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Abstract: In this work, a Lotka–Volterra type predator–prey system with time delay and stage

structure for the predators is proposed and analyzed. By using the permanence theory for infinite

dimensional system, we get that the system is permanent if some conditions are satisfied. The local

and global stability of the positive equilibrium is presented. The existence of Hopf bifurcation around

the positive equilibrium is observed. Further, by using the normal form theory and center manifold

approach, we derive the explicit formulas determining the stability of bifurcating periodic solutions

and the direction of Hopf bifurcation. Numerical simulations are carried out by Matlab software to

explain the theoretical results. We find that combined time delay and stage structure can affect the

dynamical behavior of the system.

Keywords: stage structure; predator–prey model; delay; Hopf bifurcation

MSC: 92B05; 34K18

1. Introduction

Differential equations are a powerful tool for characterizing natural phenomena [1,2].
The predator–prey model is a very classic model, which plays a key role in population
ecology. Many predator–prey models have been investigated by some researchers [3–9].
From [10], we know that if the following classical autonomous Lotka–Volterra type predator
prey model,

{
dx(t)

dt = x(t)[k− x(t)− αy(t)],
dy(t)

dt = y(t)[−r + βx(t)− y(t)],
(1)

exists in a positive equilibrium (x1, y1), it must be globally asymptotically stable. Time
lag is pervasive in nature. The stability issues for the Lotka-Volterra system with different
types of time delays have been extensively studied. In [11], by using Lyapunov functional,
He examined the global attraction for a kind of delayed n-species Lotka–Volterra-type
system. In [12], Gopalsamy et al. examined the global stability of a delay nonautonomous
n-species competition system. In [13], He investigated the global asymptotic stability of a
nonautonomous Lotka–Volterra system with “pure-delay type”. In [14], Wang et al. proved
that delays are harmless for the two-dimensional delayed Lotka–Volterra system. As a
special case of Lotka–Volterra-type systems with delays, Chen et al. proposed a model of
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two species’ growth delays as a reasonable generalization of the Lotka–Volterra model,
which takes the form [10]:{

dx(t)
dt = x(t)[k− x(t)− αy(t− τ)],

dy(t)
dt = y(t)[−r + βx(t− τ)− y(t)].

(2)

System (2) is one of the simplest predator–prey models with a delay. Its stability
and Hopf bifurcations, both local and global, have been widely investigated. For exam-
ple, Wang et al. [14] found that system (2) was uniformly persistent irrespective of the
size of the delays. He [11] showed that the positive equilibrium is locally and globally
asymptotically stable.

In the real world, however, many consumer species may go though multiple life
phases as they progress from birth to death. In [15,16], the authors studied the delayed
stage structure models. In those models, a constant time lag represented the time from
birth to maturity. References [17,18] have examined the stage structure of species when
the transformation rate of the mature population is proportional to the existing immature
population. Motivated by the works of Chen [10], He et al. [11–13], Cui et al. [15] and
Song et al. [16], we built a predator–prey model based on system (2), which includes a
time delay due to negative feedback of prey and the stage structure for the predators. This
paper’s purpose is to explore the combined effects of both delay and stage structure on the
predator–prey system’s dynamical behavior.

2. The Model

We consider a delayed predator–prey system with a stage structure among predator
populations of the following form:

dx(t)
dt = x(t)[k− x(t)− αy(t− τ)],

dy(t)
dt = y(t)[−r + βx(t− τ)− y(t)] + σyi(t),

dyi(t)
dt = cy(t)− (σ + γ)yi(t),

(3)

where x(t) expresses prey density at time t, and y(t) and yi(t) represent densities of the
mature and the immature predator species at time t. In model (3), α and β represent the
capturing rates of the predators; k is the intrinsic rate of increase for the prey; r represents
the mature predator’s death rate; σ represents the conversion rate; γ is the immature
predator’s death rate; c denotes the birth rate of the immature predators; τ is a constant
delay. All the parameters (i.e., k, α, r, σ, β, c, γ, and τ) are positive constants.

The initial conditions for system (3) have the following form:

x(ς) = ϕ1(ς) ≥ 0, y(ς) = ϕ2(ς) ≥ 0, yi(ς) = ϕ2(ς) ≥ 0, ς ∈ [−τ, 0],
ϕ1(0) > 0, ϕ2(0) > 0.

(4)

We suppose that z(t) = (x(t), y(t), yi(t)) is the solution of system (3) with the initial
conditions (4). Obviously, under the initial conditions given in (4), the solution z(t) of
system (3) exists in the interval [0,+∞). Further, it remains positive for all t ≥ 0. In fact,
from the 1st equation of (3), we obtain

x(t) = x(0) exp(
∫ t

0
(k− x(s)− αy(s− τ))ds) > 0
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for t ≥ 0. Set Ξ(t) = −r + βx(t− τ)− y(t), we can rewrite the last two equations of (3) as{
dy(t)

dt = Ξ(t)y(t) + σyi(t),
dyi(t)

dt = cy(t)− (σ + γ)yi(t).
(5)

Obviously, there is a unique solution z(t) of system (3) in a maximal interval [0, d) [19].
We can prove that the interval is [0,+∞). Since (5) is a quasimonotone system, (0, 0) is
a subsolution and w(eat, eat) with w > y(0), yi(0) and a > σ, σ is a supersolution [19].
This shows that y(t) and yi(t) are bounded in [0, d) and hence exist for all t > 0. Suppose
yi(b) = 0. We can obtain dyi(t)

dt |t=b = 0 and y(b) = 0. This shows that (y(t), yi(t)) is a
solution of (5) at t = b and hence it is zero in (0,+∞). This is a contradiction. Hence,
y(t) > 0, yi(t) > 0 for t > 0. Thereby, x(t) > 0 for t > 0.

It is straightforward to see that in system (3) there exist four equilibrium points

E0(0, 0, 0), E1(k, 0, 0), E2(0, y0, y0
i ), E∗(x∗, y∗, y∗i ),

where

y0 = −r(σ+γ)+σc
σ+γ , y0

i = c(−r(σ+γ)+σc)
(σ+γ)2 ,

x∗ = (k+αr)(σ+γ)−σcα
(1+αβ)(σ+γ)

, y∗ = (−r+kβ)(σ+γ)+σc
(1+αβ)(σ+γ)

, y∗i = c((−r+βk)(σ+γ)+σc)
(1+αβ)(σ+γ)2 .

If the conditions

(k + αr)(σ + γ)− cσα > 0 (6)

and

−r(σ + γ) + cσ > 0 (7)

hold, all the equilibria are nonnegative.

3. Permanence of System (3)

We first introduce the definition of permanence.

Definition 1 ([20]). System (3) is permanent if there exist positive constantsM1 andM2 such
that any positive solution (x(t), y(t), yi(t)) of system (3) with initial conditions (4) satisfies

M1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤M2,

M1 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤M2,

M1 ≤ lim inf
t→+∞

yi(t) ≤ lim sup
t→+∞

yi(t) ≤M2.

Theorem 1. Any positive solution (x(t), y(t), yi(t)) of system (3) with initial condition (4) satis-
fies 0 < x(t), y(t), yi(t) ≤ M for t ≥ 0.
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Proof. Suppose (x(t), y(t), yi(t)) is a positive solution of system (3) with initial condition (4).
According to the first equation of system (3), it follows from the positivity of the solu-
tion that

ẋ(t) ≤ x(t)(k− x(t)).

The solution of the auxiliary equation

u̇(t) = u(t)(k− u(t)), u(0) = x(0) > 0

has the following properties: there exist ε > 0 and T > 0 such that u(t) < k + ε for
t ≤ T. Hence, by comparing the theorems for ordinary differential equations, we have
x(t) ≤ u(t) < k + ε for t ≤ T.

Denote M1 = k + ε. Then,

x(t) ≤ M1. (8)

It follows from (8) and the second equation of system (3) that for t ≤ T,

ẏ(t) ≤ y(−r + βM1 − y) + σyi. (9)

We define
V1(t) = (σ + γ)y + σyi.

Along the last two equations of system (3), we calculate the upper-right derivative
of V1:

D+V1(t) = (σ + γ)ẏ + σẏi

≤ (σ + γ)y(−r + βM1 − y) + σcy

≤ [(σ+γ)(−r+βM1)+σc]2

4(σ+γ)
.

Then, there exist two positive constants M2, M3, such that

0 < y(t) ≤ M2, 0 < yi(t) ≤ M3.

Denote M = min{M1, M2, M3}. Then, 0 < x(t), y(t), yi(t) ≤ M for t ≥ 0.
Next, we discuss the permanence of system (3).
To prove that system (3) is persistent, we will use Theorem 4.1 in [20].

Theorem 2. If condition (6) and

−r + kβ > 0 (10)

hold, then system (3) is permanent.
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Proof. We begin by showing that sets X1, X2, X3 and X4 repel the positive solution of
system (3) uniformly. Let us define

C1 = {(ϕ1, ϕ2, ϕ3) ∈ C([−τ, 0],R3
+) : ϕ2(θ) = 0},

C2 = {(ϕ1, ϕ2, ϕ3) ∈ C([−τ, 0],R3
+) : ϕ1(θ) = 0},

X1 = {(x, y, yi) ∈ R3 | x > 0, y = 0, yi > 0},
X2 = {(x, y, yi) ∈ R3 | x = 0, y > 0, yi > 0},
X3 = {(x, y, yi) ∈ R3 | x = 0, y > 0, yi = 0},
X4 = {(x, y, yi) ∈ R3 | x = 0, y = 0, yi > 0},
C0 = C1 ∪ C2, C0 = IntC([−τ, 0],R3

+),
X0 = X1

⋃
X2
⋃

X3
⋃

X4, X0 = {(x, y, yi) ∈ R3 | x > 0, y > 0, yi > 0}.

This choice meets the conditions in Theorem 4.1 in [20]. It suffices to show that, for any
solution z(t) = (x(t), y(t), yi(t)) of system (3) initiating from C0, there exists an ε0 > 0
such that lim inf

t→+∞
d(z(t), X0) ≥ ε0. To this end, we shall verify that all the conditions of

Theorem 4.1 in [20] are satisfied. It is easy to see that C0 and C0 are positively invariant.
Obviously, conditions (i) and (ii) of Theorem 4.1 in [20] are satisfied. In the following, we
shall only need to validate conditions (iii) and (iv).

There are three constant solutions, E0(0, 0, 0), E1(k, 0, 0), E2(0, y0, y0
i ), in X0.

In the set X3 or X4, system (3) becomes

ẏ = y(−r− y) or ẏi = −(σ + γ)yi.

Clearly, lim
t→+∞

y(t) = 0, lim
t→+∞

yi(t) → 0. Hence, for any solution (x(t), y(t), yi(t)) of

system (3) initiating from C0, we obtain (x(t), y(t), yi(t))→ E0(0, 0, 0) as t→ +∞.
In the set X1, system (3) becomes{

ẋ(t) = x(t)(k− x(t)),
ẏi(t) = −(σ + γ)yi(t).

Obviously, E1(k, 0) is globally asymptotically stable. Therefore, any solution (x(t), y(t), yi(t))
of system (3) initiating from C1 is such that (x(t), y(t), yi(t))→ E1(k, 0, 0) as t→ +∞.

In the set X2, system (3) becomes{
ẏ(t) = y(t)(−r− y(t)) + σyi(t),
ẏi(t) = cy(t)− (σ + γ)yi(t).

Clearly, E2(y0, y0
i ) is globally asymptotically stable. Hence, for any solution (x(t), y(t),

yi(t)) of system (3) which initiates from C2, we have (x(t), y(t), yi(t)) → E2(0, y0, y0
i ) as

t→ +∞.
Obviously, E0, E1, E2 are isolated invariant, and {E0, E1, E2} is isolated and is an acyclic

covering.
It is obvious that Ws(E0)

⋂
X0 = ∅. Next, we will show that Ws(E1)

⋂
X0 = ∅,

Ws(E2)
⋂

X0 = ∅.
Assume Ws(Eq)

⋂
X0 6= ∅. Then, in system (3) there exists a positive solution

(x(t), y(t), yi(t)) such that (x(t), y(t), yi(t)) → E1(k, 0, 0) as t → +∞. Hence, we have
lim

t→+∞
x(t) = k, that is, for ε > 0, there exists t0 > 0 such that x(t) > k− ε. From system (3),

for t > t0 + τ,
ẏ(t) ≥ y(t)(−r + β(k− ε)− y(t)).
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From (10), we can find that y(t) → −r + kβ. This is a contradiction. Therefore, we
have Ws(E1)

⋂
X0 = ∅.

Assume Ws(E2) ∩ X0 6= ∅. Then, there is a positive solution (x(t), y(t), yi(t)) of (3)
that (x(t), y(t), yi(t)) → E2(0, y0, y0

i ) as t → +∞. Hence, y → y0, y → y0
i as t → +∞.

From system (3), for t > t0 + τ, we have

ẋ(t) ≥ x(t)(k− x(t)− α(y0 + ε)).

From (6), we find that x(t)→ k− αy0 as t→ +∞. This is a contradiction. Therefore,
we have Ws(E2)

⋂
X0 = ∅.

At this time, we can conclude that X0 repels the positive solutions (x(t), y(t), yi(t)) of
system (3) which initiates from C0 uniformly.

Thus, there exists an ε0 > 0 such that

lim inf
t→+∞

x(t) ≥ ε0, lim inf
t→+∞

y(t) ≥ ε0.

From the 3rd equation of system (3), we obtain

ẏi(t) ≥ cε0 − (γ + σ)yi(t).

Then yi → cε0
γ+σ as t→ +∞. Denote ε1 = cε0

γ+σ , then yi ≥ ε1.

4. Stability of Equilibria

In this section, we will discuss the sufficient conditions for the stability of all the
equilibrium points for system (3).

Firstly, we analyze the local stability of the equilibria E0, E1, E2.
The characteristic equation of equilibrium E0 is

(λ− k)(λ2 + (σ + γ + r)λ + r(σ + γ)− σc) = 0.

Obviously, the above equation always has a positive eigenvalue λ = k. Hence,
E0(0, 0, 0) is unstable.

The characteristic equation of equilibrium E1 is

(λ + k)[λ2 + (r− βk + σ + γ)λ + (r− βk)(σ + γ)− σc] = 0. (11)

Let
f (λ) = λ2 + (r− βk + σ + γ)λ + (r− βk)(σ + γ)− σc.

From (7), we can find (r− βk)(σ + γ)− σc < 0. Then, f (+∞) = +∞, f (0) < 0. So
(11) has a positive root, i.e., the equilibrium E1(k, 0, 0) is unstable.

The characteristic equation of equilibrium E2 is

(λ− k + αy0)[λ2 + (r + 2y0 + σ + γ)λ + (r + 2y0)(σ + γ)− σc] = 0. (12)

Denote

f (λ) = λ2 + (r + 2y0 + σ + γ)λ + (r + 2y0)(σ + γ)− σc.
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Then, f (+∞) = +∞, f (0) < 0, so (13) has a positive root. Then the equilibrium E2

is unstable.
In the following, we shall discuss the local and global properties of positive equilib-

rium E∗.

Theorem 3. The interior equilibrium E∗(x∗, y∗, y∗i ) of system (3) is locally asymptotically stable
if conditions (6) and (7) and the condition

αβ < 1 (13)

hold.

Proof. Linearizing system (3) at the equilibrium E∗(x∗, y∗, y∗i ) leads to
ẋ(t) = −x∗x(t)− αx∗y(t− τ),
ẏ(t) = βy∗x(t− τ) + (−r + βx∗ − 2y∗)y(t) + σyi(t),
ẏi(t) = cy(t)− (σ + γ)yi(t).

(14)

We obtain the characteristic equation of the form

Γ(λ, τ) = λ3 + pλ2 + qλ + s + e−2λτ(lλ + n) = 0, (15)

where

p = σ + γ + cσ
σ+γ + x∗ + y∗ > 0,

q = (x∗ + y∗)(σ + γ) + x∗( cσ
σ+γ + y∗) > 0,

s = x∗y∗(σ + γ) > 0,
l = x∗y∗αβ > 0,
n = x∗y∗αβ(σ + γ) > 0.

When τ = 0, we can easily check that all the characteristic roots have negative real parts.
We will show that all the characteristic roots have negative real parts for all τ > 0, which
implies that E∗(x∗, y∗, y∗i ) is locally asymptotically stable for (3). Obviously, the character-
istic Equation (15) has no positive real parts roots. Now, we suppose that there exists a
characteristic root of (15) on the imaginary axis of the complex plane for some τ0 > 0. Let
λ = iω be such a characteristic root. It is straightforward to see that ω 6= 0. Substituting
(λ, τ) = (iω, τ0) into (15) and separating the real and imaginary parts, we obtain

−pω2 + s + n cos(2ωτ0) + lω sin(2ωτ0) = 0,

and
−ω3 + qω + ωl cos(2ωτ0)− n sin(2ωτ0) = 0.

Furthermore,

(l2ω2 + n2) sin(2ωτ0) = plω3 − lsω− nω3 + qωn,
(l2ω2 + n2) cos(2ωτ0) = lω4 − qlω2 + pω2n− ns.

(16)

Squaring and adding the two equations yields

(l2ω2 + n2)2 = (plω3 − lsω− nω3 + qωn)2 + (lω4 − qlω2 + pω2n− ns)2. (17)
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Let Ω = ω2 and

f (Ω) = Ω3 + (p2 − 2q)Ω2 + (q2 − 2ps− l2)Ω + s2 − n2 = 0. (18)

Then, f (Ω) must have a positive zero Ω = ω2 because (17) and ω 6= 0. What is more,
the coefficients of Ω2, Ω and f (0) in (18) need to be positive. In fact, the coefficients of Ω2

and Ω are expressed in the following ways:

p2 − 2q = (σ + γ)2 + ( cσ
σ+γ )

2 + x∗2 + y∗2 + 2cσ + 2cσ
σ+γ y∗ > 0,

q2 − 2ps− l2 = x∗2(σ + γ)2 + y∗2(σ + γ)2 + ( cσx∗
σ+γ )

2 + 2x∗2cσ + 2cσx∗2y∗
σ+γ

+ (1− α2β2)x∗2y∗2 > 0.

Furthermore,
f (0) = s2 − n2 = (σ + γ)2x∗2y∗2(1− α2β2) > 0.

Hence, f ′(Ω) > 0. Therefore, f (Ω) = 0 has no positive roots, which is a contradiction. We
complete the proof.

Theorem 4. Suppose that (6) and (7) and

α + β < 2 (19)

hold. Then the positive equilibrium E∗(x∗, y∗, y∗i ) of system (3) is globally asymptotically stable.

Proof. Let (x(t), y(t), yi(t)) be any solution of system (3) satisfying initial condition (4).
Define

V(t) = λ1(x− x∗ − x∗ ln x
x∗ ) + λ2(y− y∗ − y∗ ln y

y∗ ) + λ3(yi − y∗i − y∗i ln yi
y∗i
)

+ λ2β
2

∫ t

t−τ
(x∗ − x(s))2ds +

λ1α

2

∫ t

t−τ
(y∗ − y(s))2ds,

(20)

where λ1, λ2, λ3 are suitable positive constants to be determined in the subsequent steps.
It is easy to see that V is a positive definite function in the region R3

+ except at E∗(x∗, y∗, y∗i )
where it vanishes. Further,

lim
x→0,y→0,yi→0

V(x, y, yi) = lim
x→∞,y→∞,yi→∞

V(x, y, yi) = ∞.

Calculating the upper right derivative of V along the solutions of system (3), we have:

D+V(t)|(3) = λ1(x− x∗)(k− x− αy(t− τ)) + λ2(y− y∗)[(−r + βx(t− τ)− y) + σyi
y ]

+λ3(yi − y∗i )(
cy
yi
− (σ + γ)) + λ2β

2 [(x− x∗)2 − (x(t− τ)− x∗)2]

+ λ1α
2 [(y∗ − y)2 − (y(t− τ)− y∗)2]

= −λ1(x− x∗)2 + λ1(x− x∗)(αy∗ − αy(t− τ))− λ2(y− y∗)2+

λ2(y− y∗)(βx(t− τ)− βx∗ − cσ
σ+γ + σyi

y ) + λ3(yi − y∗i )(
cy
yi
− (σ + γ))

+ λ2β
2 [(x− x∗)2 − (x(t− τ)− x∗)2] + λ1α

2 [(y∗ − y)2 − (y(t− τ)− y∗)2]

≤ −λ1(x− x∗)2 + λ1α
2 (x− x∗)2 − λ2(y− y∗)2 + λ2β

2 (y− y∗)2 + λ2β
2 (x− x∗)2

+ λ1α
2 (y− y∗)2 + λ2(y−y∗)

(σ+γ)y [(σ + γ)σyi − cσy] + λ3(yi−y∗i )
yi

(cy− (σ + γ)y)

= (−λ1 +
λ1α

2 + λ1β
2 )(x− x∗)2 + (−λ2 +

λ2α
2 + λ2β

2 )(y− y∗)2

−[ λ2σy∗yi−λ3(σ+γ)yy∗i
(σ+γ)yyi

+ λ3(σ+γ)yyi−λ2σyyi
(σ+γ)yyi

](cy− (σ + γ)yi).
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Let λ2σ = λ3(σ + γ). Then,

D+V(t)|(3) ≤ (−λ1 +
λ1α

2 + λ2β
2 )(x− x∗)2 + (−λ2 +

λ1α
2 + λ2β

2 )(y− y∗)2

− λ2σy∗yi−λ3(σ+γ)yy∗i
(σ+γ)yyi

(cy− (σ + γ)yi)

= (−λ1 +
λ1α

2 + λ2β
2 )(x− x∗)2 + (−λ2 +

λ1α
2 + λ2β

2 )(y− y∗)2

− λ2σy∗yi
(σ+γ)2yyi

(cy− (σ + γ)yi)
2.

Let λ1 = λ2. If (19) holds, then

D+V(t)|(3) < 0.

Therefore, by using a Lyapunov–Lasalle type theorem [21], we have x → x∗, y→ y∗,
yi → y∗i as t→ ∞.

5. Existence of Hopf Bifurcation

In this section, we shall find the conditions under which a Hopf bifurcation may occur
around the positive equilibrium point E∗ when delay τ passes through some critical values.

From (18) we can see that if 1− αβ < 0 and q2− 2ps− l2 > 0, then f (0) = s2− n2 < 0,
f (+∞) = +∞ and f ′(0) > 0. Hence, Equation (15) has a unique positive root. Then, we
have the following lemma.

Lemma 1. Let 1− αβ < 0 and q2 − 2ps− l2 > 0 hold. Then Equation (15) with τ = τ0 has
a unique pair of ω0, τ0, ω0τ0 < 2π such that Γ(iω0, τ0) = 0, where ω0 and τ0 are given by
Equations (16).

Let us suppose τ = τk when ω = ω0. From (16) we have

τk =
1

2ω0
arcsin

plω3
0 − lsω0 − nω3

0 + qω0n
l2ω2

0 + n2
+

2kπ

ω0
, k = 0, 1, 2, · · · . (21)

Theorem 5. Assume 1− αβ < 0 and q2 − 2ps− l2 > 0. If τ ∈ [0, τ0), then the equilibrium E∗

of system (3) is asymptotically stable; if τ > τ0, then E∗ is unstable. τ = τk (k = 0, 1, 2, · · · )
are Hopf bifurcation values for system (3), where τk is defined by (21), that is, a family of periodic
solutions bifurcates from E∗ as τ passes through the critical value τk.

Proof. Let λ(τ) = a(τ) + iω(τ) be a root of Equation (15). Substituting λ = a + iω in (15)
and separating real and imaginary parts, we get the transcendental equations

a3 − 3aω2 + pa2 − pω2 + qa + s + e−2τa(la + n) cos(2τω) + e−2τalω sin(2τω) = 0 (22)

and

3a2ω−ω3 + 2paω + qω− e−2τa(la + n) sin(2τω) + e−2τalω cos(2τω) = 0. (23)

Obviously, E∗ is stable when τ = 0. Hence, E∗ remains stable for τ < τ0 (τ0 is the smallest
value for which where is a solution to (15) with real part zero). We now have to show that
da
dτ |τ=τ0> 0 when ω = ω0.
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Now differentiating the two sides of Equation (22) with respect to τ, at a = 0, τ = τ0,
ω = ω0, we can obtain:

[−3ω2
0 + q− 2nτ0 cos(2τ0ω0) + l cos(2τ0ω0)− 2lτ0ω0 sin(2τ0ω0)]

da
dτ

+[−2pω0 − 2nτ0 sin(2τ0ω0) + 2lτ0ω0 cos(2τ0ω0)

+l sin(2τ0ω0)]
dω
dτ + [−2nω0 sin(2τ0ω0) + 2lω2

0 cos(2τ0ω0)] = 0

and

[2pω0 + 2nτ0 sin(2τ0ω0)− 2lτ0ω0 cos(2τ0ω0)− l sin(2τ0ω0)]
da
dτ

+[−3ω2
0 + q− 2nτ0 cos 2τ0ω0 + l cos(2τ0ω0)

−2lτ0ω0 sin(2τ0ω0)]
dω
dτ + [−2nω0 cos(2τ0ω0) + 2lω2

0 sin(2τ0ω0)] = 0.

Hence,

[(−3ω2
0 + q− 2nτ0 cos(2τ0ω0)− 2lτ0ω0 sin(2τ0ω0) + l cos(2τ0ω0))

2

+(2pω0 + 2nτ0 sin(2τ0ω0)− l sin(2τ0ω0)− 2τ0lω0 cos(2τ0ω0))
2] da

dτ |a=0,ω=ω0,τ=τ0

= 1
l2ω2

0+n2 [6n2ω2
0 + 6l2ω8

0 + 2n2ω2
0(q

2 − 2ps− l2)

+2l2ω4
0(q

2 − 2ps− l2) + 4n2ω4
0(p2 − 2q) + 4l2ω6

0(p2 − 2q)].

Since q2 − 2ps − l2 > 0, then da
dτ > 0 at a = 0, τ = τ0, ω = ω0, the transversality

condition holds. Hence, Hopf bifurcation occurs at ω = ω0, τ = τ0.

6. Direction and Stability of the Hopf Bifurcation

In this section, we shall discuss the direction and stability of the Hopf bifurcation via
the method introduced in [22].

Let u1(t) = x(t)− x∗, u2(t) = y(t)− y∗, u3(t) = yi(t)− y∗i , xi(t) = ui(τt), (i = 1, 2,
3), τ = τk + µ. System (3) is transformed into functional differential equation (FDE) in
C = C([−1, 0],R3) given by

du
dt

= Lµ(ut) + f (µ, ut), (24)

where u(t) = (u1(t), u2(t), u3(t))> ∈ R3 and

Lµ(ξ) = (τk + µ)

 −x∗ 0 0
0 −r + βx∗ − 2y∗ σ

0 c −σ− γ


 ξ1(0)

ξ2(0)
ξ3(0)



+(τk + µ)

 0 −αx∗ 0
βy∗ 0 0

0 0 0


 ξ1(−1)

ξ2(−1)
ξ3(−1)

, (25)

f (µ, ξ) = (τk + µ)

 −ξ2
1(0)− αξ1(0)ξ2(−1)

βξ1(−1)ξ2(0)− ξ2
2(0)

0

. (26)
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By the Riesz representation theorem, there exists a 3× 3 matrix function η(θ, µ) of
bounded variation for θ ∈ [−1, 0], such that

Lµξ =
∫ 0

−1
dη(θ, 0)ξ(θ) (27)

for ξ ∈ C.
In practice, one can choose:

η(θ, µ) = (τk + µ)

 −x∗ 0 0
0 −r + βx∗ − 2y∗ σ

0 c −σ− γ


 ξ1(0)

ξ2(0)
ξ3(0)

δ(θ) (28)

−(τk + µ)

 0 −αx∗ 0
βy∗ 0 0

0 0 0

δ(θ + 1), (29)

where δ(θ) denotes the Dirac delta function. For ξ ∈ C′([−1, 0],R3), we define

A(µ)ξ =


dξ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(µ, s)ξ(s), θ = 0,

and

R(µ)ξ =

{
0, θ ∈ [−1, 0),
f (µ, ξ), θ = 0.

Then, system (24) is equivalent to

u̇t = A(µ)ut + R(µ)ut, (30)

where ut(θ) = u(t + θ), θ ∈ [−1, 0].
For ς ∈ C1([−1, 0], (R3)∗), we define the adjoint operator A∗ of A as

A∗ς(s) =

{
− dς(s)

ds , s ∈ (0, 1],∫ 0
−1 dη>(t, 0)ς(−t), s = 0,

and a bilinear inner product given by

< ς(s), ξ(θ) >= ς(0)ξ(0)−
∫ 0

−1

∫ θ

ζ−θ
ς(ζ − θ)dη(θ)ξ(ζ)dζ, (31)

where η(θ) = η(θ, 0). Clearly, A(0) and A∗ are a pair of adjoint operators. From the
discussions in Section 5, we know that ±iω0τk are eigenvalues of A(0). Thus, they are
also eigenvalues of A∗. In the next, we shall calculate the eigenvector q(θ) of A(0) and
eigenvector q∗(s) of A∗ corresponding to +iω0τk and −iω0τk, respectively.
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Let q(θ) = (1, υ, ν)>eiω0τkθ be the eigenvector of A(0) corresponding to +iω0τk, then
A(0)q(θ) = iω0τkq(θ). From the definition of A(0) and (25), (27) and (28), we can ob-
tain that

τk


iω0 + x∗ αx∗e−iω0τk 0
−βy∗e−iω0τk iω0 + r− βx∗ + 2y∗ −σ

0 c iω0 + σ + γ

.

q(0) =

 0
0
0

.

From above, it is easy to obtain q(0) = (1, υ, ν)>, where υ = − αx∗e−iω0τk
iω0+x∗ , ν = cυ

iω0+σ+γ .
Similarly, assuming that q∗(s) = D(1, υ∗, ν∗)eiω0τks is the eigenvector of A∗ corresponding

to −iω0τk, we can get υ∗ = βy∗e−iω0τk

iω0+x∗ , ν∗ = συ∗
iω0+σ+γ by the definition of A∗ and (25)–(27).

In order to ensure < q∗(s), q(θ) >= 1, we need to determine the value of D. From (31),
we have

< q∗(s), q(θ) > = D(1, υ∗, ν∗)(1, υ, ν)> −
∫ 0
−1

∫ θ
ζ=0 D(1, υ∗, ν∗)e−iω0τk(ζ−θ)dη(θ)(1, υ, ν)>eiω0τkζ dζ

= D{1 + υυ∗ + νν∗ −
∫ 0
−1(1, υ∗, ν∗)θeiω0τkθdη(θ)(1, υ, ν)>}

= D{1 + υυ∗ + νν∗ + (αx∗υ− βy∗υ∗)τke−iω0τk}.

Thus, we can select D as

D =
1

1 + υυ∗ + νν∗ + (αx∗υ− βy∗υ∗)τke−iω0τk
.

Using the same notations as in [22], we first calculate the coordinates to describe the
center manifold C0 at µ = 0. Let ut be the solution of (30) when µ = 0. Define

z(t) =< q∗, ut >, W(w, θ) = ut(θ)− 2Re{z(t)q(θ)}. (32)

On the center manifold C0 we have

W(t, θ) = W(z(t), z̄(t), θ),

where

W(z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ W30(θ)

z3

6
+ · · · , (33)

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q∗. Note that
W is real if xt is real. We only consider real solutions. For solution xt ∈ C0 of (30), since
µ = 0, we have

ż(t) = iω0τkz + q∗(0) f (0, W(z, z̄, θ) + 2Re{zq(θ)}) = iω0τkz + q∗(0) f0(z, z̄).

We rewrite this equation as

ż(t) = iω0τkz(t) + g(z, z̄),

where

g(z, z̄) = q∗(0) f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · . (34)
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It follows from (32) and (33) that:

xt(θ) = W(t, θ)− 2Re{z(t)q(t)}
= W20(θ)

z2

2 + W11(θ)zz̄ + W02(θ)
z̄2

2 + (1, α, β)>eiω0τkθz + (1, ᾱ, β̄)>e−iω0τkθ z̄ + · · · .
(35)

It follows together with (26) that:

g(z, z̄) = q∗(0) f0(z, z̄)

= q∗(0) f (0, xt)

= τkD(1, υ∗, ν∗)


−x2

1t(0)− αx1t(0)x2t(−1)

βx1t(−1)x2t(0)− x2
2t(0)

0


= −τkD{[z + z̄ + W(1)

20 (0)
z2

2
+ W(1)

11 (0)zz̄ + W(1)
02 (0)

z̄2

2
+ o(|(z, z̄)|3)]2

+α[z + z̄ + W(1)
20 (0)

z2

2
+ W(1)

11 (0)zz̄ + W(1)
02 (0)

z̄2

2
+ o(|(z, z̄)|3)]

×[υe−iω0τk z + υeiω0τk z̄ + W(2)
20 (−1) z2

2 + W(2)
11 (−1)zz̄ + W(2)

02 (−1) z̄2

2 + o(|(z, z̄)|3)]

−υ∗β[e−iω0τk z + eiω0τk z̄ + W(1)
20 (−1) z2

2 + W(1)
11 (−1)zz̄ + W(1)

02 (−1) z̄2

2 + o(|(z, z̄)|3)]

×[υz + ῡz̄ + W(2)
20 (0) z2

2 + W(2)
11 (0)zz̄ + W(2)

02 (0) z̄2

2 + o(|(z, z̄)|3)]

+υ∗[υz + ῡz̄ + W(2)
20 (0) z2

2 + W(2)
11 (0)zz̄ + W(2)

02 (0) z̄2

2 + o(|(z, z̄)|3)]2}.

(36)

Comparing the coefficients with (34), we have:

g20 = 2τkD(1− υ∗υ2 + υαe−iω0τk − υ∗υβe−iω0τk ),

g11 = 2τkD(1− υ∗υῡ + ῡαeiω0τk+υαe−iω0τk
2 − υ∗(υe−iω0τk+υeiω0τk )

2 ),

g02 = 2τkD(1− υ∗ῡ2 + υαeiω0τk − υ∗ῡβeiω0τk ),

g21 = −2τkD{2W(1)
11 (0) + W(1)

20 (0) + α[W(2)
11 (−1) + W(2)

20 (0)
2 +

eiω0τk W(1)
20 (0)

2

+υW(1)
11 (0)e−iω0τk ]− υ∗β[W(2)

11 (0)e−iω0τk +
W(2)

20 (0)eiω0τk

2

+υ∗W(1)
11 (−1) + ῡW(1)

02 (−1)
2 ]− υW(2)

11 (0)− 2υ∗υW(2)
20 (0)}.

(37)

Since there are W20(θ) and W11(θ) in g21, we still need to compute them. From (30)
and (32), we have

Ẇ = u̇t − ˙̄zq− ˙̄zq̄ =

 AW − 2Re{q∗(0) f0q(θ)}, θ ∈ [−1, 0),

AW − 2Re{q∗(0) f0q(θ)}+ f0, θ = 0,

4
= AW + H(z, z̄, θ), (38)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (39)
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Substituting the corresponding series into (38) and comparing the coefficients, we ob-
tain

(A− 2iω0τ0)W20(θ) = −H20, AW11(θ) = −H11, · · · . (40)

From (38), we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q∗(0) f0q(θ)− q∗(0) f̄0q̄(θ) = −g(z, z̄)q(θ)− g(z, z̄)q̄(θ). (41)

Comparing the coefficients with (39) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ), (42)

and

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (43)

From (40), (42) and the definition of A, it follows that

Ẇ20 = 2iω0τkW20(θ) + g20q(θ) + ḡ02q̄(θ).

Notice that q(θ) = (1, υ, ν)>eiω0τkθ , hence

W20(θ) =
ig20

ω0τk
q(0)eiω0τkθ +

iḡ02

3ω0τk
q̄(0)e−iω0τkθ + E1e2iω0τkθ , (44)

where E1 = (E(1)
1 , E(2)

1 , E(3)
1 ) ∈ R3 is a constant vector. Similarly, from (40) and (43), we

obtain

W11(θ) = −
ig11

ω0τk
q(0)eiω0τkθ +

iḡ11

ω0τk
q̄(0)e−iω0τkθ + E2, (45)

where E2 = (E(1)
2 , E(2)

2 , E(3)
2 ) ∈ R3 is also a constant vector.

In what follows, we shall seek appropriate E1 and E2. From the definition of A and
(40), we obtain

∫ 0

−1
dη(θ)W20(θ) = 2iω0τkW20(θ)− H20(θ), (46)

and ∫ 0

−1
dη(θ)W11(θ) = −H11(θ), (47)

where η(θ) = η(0, θ). By (38), we have

H20(θ) = −g20q(0)− ḡ20q̄(0) + 2τk


1 + υαe−iω0τk

−υ2 − υβe−iω0τk

0

, (48)
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and

H11(θ) = −g11q(0)− ḡ11q̄(0) + 2τk


1 + ῡαeiω0τk+υαe−iω0τk

2

−υῡ− υe−iω0τk+υeiω0τk
2

0

. (49)

Substituting (44) and (48) into: (46), we obtain

(2iω0τk I −
∫ 0

−1
e2iω0τkθdη(θ))E1 = 2τk


1 + υαe−iω0τk

−υ2 − υβe−iω0τk

0

,

which leads to: 2iω0 + x∗ αx∗e−2iω0τk 0
βy∗e−2iω0τk 2iω0 + r− βx∗ + 2y∗ −σ

0 c 2iω0 + σ + γ

E1 = 2

 1 + υαe−iω0τk

−υ2 − υβe−iω0τk

0

.

It follows that:

E(1)
1 = 2

∆1

∣∣∣∣∣∣∣
1 + υαe−iω0τk∗ αx∗e−2iω0τk 0
−υ2 − υβe−iω0τk 2iω0 + r− βx∗ + 2y∗ −σ

0 c 2iω0 + σ + γ

∣∣∣∣∣∣∣,
E(2)

1 = 2
∆1

∣∣∣∣∣∣∣
2iω0 + x∗ 1 + υαe−iω0τk 0

βy∗e−2iω0τk −υ2 − υβe−iω0τk −σ

0 0 2iω0 + σ + γ

∣∣∣∣∣∣∣,
E(3)

1 = 2
∆1

∣∣∣∣∣∣∣
2iω0 + x∗ αx∗e−2iω0τk 1 + υαe−iω0τk

βy∗e−2iω0τk 2iω0 + r− βx∗ + 2y∗ −υ2 − υβe−iω0τk

0 c 0

∣∣∣∣∣∣∣,
where

∆1 =

∣∣∣∣∣∣∣
2iω0 + x∗ αx∗e−2iω0τk 0

βy∗e−2iω0τk 2iω0 + r− βx∗ + 2y∗ −σ

0 c 2iω0 + σ + γ

∣∣∣∣∣∣∣.
Similarly, substituting (45) and (49) into (47), we can obtain: x∗ αx∗ 0

βy∗ r− βx∗ + 2y∗ −σ

0 −c σ + γ

E2 =

 1 + ῡαeiω0τk+υαe−iω0τk
2

−υῡ− υe−iω0τk+υeiω0τk
2

0

,
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and hence

E(1)
2 = 2

∆2

∣∣∣∣∣∣∣
1 + ῡαeiω0τk+υαe−iω0τk

2 αx∗ 0

−υῡ− υe−iω0τk+υeiω0τk
2 r− βx∗ + 2y∗ −σ

0 −c σ + γ

∣∣∣∣∣∣∣,
E(2)

2 = 2
∆2

∣∣∣∣∣∣∣
x∗ 1 + ῡαeiω0τk+υαe−iω0τk

2 0

βy∗ −υῡ− υe−iω0τk+υeiω0τk
2 −σ

0 0 σ + γ

∣∣∣∣∣∣∣,
E(3)

2 = 2
∆2

∣∣∣∣∣∣∣
x∗ αx∗ 1 + ῡαeiω0τk+υαe−iω0τk

2

βy∗ r− βx∗ + 2y∗ −υῡ− υe−iω0τk+υeiω0τk
2

0 −c 0

∣∣∣∣∣∣∣,
where

∆2 =

∣∣∣∣∣∣∣
x∗ αx∗ 0

βy∗ r− βx∗ + 2y∗ −σ

0 −c σ + γ

∣∣∣∣∣∣∣.
Thus, we can determine W20(θ) and W11(θ) from (44) and (45). Furthermore, g21 in (37)

can be expressed by the parameters and delay. Then, we can compute the following values:

c1(0) = i
2ω0τk

(g20g11 − 2|g11|2 − |g02|2
3 ) + g21

2 ,

µ2 = − Re{c1(0)}
Re{λ′(τk)}

,

β2 = 2Re{c1(0)},

T2 = − Im{c1(0)}+µ2 Im{λ′(τk)}
ω0τk

.

(50)

In conclusion, we have the results as following.

Theorem 6. (1) If µ2 < 0 (µ2 > 0), Hopf bifurcation is subcritical (supercritical); (2) If β2 < 0
(β2 > 0), the bifurcating periodic solution is stable (unstable); (3) If T2 > 0 (T2 < 0), the period
increases (decreases).

7. Numerical Simulations

In this section, we provide numerical examples of Theorems 5 and 6 by using Matlab.
Let k = 3, α = 1, r = 1, β = 1.5, c = 2, σ = 0.5, γ = 0.5. Hence, p = 5, q = 6.36,

s = 2.16, l = 3.24, α + β > 2, q2− 2ps− l2 = 8.352 > 0, τ0 = 1.3434655328, E∗(x∗, y∗, y∗i ) =
(1.2, 1.8, 3.6).

(i) τ = 1.2, τ < τ0. In this case, the numerical simulation (see Figure 1) shows that the
predator and prey populations spiral toward the equilibrium E∗(1.2, 1.8, 3.6);

(ii) By calculation, we obtain τ0 = 1.3434655328. By Theorem 5.1, a Hopf bifurcation
occurs when τ = τ0. Select τ = 1.8. From Figure 2, we can find that both the predator
and prey populations reach periodic oscillations around the equilibrium E∗(x∗, y∗, y∗i ) in
finite time;

(iii) From our calculations, we can see that ω0 = 0.6514262661 and λ′(τ0) = 0.6127495603
+0.4261524984i. From the formulae (50), we can obtain c1(0) = −10.29371206− 73.4416490i,
µ2 > 0, β2 < 0 and T2 > 0. Hence, the Hopf bifurcation is supercritical, the direction of the
bifurcation is τ > τ0 and these bifurcating periodic solutions are stable (see Figure 2).
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Figure 1. k = 3, α = 1, r = 1, β = 1.5, c = 2, σ = 0.5, γ = 0.5, τ = 1.2. The solution tends to
the positive equilibrium. The initial value is constant function x(t) ≡ 1, y(t) ≡ 0.1, yi(t) ≡ 0.5 for
t ∈ [−τ, 0].

Figure 2. Trajectory of the system with same parameters as Figure 1. except that τ = 1.8. The solution
tends to the periodic solution. The initial value is constant function x(t) ≡ 1, y(t) ≡ 0.1, yi(t) ≡ 0.5
for t ∈ [−τ, 0].
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8. Discussion

In this paper, a new dynamics for a predator–prey model with staged structure and
time delay has been analyzed. We discuss the influence of the parameter τ on the dynamics
of the system (3). The system (3) is permanent under some conditions. The local and
global stability of the positive equilibrium is presented. By choosing τ as a bifurcation
parameter, we prove that the delay loss of stability phenomenon appears under the condi-
tions 1− αβ < 0 and q2 − 2ps− l2 > 0. That is to say, there is a critical value τ0 of τ such
that system (3) is stable in the range τ ∈ (0, τ0) at positive equilibrium E∗ (see Figure 1);
when τ = τ0, a Hopf bifurcation occurs around E∗(x∗, y∗, y∗i ); when τ > τ0, the system
is unstable (see Figure 2) and there are always Hopf bifurcations near the positive equi-
librium E∗(x∗, y∗, y∗i ) when τ takes other critical values. We derive explicit formulae for
determining the properties of Hopf bifurcation at the critical value of τ0 via the ideas of
Hassard et al. If we do not consider the staged structure of the predator, system (2) has
no periodic solutions, which shows that the staged structure of the predator can severely
affect the dynamical behavior of the system. However, for system (3), there is no chaotic
behavior of the system (3) by numerical simulations.
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