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Abstract: The main aim of this paper is to compare two recent approaches for investigating the
interspace between the union of Gevrey spaces Gt(U) and the space of smooth functions C∞(U).
The first approach in the style of Komatsu is based on the properties of two parameter sequences
Mp = pτpσ

, τ > 0, σ > 1. The other one uses weight matrices defined by certain weight functions.
We prove the equivalence of the corresponding spaces in the Beurling case by taking projective limits
with respect to matrix parameters, while in the Roumieu case we need to consider a larger space than
the one obtained as the inductive limit of extended Gevrey classes.
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1. Introduction

Classes of ultradifferentable functions are usually studied in the framework of one of
the two most widely used approaches. The first one is based on the properties of the defin-
ing sequences Mp, p ∈ N, which control the derivatives of the functions, [1]. For the same
purpose, the other approach uses weights with the certain asymptotical properties [2,3].
The relation between these weights and the so-called associated function (associated with a
weight sequence Mp) provides a way to compare the theories of ultradifferentable func-
tions and their dual spaces of ultradistributions. In many situations, these approaches are
equivalent. For example, it is proved in [3] that the corresponding classes of functions
are equal if the sequence Mp satisfies Komatsu’s conditions (M.1), (M.2) and (M.3), see
Section 2. These conditions are relaxed in [4] where (M.3) is replaced by

(∃Q ∈ N) lim inf
p→∞

mQp

mp
> 1, (1)

with mp = Mp/Mp−1.
In this paper, we study the equivalence of the approaches by considering specific

sequences which do not satisfy (M.2). To that end, we exploit the powerful technique
based on weight matrices introduced in [5]. Broadly speaking, weight matrices are families
of sequences. For instance, {p!t}t>0 is a weight matrix that consists of Gevrey sequences.
More generally, for a given weight function ω (see Section 1.1 for the definition), one can
observe matrices of the formM = {MH

p }H>0 where

MH
p = e

1
H ϕ∗(Hp), p ∈ N, (2)
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and ϕ∗ is the Young conjugate of ϕ(t) = ω(et); see (6). This approach is used to prove that
the corresponding classes of functions are equivalent to weight matrix classes in certain
situations even if (M.2) is violated; see [5,6].

We consider Mτ,σ
p sequences with two parameters Mτ,σ

p = pτpσ
, τ > 0, σ > 1, cf. [7].

Such sequences do not satisfy (M.2) for any choice of parameters τ > 0 and σ > 1, hence
we cannot use standard arguments (see [1]) to prove that Eτ,σ(U) are ultradifferentiable.
However, we can use a modified construction to obtain related ultradifferentiable classes
by taking their unions and intersections (inductive and projective limits) with respect to
the parameter τ (this follows from Proposition 1 (iv) ).

Extended Gevrey regularity turned out to be convenient when describing certain
aspects of some hyperbolic PDE’s. In particular, E1,2(U) appears in the study of local
solvability of strictly hyperbolic PDE’s, for which the initial value problem is ill-posed in
the Gevrey settings (see [8]). In addition, sequences Mτ,σ

p for 1 < σ ≤ 2 are recently used
in [9] to study the surjectivity of Borel maps for ultraholomorphic classes. For more details,
concerning Mτ,σ

p and Eτ,σ(U), we refer to [7,10,11].
In this paper, we prove that the extended Gevrey classes are a special case of classes

investigated in [5,6] only when considering projective and inductive limits with respect to
the (matrix) parameter τ. More precisely, in the Beurling case, we prove the equality of the
corresponding spaces, while, in the Roumieu case, the equivalence holds when the corre-
sponding inductive limit is replaced by a larger space of test functions (see (22) and (31)).

We start by proving that the function Tτ,σ,h(k) associated with the sequence Mτ,σ
p =

pτpσ
is equivalent to a weight function in the sense of [4] (see Theorem 1). For that purpose,

we need to estimate Tτ,σ,h(k). This is done in [10] (Theorem 2.1) by using the properties of
the Lambert W function. In Proposition 2 (see also Lemma 2), we use another technique to
obtain similar estimates. Consequently, we conclude that {Mτ,σ

p }τ>0 and {e
1
H ϕ∗σ(Hp)}H>0

are equivalent matrices for a suitable function ϕσ, which implies that the classes of functions
given by these matrices coincide.

Although Theorem 1, as the main result of the paper, connects the approach from [7,10,11]
with the one given in [5,6], let us mention an important difference between them. In contrast
to the usual Carleman classes and the corresponding part in [5,6], in the norm (17), we
consider h|α|

σ
, σ > 1, in the denominator. Thus, the parameter σ plays an important role in

our construction which can not be revealed by using the techniques from [5,6]. For example,
the spaces Eτ,σ(U) are closed under finite order differentiation for any choice of parameters
τ > 0 and σ > 1. In addition, the parameters h and σ provide a “fine tuning” in the gap
between the union of Gevrey spaces and C∞ (see Proposition 1 (i) ).

We end this introductory section with a review of some basic notions.

1.1. Basic Notions and Notation

We use the standard notation N, Z+, R, R+, C, for the sets of nonnegative integers,
positive integers, real numbers, positive real numbers, and complex numbers, respectively.
The floor function of x ∈ R+ is denoted by bxc := max{m ∈ N : m ≤ x}. For a multi-index
α = (α1, . . . , αd) ∈ Nd, we write ∂α = ∂α1 . . . ∂αd and |α| = |α1|+ . . . |αd|. By #A, we denote
the number of elements of the finite set A. We write ln+ x = max{0, ln x}, x > 0.

An essential role in our analysis is played by the Lambert W function, which is defined
as the inverse of zez, z ∈ C. By W(x), x ≥ 0, we denote the restriction of its principal
branch, and we review some of its basic properties as follows:

(W1) W(0) = 0, W(e) = 1, W(x) is continuous, increasing and concave on [0, ∞),

(W2) W(xex) = x and x = W(x)eW(x), x ≥ 0,

(W3) ln x− ln(ln x) ≤W(x) ≤ ln x− 1
2

ln(ln x), x ≥ e.

Note that (W2) implies

W(x ln x) = ln x, x > 1. (3)
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By using (W3), we obtain

W(x) ∼ ln x, x → ∞, (4)

and therefore
W(Cx) ∼W(x), x → ∞, (5)

for any C > 0. We refer to [12] for more details concerning the Lambert function.
A non-negative, continuous, even and increasing function ω defined on R, ω(0) = 0,

is called weight function (see [4]) if it satisfies the following conditions:

(α) ω(2t) = O(ω(t)), t→ ∞,

(β) ω(t) = O(t), t→ ∞

(γ) o(ω(t)) = log t, t→ ∞,

(δ) ϕ(t) = ω(et), is convex.

Young’s conjugate of the function ϕ (defined as above) is given by

ϕ∗(k) = sup
t>0

(kt− ϕ(t)), k ≥ 0. (6)

Some classical examples of weight functions are

ω(t) = lns
+ |t|, ω(t) =

|t|
lns−1(e + |t|)

, s > 1, t ∈ R. (7)

Moreover, ω(t) = |t|s is a weight function if and only if 0 < s ≤ 1. Note that, by (4), it
follows that ω(t) = W(|t|) is not a weight function since condition (γ) is not satisfied.

Functions f and g are called equivalent if f = O(g) and g = O( f ), and we will write
f � g. In particular, if ω is a weight function and ω1 � ω, then

Aϕ∗(y/A) ≤ ϕ∗1(y) ≤ Bϕ∗(y/B) y > 0, (8)

for some A, B > 0, where ϕ(t) = ω(et), ϕ1(t) = ω1(et) and ϕ∗, ϕ∗1 are their Young
conjugates, respectively (see [3]).

Throughout the paper, we assume that τ > 0 and σ > 1, unless stated otherwise.

2. Preliminaries

In this section, we recall the definitions of weight functions, weight sequences, their
associated functions, and classes of ultradifferentiable functions related to the extended
Gevrey regularity. We also list their main properties that will be used in Section 3. We
proceed with weight sequences introduced in [7].

2.1. Weight Sequences

In the sequel, we consider sequences of the form Mτ,σ
p = pτpσ

, Mτ,σ
0 = 1, τ > 0, σ > 1.

Since (Mτ,σ
p )1/p → ∞, when p→ ∞, such sequences are examples of weight sequences as

considered in [6].
Note that

Mτ1,σ1
p ≤ Mτ2,σ2

p , 0 < τ1 ≤ τ2, 1 < σ1 ≤ σ2, p ∈ N. (9)

Moreover, Mτ,σ
p = pτpσ

, τ > 0, σ > 1 (Mτ,σ
0 = 1), satisfies the following conditions

(see [7] for the proof):

(M.1) (Mτ,σ
p )2 ≤ Mτ,σ

p−1Mτ,σ
p+1, p ∈ Z+,

(̃M.2)′ (∃C > 0) Mτ,σ
p+1 ≤ Cpσ

Mτ,σ
p , p ∈ N,
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(̃M.2) (∃C > 0) Mτ,σ
p+q ≤ Cpσ+qσ

M2σ−1τ,σ
p M2σ−1τ,σ

q , p, q ∈ N,

(M.3)′
∞

∑
p=1

Mτ,σ
p−1

Mτ,σ
p

< ∞,

(̃M.4) (∀h > 0) (∃C > 0) Mτ1,σ
p ≤ C hpσ

Mτ2,σ
p , 0 < τ1 < τ2, σ > 1,

(̃M.5) (∀h > 0) (∃C > 0) Mτ1,σ1
p ≤ Chpσ2 Mτ2,σ2

p , τ1, τ2 > 0, 1 < σ1 < σ2.

Note that (̃M.4) implies

Chpσ
Mτ,σ

p ≥ Mτ/2,σ
p ≥ 1, C, h > 0, p ∈ N,

and hence we obtain the weaker inequality

(̃M.4)′ (∀h > 0) (∃C > 0) hpσ
Mτ,σ

p ≥ C, p ∈ N.

Remark 1. Let us briefly comment on the case σ = 1. Then, the conditions (̃M.2)′ and (̃M.2) are
(M.2)′ and (M.2) (respectively) of Komatsu (see [1]) for the Gevrey sequence Mp = p!τ . Moreover,

(̃M.4) also holds. The theory of Gevrey functions is a classical one (see [13,14] and references
therein), hence we are interested in the case σ > 1.

Note that (̃M.5) is also true for the case σ2 > σ1 = 1 (see [7]).

A family of weight sequencesM is called weight matrix (see [6]) if

(∀Mp, Np ∈ M) Mp ≤ Np ∨ Np ≤ Mp, p ∈ N. (10)

Example 1. For fixed σ > 1 and σ2 = σ1 = σ, (9) implies thatMσ = {Mτ,σ
p }τ>0 is a weight

matrix. Similarly,Mτ = {Mτ,σ
p }σ>1 is a weight matrix for any given τ > 0. Nevertheless, if we

observeM = {Mτ,σ
p }τ>0,σ>1, then, for τ1 > τ2 and σ1 < σ2, we can only prove that

Mτ1,σ1
p ≤ CMτ2,σ2

p , p ∈ N,

for a large positive constant C (see (̃M.5)). Thus,M = {Mτ,σ
p }τ>0,σ>1 does not satisfy (10).

For two weight matricesM and N , we writeM . N if

(∀Mp ∈ M) (∃Np ∈ N ) (∃C > 0) Mp ≤ CpNp, p ∈ N.

We say thatM and N are equivalent ifM . N and N .M (see [6]).

Remark 2. Let ω be a weight function and ω1 equivalent to ω. Notice that {MH
p = e

1
H ϕ∗(Hp)}H>0

and {MH1
p = e

1
H1

ϕ∗1(H1 p)}H1>0 are equivalent matrices due to (8).

Put

mτ,σ
p =

Mτ,σ
p

Mτ,σ
p−1

, p ∈ Z+. (11)

By (M.1), it follows that mτ,σ
p is an increasing sequence. Moreover, the following

Lemma holds.

Lemma 1. Let Mτ,σ
p = pτpσ

, Mτ,σ
0 = 1, τ > 0, σ > 1, and let mτ,σ

p be given by (11). Then, there
exist constants C1, C2 > 0 depending on τ and σ such that

Cpσ−1

2 p
τσpσ−1

2σ−1 ≤ mτ,σ
p ≤ Cpσ−1

1 pτσpσ−1
, p ∈ Z+. (12)



Axioms 2022, 11, 576 5 of 11

Proof. In the sequel, we prove (12) for p ≥ 2, since the case p = 1 is obvious (with
C1 = C2 = 1).

Set fτ,σ(x) = τxσ ln x, x > 0. By the mean value theorem, for every p ∈ Z+, there
exists θp such that

fτ,σ(p)− fτ,σ(p− 1) = τθσ−1
p ln(eθσ

p), p− 1 < θp < p. (13)

For p ≥ 2 ⇐⇒ p/2 ≤ p− 1, we obtain

τpσ−1

2σ−1 ln
epσ

2σ
≤ τ(p− 1)σ−1 ln(e(p− 1)σ) < τθσ−1

p ln(eθσ
p) < τpσ−1 ln(epσ),

and by (13) we conclude

τpσ−1

2σ−1 ln
epσ

2σ
≤ τpσ ln p− τ(p− 1)σ ln(p− 1) ≤ τpσ−1 ln(epσ), p ≥ 2.

After taking exponentials, we obtain

( e
2σ

) τpσ−1

2σ−1 p
τσpσ−1

2σ−1 ≤ mτ,σ
p ≤ eτpσ−1

pτσpσ−1
, p ≥ 2, (14)

which implies (12).

Remark 3. Note that (̃M.2)′ follows from the right-hand side of (14). In particular,

Mτ,σ
p ≤ eτpσ−1

pτσpσ−1
Mτ,σ

p−1 ≤ Cpσ
Mτ,σ

p−1, p ∈ Z+.

for a sufficiently large C > 0 (which depends on τ and σ).

2.2. Associated Function

In this subsection, we recall the definition and some elementary properties of Tτ,σ,h(k),
h > 0, the associated function to the sequence Mτ,σ

p = pτpσ
given by

Tτ,σ,h(k) = sup
p∈N

ln+
hpσ

kp

Mτ,σ
p

, k > 0. (15)

We refer to [10] for more details on Tτ,σ,h(k). One of the aims of this paper is to prove
that ω(k) = Tτ,σ,h(|k|) is equivalent to a weight function, see Theorem 1 (i).

Remark 4. Consider 1 < σ ≤ 2. Then, by (̃M.4)′ and Example 21 from [4], we obtain

Tτ,σ,h(k) ≤ A sup
p∈N

ln+
kp

epσ + B ≤ A1 ln
σ

σ−1
+ k + B1 k > 0,

for suitable A1 > 0 and B1 ∈ R (depending on τ, σ, h). Hence, we conclude that Tτ,σ,h(k) is
dominated by a weight function (see (7)). However, this fact does not imply that Tτ,σ,h(|k|) is
equivalent to a weight function. We will provide additional arguments in the proof of Theorem 1.

Sharp estimates for Tτ,σ,h(k) are given in [10], where it is proved that, for some
A1, A2 > 0 and B1, B2 ∈ R (depending on τ, σ, h), the following inequalities hold:

A1W−
1

σ−1 (R(h, k)) ln+
σ

σ−1 k + B1 ≤ Tτ,σ,h(k) ≤ A2W−
1

σ−1 (R(h, k)) ln+
σ

σ−1 k + B2, (16)
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where
R(h, k) := h−

σ−1
τ e

σ−1
σ

σ− 1
τσ

ln(e + k), h, k > 0,

and W is the principal branch of the Lambert function. Note that (16) holds for any choice
of parameters h > 0, τ > 0, and σ > 1.

We write Tτ,σ(k) := Tτ,σ,1(k) for the function, which is associated with Mτ,σ
p , in the

sense of [1]. We end this subsection with a simple result, which will be used in the sequel.

Lemma 2. Let Tτ,σ,h(k) be given by (15), and let Tτ,σ(k) := Tτ,σ,1(k). Then, for any given h > 0
and τ2 > τ > τ1 > 0 there exist A, B ∈ R such that

Tτ2,σ(k) + A ≤ Tτ,σ,h(k) ≤ Tτ1,σ(k) + B, k > 0.

Proof. By (̃M.4) it follows that there exist C1, C2 > 0 such that

C2
kp

Mτ2,σ
p
≤ hpσ

kp

Mτ,σ
p
≤ C1

kp

Mτ1,σ
p

, k > 0, p ∈ N,

and the conclusion follows after taking logarithms and the supremum with respect to
p ∈ N.

2.3. Extended Gevrey Classes

In this subsection, we recall the definition of extended Gevrey classes and some of
their basic properties.

Let U be an open set in Rd and K ⊂⊂ U be a regular compact set. We denote by
Eτ,σ,h(K) the Banach space of functions φ ∈ C∞(K) such that

‖φ‖Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αφ(x)|
h|α|σ Mτ,σ

|α|
< ∞. (17)

Note that

Eτ1,σ1,h1(K) ↪→ Eτ2,σ2,h2(K), 0 < h1 < h2, 0 < τ1 < τ2, 1 < σ1 < σ2,

where ↪→ denotes a strict and dense inclusion. We define spaces of Roumieu and Beurling
type by introducing the following inductive and projective limit topologies (respectively)

E{τ,σ}(U) = lim←−
K⊂⊂U

lim−→
h→∞
Eτ,σ,h(K), (18)

E(τ,σ)(U) = lim←−
K⊂⊂U

lim←−
h→0
Eτ,σ,h(K). (19)

We omit the brackets if we consider either {τ, σ} or (τ, σ).

Remark 5. The condition (M.3)′ implies that Eτ,σ(U) contains compactly supported functions.
The construction of smooth compactly supported functions, which are not in Gevrey classes but
which belong to Eτ,σ(U), can be found in [7].

Extended Gevrey classes given by (18) and (19) are studied in [7,10,11]. For the conve-
nience of the reader, we collect some of their basic properties in the following Proposition.
Recall the Gevrey class of index t > 1 is given by Gt(U) = E{t,1}(U), see (18).

Proposition 1. Let U be an open set in Rd. Let E{τ,σ}(U) and E(τ,σ)(U) be given by (18) and (19),
respectively, and let lim−→ and lim←− denote the corresponding inductive and projective limits, respec-
tively. Then, the following is true:
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(i) For σ2 > σ1 > 1, we have

lim−→
t→∞
Gt(U) ↪→ lim←−

τ→0
E{τ,σ1}(U) = lim←−

τ→0
E(τ,σ1)

(U) ↪→ lim−→
τ→∞

E(τ,σ1)
(U)

= lim−→
τ→∞

E{τ,σ1}(U) ↪→ lim←−
τ→0
E{τ,σ2}(U) ↪→ C∞(U).

(ii) Eτ,σ(U) are closed under the pointwise multiplication;
(iii) Eτ,σ(U) are closed under finite order derivation;
(iv) For aα ∈ E(τ,σ)(U) (resp. aα ∈ E{τ,σ}(U)), define

P(x, ∂) =
∞

∑
|α|=0

aα(x)∂α,

such that, for every K ⊂⊂ U, there exists L > 0 and for every h > 0 there exists A > 0 (resp.
for every K ⊂⊂ U, there exists h > 0 and, for every L > 0, there exists A > 0) so that

sup
x∈K
|∂βaα(x)| ≤ Ah|β|

σ
Mτ,σ
|β|

L|α|
σ

M2σ−1τ,σ
|α|

, α, β ∈ Nd.

Then, P(x, ∂) : E(τ,σ)(U) → E(2σ−1τ,σ)(U) (resp. P(x, ∂) : E{τ,σ}(U) → E{2σ−1τ,σ}(U))
is a continuous and linear mapping.

Let h = 1 in (17). We introduce the following spaces:

E{σ}(U) = lim−→
τ→∞

Eτ,σ(U), E(σ)(U) = lim←−
τ→0
Eτ,σ(U), (20)

ER
{σ}(U) = lim←−

K⊂⊂U
lim−→

τ→∞
Eτ,σ,1(K), EB

(σ)(U) = lim←−
K⊂⊂U

lim←−
τ→0
Eτ,σ,1(K). (21)

Remark 6. By Proposition 1, (i), it follows that the definition of classes (20) does not depend on
the choice of the classes (18) and (19). Similar holds for classes in (21).

Proposition 1 (i), and the order of quantifiers in the definition of
spaces (20) and (21) imply the following embeddings

lim−→
t→∞
Gt(U) ↪→ E(σ)(U) = EB

(σ)(U) ↪→ E{σ}(U) ↪→ ER
{σ}(U) ↪→ C∞(U). (22)

Notice that, unlike Eτ,σ(U), E{σ}(U), E(σ)(U), are classes of ultradifferentiable func-
tions. This follows from Proposition 1 (iv). Moreover, the ultradifferentiability of ER

{σ}(U)

follows from the arguments given in [5].

3. Main Result

In this section, we first give an estimate for Tτ,σ(k) = Tτ,σ,1(k) which is introduced
in Section 2.2. Tτ,σ(k) obviously satisfies (16) with h = 1. Therefore, the next Proposition
follows directly from [10] (Theorem 2.1). However, here we give an independent proof.

Proposition 2. Let Tτ,σ(k) = Tτ,σ,1(k) be given by (15) with h = 1, and let W(t), t > 0, denote

the restriction of the principal branch of the Lambert W function. If ϕσ(t) =
t

σ
σ−1

W
1

σ−1 (t)
, t > 0, and

ϕσ(0) = 0, then we have

Bτ,σ ϕσ(ln+ k) + B̃τ,σ ≤ Tτ,σ(k) ≤ Aτ,σ ϕσ(ln+ k) + Ãτ,σ, k > 0, (23)
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for suitable constants Aτ,σ, Bτ,σ > 0 and Ãτ,σ, B̃τ,σ ∈ R.

Proof. For λ > 0, we let

mτ,σ(λ) = #{p ∈ Z+ |mτ,σ
p ≤ λ},

and note that mτ,σ(λ) = 0 for all 0 < λ < 1. This is due to the fact that mτ,σ
1 = 1 and mτ,σ

p
is increasing.

Since Mτ,σ
p satisfies (M.1), we can write (see [1,15])

Tτ,σ(k) =
∫ k

0

mτ,σ(λ)

λ
dλ =

∫ k

1

mτ,σ(λ)

λ
dλ.

In the sequel, we estimate mτ,σ(λ) when λ ≥ 1.
Put

mC
τ,σ(λ) = #{p ∈ Z+ |Cpσ−1

pτpσ−1 ≤ λ}, C > 0.

Then, (14) implies that

mC1
(τσ),σ(λ) ≤ mτ,σ(λ) ≤ mC2

(τσ)/2σ−1,σ(λ), λ ≥ 1, (24)

where C1 and C2 are as in (12). In particular,

∫ k

1

mC1
(τσ),σ(λ)

λ
dλ ≤ Tτ,σ(k) ≤

∫ k

1

mC2
(τσ)/2σ−1,σ(λ)

λ
dλ. (25)

Next, we note that

Cpσ−1
pτpσ−1 ≤ λ ⇐⇒ C

σ−1
τ pσ−1 ln(C

σ−1
τ pσ−1) ≤ C

σ−1
τ

σ− 1
τ

ln λ ⇐⇒

ln(C
σ−1

τ pσ−1) ≤W(C
σ−1

τ
σ− 1

τ
ln λ) ⇐⇒ p ≤ C−

1
τ e

1
σ−1 W(C

σ−1
τ σ−1

τ ln λ), C > 0, λ ≥ 1,

where, for the second equivalence, we used property (3) of the Lambert function.
This calculation shows that

mC
τ,σ(λ) =

⌊
C−

1
τ e

1
σ−1 W(C

σ−1
τ σ−1

τ ln λ)
⌋

, λ ≥ 1, (26)

and therefore ∫ k

1

mC
τ,σ(λ)

λ
dλ � C−

1
τ

∫ k

1

e
1

σ−1 W(C
σ−1

τ σ−1
τ ln λ)

λ
dλ.

It remains to compute

IC
τ,σ(k) := C−

1
τ

∫ k

1

e
1

σ−1 W(C
σ−1

τ σ−1
τ ln λ)

λ
dλ, C > 0.

Set Cτ,σ = C
σ−1

τ σ−1
τ . Note that, after the substitution t = Cτ,σ ln λ, we obtain

IC
τ,σ(k) = C−

σ
τ

τ

σ− 1

∫ Cτ,σ ln k

0
e

1
σ−1 W(t)dt. (27)

Another change of variables W(t) = s (t = ses, dt = (s + 1)esds), and integration by
parts yields ∫

e
1

σ−1 W(t)dt =
∫

e
σs

σ−1 (s + 1)ds = e
σs

σ−1
σ− 1

σ

(
s +

1
σ

)
, (28)

where we use indefinite integral just for the notational convenience.
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Now, using property (W2) of the Lambert function and (5), by (27) and (28), we have

IC
τ,σ(k) =

τ

σ
C−

σ
τ e

σs
σ−1

(
s +

1
σ

)∣∣∣s=W(t)

s=0
=

τ

σ
C−

σ
τ

( t
W(t)

) σ
σ−1

(W(t) +
1
σ
)
∣∣∣t=Cτ,σ ln k

t=0
� τ−

1
σ−1 ϕσ(ln+ k) + C̃τ,σ, k > 0, (29)

for some C̃τ,σ ∈ R, where the hidden constants depend only on σ.
More precisely, using (25) and (29), we conclude that

Bστ−
1

σ−1 ϕσ(ln+ k) + B̃τ,σ ≤ Tτ,σ(k) ≤ Aσ

( τ

2σ−1

)− 1
σ−1

ϕσ(ln+ k) + Ãτ,σ, k > 0, (30)

for suitable Aσ, Bσ > 0 and Ãτ,σ, B̃τ,σ ∈ R. This completes the proof.

Following [5,6], we introduce the Banach space BH,σ(K), K ⊂⊂ U, with the norm

‖φ‖BH,σ(K) = sup
α∈Nd

sup
x∈K
|∂αφ(x)|e−

1
H ϕ∗σ(H|α|), H > 0,

where ϕ∗σ is Young’s conjugate of the function ϕσ introduced in Proposition 2.
We introduce the corresponding Roumieu and Beurling classes as

B{σ}(U) = lim←−
K⊂⊂U

lim−→
H→∞

BH,σ(U) and B(σ)(U) = lim←−
K⊂⊂U

lim←−
H→0
BH,σ(U),

respectively.
Now, we can formulate the main result of the paper.

Theorem 1. Fix σ > 1 and let ϕσ(t) be as in Proposition 2. Moreover, let Tτ,σ,h be given by (15).
Then, the following is true.

(i) The function ω(k) = ϕσ(ln+ |k|) is equivalent to a weight function. Moreover, for every
h > 0 and τ > 0, the function ωτ,h(k) = Tτ,σ,h(|k|) is equivalent to a weight function.

(ii) The weight matrices Mσ = {pτpσ}τ>0 and Nσ = {e
1
H ϕ∗σ(Hp)}H>0 are equivalent. In

particular,
B(σ)(U) = EB

(σ)(U), B{σ}(U) = ER
{σ}(U) (31)

as locally covex vector spaces. Here, EB
(σ)(U) and ER

{σ}(U) are given in (21).

Proof. (i) By Proposition 2, it follows that Tτ,σ(|k|) � ϕσ(ln+ |k|). Thus, it is sufficient to
show that Tτ,σ(|k|) is a weight function (see Remark 2).

Since Tτ,σ is the function associated with Mτ,σ
p in the sense of [1], by [4] (Lemma 12)

(see also Remark 7), it is sufficient to show that mτ,σ
p given by (11) satisfies (1), i.e., that

there exists Q ∈ N such that

lim inf
p→∞

mτ,σ
Qp

mτ,σ
p

> 1. (32)

Note that inequalities in (12) imply

mτ,σ
3p

mτ,σ
p
≥

(
e

2σ

) τ(3p)σ−1

2σ−1
(3p)

τσ(3p)σ−1

2σ−1

eτpσ−1 pτσpσ−1

=
(3

2

)τσ(
3p
2 )σ−1

exp
{

τ
(
(3/2)σ−1 − 1

)
pσ−1

}
p

τσ

(
(3/2)σ−1−1

)
pσ−1

→ ∞, p→ ∞,
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and (32) follows when Q = 3. In addition, Lemma 2 together with Proposition 2 implies
that Tτ,σ,h(|k|) � ϕσ(ln+ |k|) for all τ, h > 0.

(ii) Note that [1] (Proposition 3.2.) and (23) imply

C2 exp{Aτ,σ ϕ∗σ(
1

Aτ,σ
p)} ≤ pτpσ ≤ C1 exp{Bτ,σ ϕ∗σ(

1
Bτ,σ

p)}, p ∈ N,

for suitable C1, C2 > 0 (depending on τ and σ). More precisely, if we set

H1 = B−1τ
1

σ−1 , H2 = A−1(τ/2σ−1)
1

σ−1 , A, B > 0,

then (30) implies that

C′2 exp{ 1
H2

ϕ∗σ(H2 p)} ≤ pτpσ ≤ C′1 exp{ 1
H1

ϕ∗σ(H1 p)}, p ∈ N. (33)

for suitable constants C′1, C′2 > 0. Therefore, the matricesMσ and Nσ are equivalent.
It remains to prove (31). We give the proof for the Roumieu case B{σ}(U) = ER

{σ}(U),
and omit the proof for the Beurling case, since it uses similar arguments.

Let φ ∈ B{σ}(U). Then, for arbitrary K ⊂⊂ U, there exists H > 0 such that
‖φ‖BH,σ(K) < ∞. Putting τ = (2AH)σ−1, (33) implies

‖φ‖Eτ,σ,1(K) ≤ C′‖φ‖BH,σ(K),

for some C′ > 0.
Conversely, if φ ∈ ER

{σ}(U), then, for arbitrary K ⊂⊂ U, there exists τ > 0 such that

‖φ‖Eτ,σ,1(K) < ∞. Choosing H = B−1τ
1

σ−1 , again, by (33), we have

‖φ‖BH,σ(K) ≤ C′′‖φ‖Eτ,σ,1(K),

for suitable C′′ > 0. This completes the proof.

Remark 7. Note that Mτ,σ
p = pτpσ

is not a weight sequence in the sense of [4], since it does not

satisfy (M.2)′. Instead, we used in Proposition 2 estimate (14), which implies (̃M.2)′ by Remark 3.
Moreover, in the proof of Theorem 1, we use the part of [4] (Lemma 12) for which it is sufficient

to assume (M.1),
(M.0) (∃C > 0) Mτ,σ

p ≥ Cpp, p ∈ N,

(which obviously holds by (̃M.4)′) and mτ,σ(λ)→ ∞, λ→ ∞, which is true by (24) and (26).

We conclude the paper with the following Corollary, which is an immediate conse-
quence of Theorem 1.

Corollary 1. For each s > 1, the function ω(t) =
lns

+ |t|
lns−1(ln(e + |t|))

, t 6= 0, ω(0) = 0 is

equivalent to a weight function.

4. Discussion

The equivalence of theories of ultradifferentiable functions given by Komatsu’s or the
Braun–Meise–Taylor approach are well established in most classical situations. A recent
approach based on weighted matrices seems to offer a very general construction, see [5,6].
In parallel, it is demonstrated in [7,10,11] that the two-parameter sequences of the form
Mp = pτpσ

, τ > 0, σ > 1, provide a useful extension of the Gevrey type spaces.
In this paper, we show that the projective limits of extended Gevrey classes can be

viewed as a part of the construction based on the weight matrices. The same conclusion
holds when the inductive limits of extended Gevrey classes are replaced by certain slightly
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larger spaces. At the same time, extended Gevrey classes Eτ,σ(U) for fixed τ > 0 and σ > 1,
can not be characterized by weight matrices used in [5,6] due to the particular role played
by the parameter σ.

While finishing the paper, the authors learned about the work in progress “A com-
parison of two ways to generalize ultradifferentiable classes defined by weight sequences”
by J. Jiménez-Garrido, D. N. Nenning, and G. Schindl, which is devoted to a similar topic
considered from a different point of view. We thank the authors for their fruitful comments
on the first version of this paper.
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