therefore, a characterization-based MVN test may have better power performance than
many non-characterization-based MVN-tests. This is our motivation for developing a new
characterization-based MVN test.
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Yang, Fang, and Liang [19] gave a characterization for MVN by using the the sampling
distributions of a series of specially constructed random vectors from an i.i.d. (indepen-
dently identically distributed) normal sample from a zero-mean p-dimensional normal
distribution Np(0, Σ) with an unknown covariance matrix Σ > 0 (positive definite). This
characterization can be employed to construct Q-Q (quantile-quantile) plots for detecting
non-multinormality ([20]). In this paper, we will develop further application of the MVN
characterization in [19] through employing the idea of statistical representative points (RP
for short, [21]), the properties of spherical distributions ([22]), and the classical Pearson–
Fisher statistic ([23,24]). This paper is organized as follows. A brief review on the MVN
characterization in [19] is given in Section 2. The development of the new test is given in
Section 3. Section 4 is devoted to a Monte Carlo study on the empirical performance of the
new test and its application. Some concluding remarks are given in the last section.

2. A Brief Review on the MVN Characterization

Let continuous random vectors (d × 1) x1, . . . , xn be independently identically dis-
tributed (i.i.d.) according to a probability density function (p.d.f.) f (x), x ∈ Rd (the
d-dimensional Euclidean space). For simplicity, we write x1, . . . , xn i.i.d. ∼ f (x). It is
assumed that the p.d.f. f (x) has a zero mean and finite second-order moments. Let:

Sk =
k

∑
i=1

xix′i, yk = S−
1
2

k xk, zk =
yk√

1− yk
′yk

, (1)

for k = d + 1, . . . , n, where S−
1
2

k = (S
1
2
k )
−1 and S

1
2
k stands for the positive definite square

root of Sk.

Theorem 1 ([19]). Let x1, . . . , xn be i.i.d. ∼ Nd(0, Σ). Define the random vectors yk and zk by
(1). Then,

1. yd+1, . . . , yn are mutually independent and yk (k ≥ d + 1) has a symmetric multivariate
Pearson Type II distribution with a p.d.f.,

fk(y) =
Γ( k

2 )

π
d
2 Γ( k−d

2 )

(
1− y′y

) k−d−2
2 , y ∈ Rd, y′y < 1. (2)

2. zd+1, . . . , zn are mutually independent and zk (k ≥ d + 1) has a symmetric multivariate
Pearson Type VII distribution with a p.d.f.,

hk(z) =
Γ( k

2 )

π
d
2 Γ( k−d

2 )

(
1 + z′z

)− k
2 , z ∈ Rd. (3)

3. Let x1, . . . , xn be i.i.d. in Rd with a p.d.f. v(x), which is continuous in x ∈ Rd and v(0) > 0.
Define the random vectors zk by (1). If zk and zk−1 (k ≥ d+ 2) have p.d.f.’s hk(z) and hk−1(z)
defined by (3), respectively, then xi (i = 1, . . . , n) has a multivariate normal distribution.

From the above theorem, we can derive the following corollary.

Corollary 1. Assume that x1, . . . , xn are i.i.d. ∼ Nd(µ, Σ). Define the random vectors:

ui =
x1 + · · ·+ xi − ixi+1√

i(i + 1)
, i = 1, . . . , n− 1. (4)

and,

Sk =
k

∑
i=1

uiu′i, yk = S−
1
2

k uk, k = d + 1, . . . , n− 1. (5)
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Let yk = (yk1, . . . , ykd)
′: d× 1 (k = d + 1, . . . , n− 1) and:

ȳk =
1
d

d

∑
i=1

yki, tk =

√
dȳk
vk

, v2
k =

1
d− 1

d

∑
i=1

(yki − ȳk)
2; (6)

Then {tk : k = d + 1, . . . , n − 1} are i.i.d. ∼ t(d − 1), the Student’s t-distribution with d.f.
(degrees of freedom) d− 1.

Proof. By the definition of the ui in (4), it is easy to verify that {ui : i = 1, . . . , n − 1}
are i.i.d. ∼ Nd(0, Σ). By the above theorem, {yk : k = d + 1, . . . , n − 1} are mutually
independent and yk has a Pearson Type II distribution with a p.d.f. given by (2), which is a
spherical distribution. For each fixed k, the random variable tk only depends on yk. We
write it as:

tk = tk(yk), k = d + 1, . . . , n− 1.

The independence of {yk : k = d + 1, . . . , n− 1} results in the independence of {tk(yk) :
k = d + 1, . . . , n− 1}. Note that for each fixed k, tk(yk) is scale invariant. That is, tk(ayk) =
tk(yk) holds for any constant a > 0. According to Theorem 2.22 of [22] (p. 51), we have:

tk(yk)
d
= tk(z0),

where z0 ∼ Nd(0, Id) (the d-dimensional standard normal), and the sign “ d
=” means that

both sides of the equality have the same distribution. By the definitions of the t-distribution
it is obvious that:

tk(yk) ∼ t(d− 1).

This completes the proof.

3. The RP-Based Chi-Square Test

The above corollary provides a way to construct a necessary test for MVN of the
original i.i.d. sample {x1, . . . , xn}. Suppose that we want to test the hypothesis:

H0 : {x1, . . . , xn} is a sample from Nd(µ, Σ) (7)

against the alternative hypothesis that {x1, . . . , xn} is not a normal sample. This hypothesis
can be transferred to testing:

H0 : {tk : k = d + 1, . . . , n− 1} is a sample from t(d− 1) (8)

versus the alternative that H0 in (8) is not true. It is obvious that a test for (8) is a necessary
one for (7); that is, if hypothesis (8) is rejected, hypothesis (7) is also rejected. However, if
hypothesis (8) is not rejected, there is no guarantee for the truth of hypothesis (7).

To test hypothesis (8), we can employ the Pearson–Fisher test (simply called PF-
test) for assessing if the set of i.i.d. t-type variates {tk : k = d + 1, . . . , n − 1} in (6)
is from t(d − 1). The traditional PF-test is facing with numerous choices of cells for
grouping an i.i.d. sample. The choice of equiprobable cells is recommended in [25], which
means that each cell is assigned an equal probability. If the number of cells, m, is pre-
assigned, the probability for each cell is 1/m. Under the null hypothesis, the transformed
sample {tk : k = d + 1, . . . , n − 1} in (6) is from t(d − 1). Then the endpoints {a1 =
−∞, a2, . . . , am−1, am = +∞} of all cells can be computed as follows.∫ ai+1

ai

ft(x; d− 1) dx =
1
m

, i = 1, . . . , m− 1,

where ft(x; d− 1) stands for the density function of the Student’s t-distribution t(d− 1).
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Because the representative points (RP) ([18]; or called principal points in [26]) of a
probability distribution have the property of minimizing some kind of quadratic loss func-
tion, we propose to employ the RP of the Student’s t-distribution t(d− 1) as the endpoints
of intervals for the Pearson–Fisher statistic. The t-RP are a set of points {R1, . . . , Rm} (for a
selected number of points m) that minimize the quadratic loss function:

φ(u1, . . . , um) =
∫ +∞

−∞
min

1≤i≤m

{
(ui − u)2

}
ft(u; d− 1) du, (9)

φ(R1, . . . , Rm) = min
1≤i≤m

{φ(u1, . . . , um) : −∞ < u1 < . . . < um < +∞}.

Zhou and Wang [27] gave an algorithm for computing the t-RP {R1, . . . , Rm}. Define
the following intervals:

I1 =

(
−∞,

R1 + R2

2

)
, I2 =

[
R1 + R2

2
,

R2 + R3

2

)
, . . . ,

Im−1 =

[
Rm−2 + Rm−1

2
,

Rm−1 + Rm

2

)
, Im =

[
Rm−1 + Rm

2
,+∞

) (10)

and the probabilities:

pi =
∫

Ii

ft(x; d− 1) dx, i = 1, . . . , m. (11)

According to [21], {p1, . . . , pm} can be considered as a set of “representative probabili-
ties" for the Student’s t density function ft(·; d− 1). The χ2-statistic for testing hypothesis
(8) is computed by:

χ2
R =

m

∑
i=1

(ni − npi)
2

npi
, (12)

where ni is the frequency of the transformed sample points {tk : k = d + 1, . . . , n− 1}
given by (6) that are located in the interval Ii in (10). It is known that χ2

R → χ2(m− 1)
(n→ ∞) in the distribution under some regular conditions. The p-value for testing (8) is
computed by:

P(χ2
R, ν) = K

∫ ∞

χ2
R

z
ν
2−1 exp(− z

2
) dz, with ν = m− 1, K =

[
2

ν
2 Γ(

ν

2
)
]−1

. (13)

4. A Monte Carlo Study and an Illustrative Example

In order to compare the χ2
R-test (12) under the “representative probabilities” {p1, . . . , pm}

in (11) with the traditional chi-squared test, we choose the equiprobable cells for computing
the traditional chi-square test. For a selected number of representative points m, define the
interval endpoints:

a1 satisfies P(χ2(m− 1) < a1) =
1
m

;

a2 satisfies P(a1 < χ2(m− 1) < a2) =
1
m

;

...

am−1 satisfies P(am−2 < χ2(m− 1) < am−1) =
1
m

;

am satisfies P(χ2(m− 1) > am) =
1
m

.

(14)
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Denote the traditional chi-square test based on the interval endpoints (14) by χ2
T :

χ2
T =

m

∑
i=1

(Ni − n/m)2

n/m
, (15)

which is also an approximate χ2(m− 1) for a large sample size, where Ni stands for the
frequency of the observed sample points that are located in the intervals defined by the
endpoints (14).

4.1. A Comparison between Empirical Type I Error Rates

Because the chi-square test based on the transformed sample points {tk : k =
d + 1, . . . , n − 1} given by (6) is affine invariant under any nonsingular linear transfor-
mation of the original i.i.d. sample {x1, . . . , xn}, we only need to generate samples from a
d-dimensional standard normal Nd(0, Id) (Id stands for the d× d identity matrix). The sim-
ulation results under 2000 replications for each case are summarized in Tables 1–3 for
significance levels α = 0.01, 0.05, and 0.10, respectively. It can be roughly concluded that
both the traditional chi-square statistic χ2

T and the RP chi-square statistic χ2
R show reason-

able control of type I error rates under different choices of the number of cells and relatively
large sample sizes. Because the Pearson–Fisher chi-square test is an approximate test for
goodness-of-fit under its asymptotic null distribution, we do not show its small-sample
empirical performance.

Table 1. Empirical type I error rates (α = 0.01).

n m χ2 d = 5 d = 10 d = 15 d = 20

n = 50

m = 5 χ2
R 0.0155 0.0110 0.0075 0.0070

χ2
T 0.0075 0.0070 0.0065 0.0075

m = 10 χ2
R 0.0320 0.0145 0.0120 0.0125

χ2
T 0.0090 0.0105 0.0075 0.0085

m = 15 χ2
R 0.0525 0.0285 0.0210 0.0235

χ2
T 0.0080 0.0105 0.0115 0.0090

m = 20 χ2
R 0.0835 0.0465 0.0255 0.0340

χ2
T 0.0115 0.0110 0.0090 0.0130

n = 100

m = 5 χ2
R 0.0130 0.0100 0.0120 0.0105

χ2
T 0.0070 0.0125 0.0105 0.0150

m = 10 χ2
R 0.0350 0.0170 0.0130 0.0125

χ2
T 0.0115 0.0105 0.0110 0.0075

m = 15 χ2
R 0.0810 0.0230 0.0180 0.0185

χ2
T 0.0105 0.0125 0.0120 0.0090

m = 20 χ2
R 0.0370 0.0225 0.0245 0.0190

χ2
T 0.0110 0.0135 0.0110 0.0100
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Table 1. Cont.

n m χ2 d = 5 d = 10 d = 15 d = 20

n = 200

m = 5 χ2
R 0.0075 0.0045 0.0060 0.0065

χ2
T 0.0105 0.0090 0.0075 0.0085

m = 10 χ2
R 0.0240 0.0150 0.0130 0.0130

χ2
T 0.0115 0.0135 0.0110 0.0105

m = 15 χ2
R 0.0430 0.0125 0.0155 0.0155

χ2
T 0.0120 0.0080 0.0125 0.0110

m = 20 χ2
R 0.0455 0.0145 0.0150 0.0170

χ2
T 0.0075 0.0120 0.0095 0.0120

n = 400

m = 5 χ2
R 0.0110 0.0155 0.0140 0.0085

χ2
T 0.0105 0.0080 0.0115 0.0090

m = 10 χ2
R 0.0185 0.0105 0.0140 0.0105

χ2
T 0.0070 0.0090 0.0150 0.0095

m = 15 χ2
R 0.0230 0.0140 0.0155 0.0145

χ2
T 0.0140 0.0105 0.0115 0.0125

m = 20 χ2
R 0.0570 0.0140 0.0120 0.0175

χ2
T 0.0085 0.0150 0.0075 0.0130

Table 2. Empirical type I error rates (α = 0.05).

n m χ2 d = 5 d = 10 d = 15 d = 20

n = 50

m = 5 χ2
R 0.0430 0.0550 0.0460 0.0450

χ2
T 0.0400 0.0555 0.0390 0.0460

m = 10 χ2
R 0.0730 0.0505 0.0565 0.0450

χ2
T 0.0350 0.0440 0.0480 0.0340

m = 15 χ2
R 0.0660 0.0750 0.0725 0.0675

χ2
T 0.0445 0.0575 0.0455 0.0545

m = 20 χ2
R 0.0930 0.1115 0.0790 0.0710

χ2
T 0.0490 0.0570 0.0495 0.0365

n = 100

m = 5 χ2
R 0.0555 0.0435 0.0465 0.0410

χ2
T 0.0470 0.0485 0.0540 0.0505

m = 10 χ2
R 0.0750 0.0530 0.0500 0.0560

χ2
T 0.0595 0.0510 0.0515 0.0480

m = 15 χ2
R 0.0970 0.0685 0.0610 0.0560

χ2
T 0.0530 0.0550 0.0540 0.0525

m = 20 χ2
R 0.0755 0.0735 0.0695 0.0665

χ2
T 0.0540 0.0465 0.0545 0.0420



Axioms 2022, 11, 587 7 of 20

Table 2. Cont.

n m χ2 d = 5 d = 10 d = 15 d = 20

n = 200

m = 5 χ2
R 0.0460 0.0485 0.0450 0.0465

χ2
T 0.0565 0.0495 0.0465 0.0505

m = 10 χ2
R 0.0580 0.0530 0.0400 0.0495

χ2
T 0.0490 0.0520 0.0425 0.0530

m = 15 χ2
R 0.1135 0.0625 0.0550 0.0565

χ2
T 0.0530 0.0480 0.0485 0.0470

m = 20 χ2
R 0.0715 0.0635 0.0560 0.0595

χ2
T 0.0485 0.0450 0.0600 0.0505

n = 400

m = 5 χ2
R 0.0550 0.0470 0.0495 0.0475

χ2
T 0.0485 0.0520 0.0450 0.0375

m = 10 χ2
R 0.0590 0.0525 0.0515 0.0475

χ2
T 0.0545 0.0565 0.0510 0.0460

m = 15 χ2
R 0.0740 0.0460 0.0475 0.0495

χ2
T 0.0465 0.0535 0.0460 0.0520

m = 20 χ2
R 0.0880 0.0670 0.0580 0.0505

χ2
T 0.0515 0.0470 0.0495 0.0475

Table 3. Empirical type I error rates (α = 0.10).

n m χ2 d = 5 d = 10 d = 15 d = 20

n = 50

m = 5 χ2
R 0.0835 0.0885 0.0915 0.0880

χ2
T 0.0855 0.1005 0.0845 0.0865

m = 10 χ2
R 0.1325 0.1045 0.0970 0.0985

χ2
T 0.0895 0.0885 0.0930 0.0960

m = 15 χ2
R 0.0870 0.1065 0.1055 0.1130

χ2
T 0.0940 0.0890 0.0985 0.1080

m = 20 χ2
R 0.1155 0.1375 0.1330 0.1290

χ2
T 0.0875 0.0815 0.0735 0.0835

n = 100

m = 5 χ2
R 0.0980 0.0965 0.0965 0.1010

χ2
T 0.1155 0.1085 0.1035 0.0885

m = 10 χ2
R 0.1065 0.1010 0.0950 0.0940

χ2
T 0.0985 0.0955 0.0905 0.0905

m = 15 χ2
R 0.1130 0.0895 0.1100 0.1070

χ2
T 0.0985 0.0930 0.1035 0.1010

m = 20 χ2
R 0.1135 0.1000 0.1140 0.1095

χ2
T 0.1015 0.0980 0.1005 0.0885
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Table 3. Cont.

n m χ2 d = 5 d = 10 d = 15 d = 20

n = 200

m = 5 χ2
R 0.0965 0.0980 0.0965 0.1050

χ2
T 0.0895 0.0880 0.1055 0.0940

m = 10 χ2
R 0.1035 0.1040 0.0925 0.0965

χ2
T 0.0980 0.0970 0.1010 0.1040

m = 15 χ2
R 0.1575 0.1040 0.0865 0.1015

χ2
T 0.1040 0.0980 0.0940 0.0930

m = 20 χ2
R 0.1005 0.1050 0.0965 0.1035

χ2
T 0.0940 0.0965 0.1110 0.0990

n = 400

m = 5 χ2
R 0.0865 0.0995 0.0940 0.0930

χ2
T 0.1010 0.0945 0.0975 0.0955

m = 10 χ2
R 0.1020 0.1055 0.0975 0.1095

χ2
T 0.0980 0.1000 0.1080 0.0975

m = 15 χ2
R 0.1045 0.0950 0.0970 0.0930

χ2
T 0.0900 0.1025 0.1050 0.1005

m = 20 χ2
R 0.1210 0.0965 0.1085 0.1025

χ2
T 0.1035 0.0910 0.1075 0.1055

4.2. A Simple Power Comparison

To show the benefit of employing the RP-idea for grouping cells for the Pearson–
Fisher chi-square test, we carry out a simple Monte Carlo study by selecting the following
alternative distributions, which consist of three types of distributions (symmetric about the
origin; skewed distributions; distributions with normal marginals):

(1) [symmetric] The multivariate Cauchy distribution ([22]) has a density function of the form:

fc(‖x‖) = C1

(
1 +
‖x‖2

m

)− d+1
2

,

where “‖ · ‖” stands for the Euclidean norm of a vector, C1 is a normalizing constant
depending on the dimension d.

(2) [symmetric] The β-generalized normal distribution Nd(0, Id, 1/2) with β = 1/4 has a
density function of the form by ([28]):

f (x1, . . . , xd) =
βdrd/β

2dΓd(1/β)
· exp

{
− r

d

∑
i=1
|xi|β

}
, (x1, . . . , xd)

′ ∈ Rd,

where r > 0 is a parameter. Let r = 1/2 in the simulation and denote it by β-normal.
(3) [symmetric] Multivariate double Weibull distribution consisting of i.i.d. univariate

double Weibull distributions ([29]), its density function is given by:

fd(x) =
(

α

2β

)d d

∏
i=1

(
|xi|
β

)α−1

exp

{
−

d

∑
i=1

(
|xi|
β

)α
}

, x = (x1, . . . , xd)
′ ∈ Rd,

where α and β are the shape parameter and scale parameter, respectively. Let α = 1/2
and β = 1 in the simulation.

(4) [skewed] The shifted i.i.d. χ2(1) with i.i.d. marginals, each marginal has the same
distribution as that of the random variable Y = X − E(X), where X ∼ χ2(1), the
univariate chi-square distribution with 1 degree of freedom and E(X) = 1.
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(5) [skewed] The shifted i.i.d. exp(1) with i.i.d. marginals, each marginal has the same
distribution as that of the random variable Y = X − E(X), where X ∼ exp(1), the
univariate exponential distribution.

(6) [skewed] The shifted i.i.d. F-distribution with i.i.d. marginals F(4, 3) with i.i.d.
marginals, Y = X− E(X), where X ∼ F(4, 3), E(X) = E[F(4, 3)] = 3.

(7) [A distribution with normal marginals] The distribution N(0, 1) + χ2(2) consists of
i.i.d. [d/2] normal N(0, 1) marginals and d− [d/2] i.i.d. χ2(2)− 2 marginals, where
[d/2] stands for the integer part of d/2.

(8) [A distribution with normal marginals] The distribution N(0, 1) + exp(1) consists of
i.i.d. [d/2] normal N(0, 1) marginals and d− [d/2] i.i.d. exp(1)− 1 marginals.

(9) [A distribution with normal marginals] The distribution N(0, 1) + F(4, 3) consists of
i.i.d. [d/2] normal N(0, 1) marginals and d− [d/2] i.i.d. F(4, 3)− 3 marginals.

For each of these alternative distributions, choose the sample size n = 50, 70, . . . , 400.
Plot the power values versus the sample size n for both statistics χ2

R in (12) and χ2
T in (15).

A visual observation on the following Figures 1–9 immediately leads to the following
two empirical conclusions:

(1) The RP chi-square test χ2
R is comparable to (or slightly better than) the traditional test

χ2
T for symmetric alternative distributions;

(2) The RP chi-square test χ2
R is able to improve the traditional test χ2

T significantly for
both skewed and normal+skewed alternative distributions.
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Figure 1. Cont.
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Figure 1. The Cauchy distribution. Red line for RP-chi-square, blue line for traditional chi-square.
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Figure 2. The β-generalized normal distribution with β = 1/4. Red line for RP-chi-square, blue line
for traditional chi-square.
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Figure 3. The double Weibulll distribution. Red line for RP-chi-square, blue line for traditional
chi-square.
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Figure 4. The shifted chi-square distribution with degree of freedom 1. Red line for RP-chi-square,
blue line for traditional chi-square.
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Figure 5. The shifted exponential distribution exp(1). Red line for RP-chi-square, blue line for
traditional chi-square.
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Figure 6. The shifted F distribution F(4, 3). Red line for RP-chi-square, blue line for traditional
chi-square.
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Figure 7. The distribution N(0, 1) + χ2(2). Red line for RP-chi-square, blue line for traditional
chi-square.
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Figure 8. The distribution N(0, 1) + exp(1). Red line for RP-chi-square, blue line for traditional
chi-square.
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Figure 9. The distribution N(0, 1) + F(4, 3). Red line for RP-chi-square, blue line for traditional
chi-square.

4.3. An Illustrative Example

The data were collected from the measurements of various body circumferences of 252
men and were supplied by Dr. A. Garth Fisher. A complete list of the data can be found on
the website: http://lib.stat.cmu.edu/datasets/ accessed on 23 October 2022 (bodyfat). In
our analysis of the data, the variables are listed as follows:

X1: density determined from underwater weighing
X2: percent body fat X3: age (years)
X4: weight (lbs) X5: height (inches)
X6: neck circumference (cm) X7: chest circumference (cm)
X8: abdomen 2 circumference (cm) X9: hip circumference (cm)
X10: thigh circumference (cm) X11: knee circumference (cm)
X12: ankle circumference (cm)
X13: biceps (extended) circumference (cm)
X14: forearm circumference (cm) X15: wrist circumference (cm)

The observations from the plotting method for detecting non-multinormality in [30]
are summarized as follows.

(1) The 5-dimensional random vector (X4, . . . , X8)
′ can be approximately considered as

5-dimensional normal;
(2) The 5-dimensional random vector (X4, X5, X8, X9, X10)

′ shows evidence of non-MVN;
(3) The 5-dimensional random vector (X4, X5, X9, X10, X11)

′ shows evidence of non-MVN;

http://lib.stat.cmu.edu/datasets/
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(4) The 5-dimensional random vector (X8, . . . , X12)
′ shows evidence of non-MVN;

(5) The 10-dimensional random vector (X4, . . . , X13)
′ shows evidence of non-MVN;

(6) The 10-dimensional random vector (X5, . . . , X14)
′ can be approximately considered

as 10-dimensional normal;
(7) The 10-dimensional random vector (X6, . . . , X15)

′ shows evidence of non-MVN;
(8) The 10-dimensional random vector (X4, X6, . . . , X11, X13, X14, X15)

′ can be approxi-
mately considered as 10-dimensional normal.

The chi-square analysis by the two statistics χ2
R and χ2

T with three different choices of
the number of cells (m = 5, 10, and 15) is presented in the following Table 4. We obtain
mostly consistent results with those from [30] under the significance level 0.05:

(1) The 5-dimensional random vector (X4, . . . , X8)
′ can be approximately considered as

5-dimensional normal by χ2
R for m = 10 and m = 15, and by χ2

T for m = 15;
(2) The 5-dimensional random vector (X4, X5, X8, X9, X10)

′ shows evidence of non-MVN
by χ2

R for m = 15. χ2
T fails to detect the non-MVN for all three choices of m;

(3) The 5-dimensional random vector (X4, X5, X9, X10, X11)
′ shows evidence of non-MVN

by both χ2
R and χ2

T for all three choices of m;
(4) The 5-dimensional random vector (X8, . . . , X12)

′ shows evidence of non-MVN by χ2
R

for m = 5 and m = 10, and by χ2
T for m = 10 and m = 15;

(5) The 10-dimensional random vector (X4, . . . , X13)
′ shows evidence of non-MVN by χ2

R
for m = 15. χ2

T fails to detect the non-MVN for all three choices of m;
(6) The 10-dimensional random vector (X5, . . . , X14)

′ shows evidence of non-MVN by χ2
R

for m = 10 and m = 15. χ2
T fails to detect the non-MVN for all three choices of m;

(7) The 10-dimensional random vector (X6, . . . , X15)
′ can be approximately considered

as 10-dimensional normal by both χ2
R and χ2

T for all three choices of m;
(8) The 10-dimensional random vector (X4, X6, . . . , X11, X13, X14, X15)

′ can be approxi-
mately considered as 10-dimensional normal by both χ2

R and χ2
T .

The inconsistency from two different tests in the above conclusions (5) and (6) may
come from the general drawback for the chi-square test in optimal cell selection. Some good
properties were discussed for equiprobable cell selection compared to some random cell
selection ([31]) under some conditions. RP-cell selection is based on the idea of minimizing
some kind of expected quadratic loss when quantizing a continuous probability distribution
([32]). This kind of quantization gives some good properties in approximating a continuous
probability distribution by a set of discrete points. Both methods for cell selection in the
chi-square statistic construction are valid in capturing lack of fit between a set of observed
frequencies and the set of expected frequencies. A captured lack of fit by any chi-square test
always indicates some kind of discrepancy between the null hypothesis and the underlying
distribution of sample data. Therefore, the sample data in the above observations (5) and
(6) indicate evidence of non-MVN. It is also observed that different choices of the number
of cells also result in different p-values. It is possible that a different number of cells could
give completely different conclusions in applying the chi-square test. However, a lack
of fit from any grouping of data by the chi-square test always indicates some kind of
discrepancy between the null hypothesis and the underlying distribution of sample data.
More discussion on selecting the number of cells can refer to some early studies on the
application of Pearson’s chi-square test ([33–35]). A more complete illustration on applying
various MVN tests to real data analysis by the R language can be found in [36].
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Table 4. p-values from the two chi-square tests (data: bodyfat).

Subsets χ2-Test m = 5 m = 10 m = 15

(X4, · · · , X8)
χ2

R 0.0141 0.0982 0.1707

χ2
T 0.0258 0.0205 0.0507

(X4, X5, X8, X9, X10)
χ2

R 0.1414 0.0641 0.0012

χ2
T 0.1822 0.2599 0.5342

(X4, X5, X9, X10, X11)
χ2

R 4.0736× 10−6 9.0387× 10−13 5.4589× 10−11

χ2
T 0.0783 0.0067 6.7792× 10−5

(X8, · · · , X12)
χ2

R 9.8107× 10−4 8.6962× 10−4 0.0775

χ2
T 0.2734 0.0051 0.0022

(X4, · · · , X13)
χ2

R 0.0980 0.1271 1.1012× 10−4

χ2
T 0.7114 0.4925 0.2635

(X5, · · · , X14)
χ2

R 0.3617 0.0258 0.0274

χ2
T 0.5782 0.3183 0.3534

(X6, · · · , X15)
χ2

R 0.3435 0.9409 0.3285

χ2
T 0.2159 0.2542 0.5657

(X4, X6, · · · , X11, X13, X14, X15)
χ2

R 0.2029 0.0362 0.3270

χ2
T 0.1998 0.1173 0.2191

5. Concluding Remarks

The RP-based chi-square test in this paper was developed for the purpose of demon-
strating the application of statistical representative points (or principal points) in goodness-
of-fit problems. It shows a competitive benefit compared to the same goodness-of-fit
methods without employing the RP idea. It can be considered as a successful improvement
from the point of view of the significant power increase in the Monte Carlo study. Because
the RP-based chi-squared test is a necessary one for testing MVN, it cannot avoid the
common weakness of all necessary tests for MVN in the literature. The real-data analysis
in the illustrative example shows that the RP-based chi-square test can be a good sup-
plemental test when used together with some existing tests in the literature as reviewed
in the introduction section. While many statistics for testing MVN against some general
alternative distributions reviewed by [18] perform very well, none of them are perfect. As
summarized in [18], MVN test statistics can be classified into two major types: univari-
ate and multivariate approaches. Univariate approaches are based on transformed data
from multivariate observations. Therefore, univariate approaches are all necessary ones,
implying that no rejection of the null hypothesis cannot conclude MVN. The RP-based
chi-square test in this paper belongs to this family. One of the benefits of univariate ap-
proaches may be the simple asymptotic null distributions of test statistics with relative
fast convergence. This can be found from the simulation of the type I error rates (see
Tables 1–3 in this paper) based on the critical values of the asymptotic null distributions
of the test statistics. However, loss of the original data information seems to be another
common drawback of univariate approaches. As a result, univariate approaches usually
lead to more power loss than do many multivariate approaches. The most representa-
tive multivariate approaches may be the Marida’s [7] multivariate skewness and kurtosis
statistics. Many subsequent multivariate approaches were developed after [7], which are
more or less related to the sample covariance matrix ([14,18]). One of the drawbacks of the
sample-covariance matrix-related statistics is that convergence of the sample covariance
matrix to the true population covariance matrix is very slow, and it becomes slower with
the increase in data dimensions. As a result, almost all multivariate approaches require
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very large sample size to control type I error rates and their asymptotic null distributions
do not help very much in real applications with finite sample sizes ([9]). The RP-based
chi-square test for MVN in this paper can be considered as one of the miscellaneous results
for testing MVN reviewed in [18]. It was developed through a necessary and sufficient
characterization of MVN and data transformation. This unique characterization-based
data transformation guarantees that non-normal multivariate data will not result in the
same set of transformed data with the Student’s t-distribution. This is the motivation of
proposing the RP-based chi-square test for MVN in this paper. The choice of the number
of RPs for constructing the RP chi-square test is not unique. A large number of RPs may
result in a zero frequency of transformed data points in some cells of the RP chi-square
statistic, causing the numerical computation of the chi-square statistic broken under a
small size. This is a common drawback of Pearson–Fisher’s chi-square statistics. After
more MNV tests were developed since Pearson’s [23] initial chi-square test, and with the
extensive Monte Carlo studies available in the literature, it is arguable that the Pearson
chi-square test has become out-of-date. The RP-idea seems to inject new energy into the
old Pearson chi-square test. A challenging application of the Pearson chi-square test is the
situation that the null distribution contains unknown parameter(s), which has (have) to be
estimated before implementing the chi-square test. As a result of the parameter estimation,
the asymptotic null distribution of Pearson’s [23] classical chi-square test is no longer an
exact chi-square distribution, but a linear combination of independent chi-squares [37].
Our future research direction is to find a way to employ the RP idea to improve other
types of chi-square tests, as studied in [38]. Although it is not the purpose of this paper
to develop a superior MVN test to any existing MVN test in the literature, which requires
an extensive Monte Carlo study, the RP-idea to improve the oldest goodness-of-fit test in
statistical history may shed some additional light to the nonparametric statistical inference.
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