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Abstract: In this manuscript, we defined (α, F)-contractions in the context of double-controlled
metric spaces and partially ordered double-controlled metric spaces. We established new fixed-point
results and defined the notion of double-controlled metric space on a Reich-type contraction. Our
findings are generalizations of a few well-known findings in the literature. Some non-trivial examples
and certain consequences are also provided to illustrate the significance of the presented results.
The existence and uniqueness of the solution of non-linear fractional differential equations and the
monotone iterative method are also determined using the fixed-point method.
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1. Introduction and Preliminaries

In the second quarter of the 18th century, a paper establishing the existence of solutions
to differential equations introduced fixed-point theory (Joseph Liouville, 1837). Later, this
method was enhanced as a sequential approximation method (Charles Emile Picard, 1890),
and in the context of complete normed space, it was extracted and abstracted as a fixed-
point theorem (Stefan Banach, 1922). It provides an approximate method to actually locate
the fixed point as well as the a priori and a posteriori estimates for the rate of convergence.
It also guarantees the presence and uniqueness of a fixed point. This tool is important to
the understanding of metric spaces. After that, it is said that Stefan Banach established
fixed-point theory. The presence of a fixed point for a given function is guaranteed by
fixed-point theorems, which also allow us to guarantee that the original problem has been
solved. The existence of a solution is equivalent to the existence of a fixed point for an
appropriate mapping in a wide range of scientific problems that start from many fields
of mathematics.

In 1993, Czerwik [1] presented the more dominant and widespread idea of metric-type
space, called b-metric space. In the definition of metric space, he introduced a constant
in the right-hand side of the triangular inequality and also proved the more generalized
form of the Banach Contraction theorem. Alharbi et al. [2] extended the previous work and
proved many fixed-point results in rectangular b-metric space. They also used α-admissible
function on a rectangular b-metric space and proved many results in more generalized form
than the existing literature. In addition, they presented an application and some examples
to illustrate the results. In 2012, Aydi et al. [3] extended this work and used set-valued
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quasi-contraction maps in b-metric spaces. They also generalized several well-known
comparable results in the existing literature. Furthermore, Aydi et al. [4] proved common
fixed-point results of single and multi-valued mappings, which satisfy a weak ϕ-contraction
in b-metric space. In 2018, Karapinar et al. [5] proved several fixed-point results for Meir–
Keeler contraction mappings in generalized-metric spaces. In 2016, Shatanawi [6] used the
notion of c-comparison function with base s and established some common fixed-point
theorems for nonlinear contractions in a complete b-metric space (see [7–9] for more details).
Alqahtani et al. [10] established nonlinear F-contractions in a more general framework of
b-metric spaces and studied the existence and uniqueness of such contractions. By utilizing
nonlinear F-contractions, they also examined the solutions of differential equations in
the setting of fractional derivatives involving Mittag–Leffler kernels (Atangana–Baleanu
fractional derivative).

In 2017, Kamran et al. [11] introduced the more generalized metric space called ex-
tended b-metric space and proved some results from the literature. Mukheimer et al. [12]
defined the notion of an α-ψ-contractive mapping and generalized the results defined on ex-
tended b-metric spaces. Many other researchers (see [13,14]) also proved fixed-point results
on such spaces. Mlaiki et al. [15] introduced the notion of controlled-type metric spaces by
replacing b ≥ 1 with a controlled function β : Ξ× Ξ→ [1,+∞) in the triangular inequality
of b-metric space. Lateef [16] defined a Fisher-type contractive condition by using the idea
of controlled metric-type spaces and obtained some generalized fixed-point results. In ad-
dition, he established some interesting examples to show the authenticity of the established
results. Ahmad et al. [17] introduced Reich-type contractions and (α, F)-contractions on a
controlled metric-type space and generalized some known results from the literature. In
2012, the structure of the F-contraction was presented by Wardowski [18] and established
new remarkable results in the context of complete metric spaces and established a more gen-
eralized form of the Banach contraction principle. Wardowski provided new guidance for
researchers, so they can add additional work in the field of fixed-point theory. Secelean [19]
extended the idea of the F-contraction given by Wardowski [18] and provided new proper-
ties of F-contractions. They also examined the iterated function systems (IFS) composed of
F-contractions, and then, from the classical Hutchinson–Barnsley theory of IFS consisting
of Banach contractions, extended several fixed-point results as an application. Some other
results related to F-contractions can be seen in [20–22]. In 1971, Reich [23] established some
interesting results in non-linear analysis. In 2018, Abdeljawad et al. [24] established the no-
tion of double-controlled metric-type spaces and some fixed-point results. Samet et al. [25]
derived several fixed-point theorems for α-ψ-contractive-type mappings. Jankowski [26]
solved fractional equations of the Volterra type involving a Riemann–Liouville derivative.

Ali et al. [27] solved nonlinear fractional differential equations for contractive and
weakly compatible mappings in the context of neutrosophic metric spaces. Huang et al. [28]
proved some fixed-point results for generalized F-contractions in b-metric-like spaces.
Saleem et al. [29,30] established numerous fixed-point theorems and worked on some
interesting applications. Asjad et al. [31,32] generalized the Hermite–Hadamard-type
inequality with exp-convexity involving non-singular fractional operator and the fractional
comparative study of the non-linear directional couplers in non-linear optics. Ishtiaq
et al. [33] introduced the notion of orthogonal neutrosophic metric spaces and proved
several fixed-point theorems.

In this manuscript, we define (α, F)-contractions in the context of double-controlled
metric spaces and partially ordered double-controlled metric spaces. We establish new
fixed-point results and define the notion of double-controlled metric space on a Reich-type
contraction. Some non-trivial examples and certain consequences are also provided to
illustrate the significance of the presented results. The existence and uniqueness of the
solution of non-linear fractional differential equations and the monotone iterative method
are also examined using the fixed-point method.



Axioms 2022, 11, 573 3 of 17

Some of the following notions are used throughout this article: CMS for controlled
metric space, DCMS for double-controlled metric space, and CDCMS for complete double-
controlled metric space.

Definition 1. [1] Consider a non-empty set Ξ and s ≥ 1. A function ∆b : Ξ× Ξ→ [0, ∞) is
said to be a b-metric if for all κ, ω, z ∈ Ξ

(B1) ∆b(κ, ω) = 0 iff κ = ω;
(B2) ∆b(κ, ω) = ∆b(ω,κ);
(B3) ∆b(κ, z) ≤ s[∆b(κ, ω) + ∆b(ω, z)].

The pair (Ξ, ∆b) is called the b-metric space.

Definition 2. [11] Consider a non-empty set Ξ and α : Ξ× Ξ→ [1, ∞) be a function. A
function ∆e : Ξ× Ξ→ [0, ∞) is said to be extended b-metric if for all κ, ω, z ∈ Ξ

(E1) ∆b(κ, ω) = 0 iff κ = ω;
(E2) ∆b(κ, ω) = ∆b(ω,κ);
(E3) ∆b(κ, z) ≤ α(κ, z)[∆b(κ, ω) + ∆b(ω, z)].

The pair (Ξ, ∆e) is called the extended b-metric space.

Definition 3. [24] Let Ξ be a non-empty set and α, β : Ξ× Ξ→ [1, ∞) be a function. A
function ∆ : Ξ× Ξ→ [0, ∞) is said to be DCMS if for all κ, ω, z ∈ Ξ

(D1) ∆(κ, ω) = 0 iff κ = ω;
(D2) ∆(κ, ω) = ∆(ω,κ);
(D3) ∆(κ, z) ≤ α(κ, ω)∆(κ, ω) + β(ω, z)∆(ω, z).

The pair (Ξ, ∆) is called DCMS.

In DCMS, the Cauchy and convergent sequences are defined as follows.

Definition 4. Let (Ξ, ∆) be a DCMS and {κn}n∈N be a sequence in Ξ, then

(a) A sequence (κn) is called convergent to a point κ ∈ Ξ if, for every ε > 0, there exist a

N = N(ε) such that ∆(κn, κ) < ε for all n ≥ N. Then, we write

lim
n→∞

κn = κ.

(b) A sequence (κn) is said to be Cauchy if, for every ε > 0, there exists N = N(ε) such that
∆(κn, κm) < ε for all m, n ≥ N.

(c) The DCMS (Ξ, ∆) is called complete if every Cauchy sequence is convergent.

Definition 5. Assume (∆, Ξ) be DCMS, κ ∈ Ξ and ε > 0. Then

(a) The open ball is denoted and defined by

B(κ, ε) = {κo ∈ Ξ, ∆(κ, κo) < r }.

(b) The mapping G : Ξ→ Ξ is continuous at point κ ∈ Ξ if, for every ε > 0 and δ > 0, such that

G(B(κ, δ)) ⊆ B(G(κ, γ)).

Definition 6. [18] Let F : R+ → R be a function that satisfies the following conditions:

(F1) F is strictly increasing, i.e., for all κ1, κ2 ∈ R+ with κ1 < κ2 implies F( κ1) < F(κ2).
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(F2) For every sequence (κn) of positive real numbers lim
n→∞

κn = 0 and lim
n→∞

F(κn) = −∞
are equivalent.

(F3) There is θ ∈ (0, 1) so that lim
t→0+

tθ F(κ) = 0.

Let F be the class of all functions that satisfy (F1)–(F3). A self-mapping T : Ξ→ Ξ
is said to be the F-contraction on a metric space (Ξ, ∆) if there is a function F that satisfies
(F1)–(F3) and a constant λ > 0, ∆(Tκ, Tω) > 0,

λ + F(∆(Tκ, Tω)) ≤ F(∆(κ, ω)) for all κ, ω ∈ Ξ.

2. Result on Reich-Type Contraction

In this section, we establish the Reich-type contraction [23] on a double-controlled met-
ric space and provide some new fixed-point results. To further demonstrate the significance
of the established results, we also offer several examples.

Theorem 1. Let (Ξ, ∆) be a CDCMS. Let T : Ξ→ Ξ be self-mapping so that there are
p, q, r ∈ (0, 1) with k = p+q

1−r < 1

∆(Tκ, Tω) ≤ p∆(κ, ω) + q∆(κ, Tκ) + r∆(ω, Tω). (1)

for all κ, ω ∈ Ξ. For κo ∈ Ξ, take Tnκo = κn. Assume that

sup
m≥i

lim
i→∞

α(κi+1,κi+2)β(κi+1,κm)

α(κi,κi+1)
<

1
k

. (2)

Suppose that lim
n→∞

α(κn,κ) and lim
n→∞

β(κ,κn) exist and are finite, and r lim
n→∞

α(κ,κn) < 1

for every κ ∈ Ξ, then T possesses a unique fixed point.

Proof: Let {κn} be a sequence in Ξ such that κn = κn+1 ∀ n ∈ N. If there exist no ∈ N
for which κno+1 = κno , then Tκno = κno and the proof is complete. We suppose that
κn = κn+1 for every n ∈ N, then we have

∆(κn,κn+1) = ∆(Tκn−1, Tκn) ≤ p∆(κn−1, κn) + q∆(κn−1, Tκn−1) + r∆(κn, Tκn)
= p∆(κn−1, κn) + q∆(κn−1, κn) + r∆(κn, κn+1)

(3)

∆(κn,κn+1) ≤
p + q
1− r

∆(κn−1, κn) = k∆(κn−1, κn), (4)

where k = p+q
1−r . Thus, we have

∆(κn,κn+1) ≤ k∆(κn−1, κn) ≤ k2∆(κn−2, κn−1) ≤ . . . ≤ kn∆(κ0, κ1). (5)

For all n, m ∈ N (m > n), we have

∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) + β(κn+1, κm)∆(κn+1, κm)
∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) + β(κn+1, κm)α(κn+1, κn+2)∆(κn+1, κn+2)

+β(κn+1, κm)β(κn+2, κm)∆(κn+2, κm)
∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) + β(κn+1, κm)α(κn+1, κn+2)∆(κn+1, κn+2)
+β(κn+1, κm)β(κn+2, κm)α(κn+2, κn+3)∆(κn+2, κn+3) + β(κn+1, κm)β(κn+2, κm)

β(κn+3, κm)∆(κn+3, κm)
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∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) +
m−2
∑

i=n+1

(
i

∑
j=n+1

β
(
κj, κm

))
α(κi, κi+1)∆(κi, κi+1)

+
m−1
∑

i=n+1
β
(
κj, κm

)
∆(κm−1, κm).

(6)
This implies that

∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) +
m−2
∑

i=n+1

(
i

∑
j=n+1

β
(
κj, κm

))
α(κi, κi+1)∆(κi, κi+1)+

m−1
∑

i=n+1
β
(
κj, κm

)
∆(κm−1, κm)

∆(κn,κm) ≤ α(κn, κn+1)kn∆(κo, κ1) +
m−2
∑

i=n+1

(
i

∑
j=n+1

β
(
κj, κm

))
α(κi, κi+1)ki∆(κo, κ1)+

m−1
∑

i=n+1
β(κm−1, κm)km−1∆(κo, κ1)

∆(κn,κm) ≤ α(κn, κn+1)kn∆(κo, κ1) +
m−1

∑
i=n+1

(
i

∑
j=n+1

β
(
κj, κm

))
α(κi, κi+1)ki∆(κo, κ1)

(7)
Now, let

Sl =
l

∑
i=0

(
i

∑
j=0

β
(
κj, κm

))
α(κi, κi+1)ki∆(κo, κ1). (8)

Consider

vi =

(
i

∑
j=0

β
(
κj, κm

))
α(κi, κi+1)ki∆(κo, κ1). (9)

We have
vi+1

vi
= β(κi+1,κm)

α(κi+1,κi+2)

α(κi,κi+1)
·k. (10)

In view of (2) and the ratio test, we assure that the series ∑i vi converges. Thus, lim
i→∞

sn

exists. Hence {sn} is the real sequence, which is Cauchy.
Now, using (7), we get

∆(κn,κm) ≤ ∆(κo,κ1)[knα(κn,κn+1) + (Sm−1, Sn)]. (11)

In the above, we used α(κ, ω) ≥ 1, and letting n, m→ ∞ in (13), we obtain

lim
n,m→∞

∆(κn,κm) = 0.

So, {κn} is the sequence, which is a Cauchy sequence in CDCMS (Ξ, ∆). So, a point
κ∗ ∈ Ξ so that

lim
n→∞

∆(κn,κ∗) = 0,

i.e., κn → κ∗ as n→ ∞ . Now we need to prove that κ∗ is a fixed point of Ξ. By (1) and
condition (c), we get

∆(κ∗, Tκ∗) ≤ α(κ∗,κn+1)∆(κ∗,κn+1) + β(κn+1, Tκ∗)∆(κn+1, Tκ∗)

∆(κ∗, Tκ∗) = α(κ∗,κn+1)∆(κ∗,κn+1) + β(κn+1, Tκ∗)∆(Tκn, Tκ∗)

∆(κ∗, Tκ∗) ≤ α(κ∗,κn+1)∆(κ∗,κn+1) + β(κn+1, Tκ∗)[p∆(κn,κ∗) + q∆(κn, Tκn)+
r∆(κ∗, Tκ∗)]



Axioms 2022, 11, 573 6 of 17

∆(κ∗, Tκ∗) = α(κ∗,κn+1)∆(κ∗,κn+1) + β(κn+1, Tκ∗)[p∆(κn,κ∗) + q∆(κn,κn+1)+
r∆(κ∗, Tκ∗)].

Taking the limit as n→ ∞ and using 3 and 4, the fact that lim
n→∞

α(κn,κ) and lim
n→∞

β(κ,κn)

exist and are finite.
We have

∆(κ∗, Tκ∗) ≤
[
r lim

n→∞
∆(κn+1, Tκ∗)

]
∆(κ∗, Tκ∗).

Suppose that κ∗ 6= Tκ∗, bearing in mind that
[
r lim

n→∞
∆(κn+1, Tκ∗)

]
< 1, so

0 < ∆(κ∗, Tκ∗) ≤
[
r lim

n→∞
∆(κn+1, Tκ∗)

]
∆(κ∗, Tκ∗) < ∆(κ∗, Tκ∗),

which is a contradiction. Thus, it provides that κ∗ = Tκ∗. The uniqueness of the proof is
obvious. This completes the proof. �

Corollary 1. Let (Ξ, ∆) be a DCMS. Let T : Ξ → Ξ be such that there is µ ∈ (0, 1) and

∆(Tκ, Tω) ≤ µ∆(κ, ω)

For all ∈ Ξ. For κo ∈ Ξ, take Tnκo = κn. Assume that

sup
m≥i

lim
i→∞

α(κi+1,κi+2)β(κi+1,κm)

α(κi,κi+1)
<

1
µ

.

Assume that lim
n→∞

α(κn,κ) and lim
n→∞

β(κ,κn) exist and are finite, and
[
r lim

n→∞
∆(κn+1, Tκ∗)

]
< 1

for every κ ∈ Ξ; then, T has a distinct fixed point.

Proof: Taking p = q = 0 in Theorem 1. �

Example 1. Assume that Ξ = {0, 1, 2}. We define the double-controlled metric as follows:

∆(κ, ω) 0 1 2

0 0 5
3

15
18

1 5
3 0 10

14

2 15
18

10
14 0

where α, β : Ξ× Ξ→ [1, ∞) is defined as

α(κ, ω) 0 1 2

0 0 2 2

1 2 1 2

2 2 2 1

and
β(κ, ω) 0 1 2

0 1
2

3
2

3
2

1 3
2

1
2

3
2

2 3
2

3
2

1
2

Given T : Ξ→ Ξ as T(0) = 2, T(1) = T(1) = 1, and considering p = 4
7 , q = 1

8 , r = 2
5 ,

then it is evident that each condition of Theorem 1 is true, so T has a unique fixed point,
which is 1.
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Example 2. Assume that Y = [0, 1]. Consider the DCMS, which is defined as

∆(κ, ω) = |κ −ω|2.

Choose α(κ, ω) = 1 +κ+ ω and β(κ, ω) = 2{1 + max(κ, ω)} for all κ, ω ∈ Ξ. Take
Tκ = κ2

6 . Consider p = 1
7 , q = 1

8 , r = 2
5 , and also choose κo = 0. Then, clearly all

conditions of Theorem 1 are satisfied and “0” is the unique fixed point of T.

3. Results on (π, F)-Contraction

In this section, we establish the (π, F)-contraction on a double-controlled metric space
and provide some new fixed-point results.

Definition 7. [26] Assume a non-empty set Ξ and π : Ξ× Ξ→ [0, ∞) be given a function. A
self-mapping T on Ξ is called π-admissible if

π(κ, ω) ≥ 1⇒ π(Tκ, Tω) ≥ 1 ∀ κ, ω ∈ Ξ.

Definition 8. Let (Ξ, ∆) be a DCMS. Let T : Ξ→ Ξ is said to be a (π, F)-contraction if there is
some
π : Ξ× Ξ→ [0, ∞) , F ∈ F , λ > 0 so that

λ + π(κ, ω)F(∆(Tκ, Tω)) ≤ F(∆(κ, ω)) (12)

κ, ω ∈ Ξ with ∆(Tκ, Tω) > 0.

Theorem 2. Let (Ξ, ∆) be a DCMS and T : Ξ→ Ξ be a (π, F)-contraction; then, the following
conditions hold:

(a) T is π-admissible.
(b) There is point κo ∈ Ξ so that π(κo, Tκo) ≥ 1.
(c) T is continuous.
(d) For κo ∈ Ξ, define a Picard sequence {κn = Tnκo} such that

sup
m≥i

lim
i→∞

α(κi+1,κi+2)β(κi+1,κm)

α(κi,κi+1)
< 1. (13)

Suppose that lim
n→∞

α(κn,κ) and lim
n→∞

β(κ,κn) exist and are finite for every κ ∈ Ξ; then,

T has a fixed point, which is unique.

Proof: Assume that κo ∈ Ξ be a point such that π(κo, Tκo) ≥ 1. We define {κn} as a
sequence in Ξ such that κn = κn+1 ∀ n ∈ N. If there exists no ∈ N for which κno+1 = κno ,
then Tκno = κno and the proof is finished. We suppose that κn = κn+1 for every n ∈ N
and then by (I) and (II), it is obvious that π(κn, Tκn) ≥ 1. �

Now, for all n ∈ N, we have

λ + F(∆(κn,κn+1)) = λ + F(∆(κn−1, Tκn))

λ + F(∆(κn,κn+1)) ≤ λ + π(κn,κn+1)F(∆(κn−1, Tκn)).

Since T is a (π, F)-contraction, we can write

λ + F(∆(κn,κn+1)) ≤ λ + π(κn,κn+1)F(∆(Tκn−1, Tκn))

λ + F(∆(κn,κn+1)) ≤ F(∆(κn−1,κn)).
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Thus, we get
F(∆(κn,κn+1)) ≤ F(∆(κn−1,κn))− λ

F(∆(κn,κn+1)) ≤ F(∆(κn−2,κn−1))− 2λ

F(∆(κn,κn+1)) ≤ F(∆(κn−3,κn−2))− 3λ
...

F(∆(κn,κn+1)) ≤ F(∆(κo,κ1))− nλ.

Letting n→ ∞ in above, we get lim
n→∞

F(∆(κn,κn+1)) = −∞. By (F2), we get

lim
n→∞

F(∆(κn,κn+1)) = 0

By condition (F3), there is h ∈ (0, 1), such that

lim
n→∞

[∆(κn,κn+1)]
h F(∆(κn,κn+1)) = 0

Now, from (12), we have

(∆(κn,κn+1))
hF(∆(κn,κn+1))− (∆(κn,κn+1))

hF(∆(κo,κn+1)) ≤ −nλ(∆(κn,κn+1))
h ≤ 0.

Taking the limit as n→ ∞ , we obtain

lim
n→∞

[∆(κn,κn+1)]
h = 0

Hence,
lim

n→∞
(n)

1
h ∆(κn,κn+1) = 0

and there exists n1 ∈ N such that (n)
1
h ∆(κn,κn+1) ≤ 1 for all n ≥ n1. So, we have

∆(κn,κn+1) ≤
1

(n)
1
h

n ≥ n1.

Now considering the inequality for q ≥ 1, we have

∆
(
κn,κn+q

)
≤ α(κn, κn+1)∆(κn, κn+1) + β

(
κn+1, κn+q

)
∆
(
κn+1, κn+q

)
∆
(
κn,κn+q

)
≤ α(κn, κn+1)∆(κn, κn+1) + β

(
κn+1, κn+q

)
α(κn+1, κn+2)∆(κn+1, κn+2)

+β
(
κn+1, κn+q

)
β
(
κn+2, κn+q

)
∆
(
κn+2, κn+q

)
∆
(
κn,κn+q

)
≤ α(κn, κn+1)∆(κn, κn+1) + β

(
κn+1, κn+q

)
α(κn+1, κn+2)∆(κn+1, κn+2)

+β
(
κn+1, κn+q

)
β
(
κn+2, κn+q

)
α(κn+2, κn+3)∆(κn+2, κn+3) + β

(
κn+1, κn+q

)
β
(
κn+2, κn+q

)
β
(
κn+3, κn+q

)
∆
(
κn+3, κn+q

)
...

∆
(
κn,κn+q

)
≤ α(κn, κn+1)∆(κn, κn+1) +

n+q−2
∑

i=n+1

(
i

∑
j=n+1

β
(
κj, κn+q

))
α(κi , κi+1)∆(κi , κi+1)

+
n+q−1

∑
i=n+1

β
(
κj, κn+q

)
∆
(
κm−1, κn+q

)
∆
(
κn,κn+q

)
≤ α(κn, κn+1)∆(κn, κn+1) +

n+q−2
∑

i=n+1

(
i

∑
j=n+1

β
(
κj, κn+q

))
α(κi , κi+1)∆(κi , κi+1)

+

(
n+q−1

∑
i=n+1

β
(
κj, κn+q

))
β
(
κn+q−1, κn+q

)
∆
(
κn+q−1, κn+q

)
∆
(
κn,κn+q

)
= α(κn, κn+1)∆(κn, κn+1) +

n+q−1

∑
i=n+1

(
i

∑
j=n+1

β
(
κj, κn+q

))
α(κi , κi+1)∆(κi , κi+1)

∆
(
κn,κn+q

)
≤ α(κn, κn+1)∆(κn, κn+1) +

n+q−1

∑
i=n+1

(
i

∑
j=0

β
(
κj, κn+q

))
α(κi , κi+1)∆(κi , κi+1)
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∆
(
κn,κn+q

)
≤ α(κn, κn+1)∆(κn, κn+1) +

n+q−1

∑
i=n+1

(
i

∑
j=0

β
(
κj, κn+q

))
α(κi , κi+1)

1

(i)
1
k

. (14)

Now consider

n+q−1
∑

i=n+1

(
i

∑
j=0

β
(
κj, κn+q

))
α(κi , κi+1)

1

(i)
1
k
=

n+q−1
∑

i=n+1

1

(i)
1
k

(
i

∑
j=0

β
(
κj, κn+q

))
α(κi , κi+1)

n+q−1
∑

i=n+1

(
i

∑
j=0

β
(
κj, κn+q

))
α(κi , κi+1)

1

(i)
1
k
≤

∞
∑

i=n+1

1

(i)
1
k

(
i

∑
j=0

β
(
κj, κn+q

))
α(κi , κi+1)

n+q−1

∑
i=n+1

(
i

∑
j=0

β
(
κj, κn+q

))
α(κi, κi+1)

1

(i)
1
k
=

∞

∑
i=n+1

UiVi,

where Ui =
1

(i)
1
k

and Vi = α(κi, κi+1)∑i
j=0 β

(
κj, κn+q

)
.

Since 1
k > 0, ∑∞

i=n+1
1

(i)
1
k

converges and also (Vi)i is increasing and bounded above,

thus lim
i→∞
{Vi}, exists, which is non-zero. Hence,

{
∑∞

i=n+1 UiVi
}

n converges.

Now, we assume the partial sum

Sq =
q

∑
j=0

(
i

∑
j=0

β
(
κj, κn+q

))
α(κi, κi+1)

1

(i)
1
k

.

Now, from (14), we have

∆
(
κn,κn+q

)
≤ α(κn, κn+1)∆(κn, κn+1) +

(
Sn+q−1 − Sn

)
(15)

using the condition (13) and by the ratio test, we assure that the existence of lim
n→∞

Sn. Hence,

by the real sequence, {Sn}is a Cauchy.
Now, by taking n→ +∞ in (15), we get lim

n→∞
∆
(
κn,κn+q

)
= 0. Hence, {κn} is a

Cauchy sequence in (Ξ, ∆), which is complete, so {κn} converges to some u ∈ Ξ. We claim
that Tu = u. Since

κn → u as n→ ∞ and T is continuous, we have Tκn → Tu as n→ ∞ . Hence, we have

∆(u, Tu) = lim
n→∞

∆(κn+1, Tu) = lim
n→∞

∆(Tκn, Tu) = 0

and hence Tu = u. Thus, u is a fixed point of T. It is obvious that it is unique.

Corollary 2. Let (Ξ, ∆) be a CDCMS, and let T : Ξ→ Ξ be continuous, so that

λ + π(κ, ω)F(∆(Tκ, Tω)) ≤ F(∆(κ, ω))

κ, ω ∈ Ξ. For κo ∈ Ξ, take {κn = Tnκo}. Suppose that

sup
m≥i

lim
i→∞

α(κi+1,κi+2)β(κi+1,κm)

α(κi,κi+1)
< 1.

Suppose that lim
n→∞

α(κn,κ) and lim
n→∞

β(κ,κn) exist and are finite for every ∈ Ξ; then, T
has a unique fixed point.

Proof: Taking α, β : Ξ× Ξ→ [1, ∞) for all κ, ω ∈ Ξ by α(κ, ω) = 1 in Theorem 2. �



Axioms 2022, 11, 573 10 of 17

Corollary 3. Let (Ξ, ∆) be a complete extended b-metric space and let T : Ξ→ Ξ be continuous α-
admissible and (α, F)-contraction so that there is κo ∈ Ξ in order that α(κo, Tκo) ≥ 1. Suppose that

sup
m≥i

lim
i→∞

α(κi+1,κi+2)β(κi+1,κm)

α(κi,κi+1)
< 1.

In addition, lim
n→∞

α(κn,κ) and lim
n→∞

β(κ,κn) exist and are finite for every ∈ Ξ, so T has

a unique fixed point.

Corollary 4. Let (Ξ, ∆) be a complete b-metric space. Let T : Ξ→ Ξ be continuous α-admissible
and (α, F)-contraction so that there is κo ∈ Ξ in order that α(κo, Tκo) ≥ 1. Then, T possesses a
unique fixed point.

Proof: Taking α, β : Ξ× Ξ→ [1, ∞) for all κ, ω ∈ Ξ by α(κ, ω) = α(ω, z) in Theorem 2.
�

Corollary 5. Let (Ξ, ∆) be a complete metric space, and let T : Ξ→ Ξ be continuous α-admissible
and (α, F)-contraction so there is a point κo ∈ Ξ in order that α(κo, Tκo) ≥ 1. Then, T possesses a
unique fixed point.

Proof: Taking α, β : Ξ×Ξ→ [1, ∞) for all κ, ω ∈ Ξ by α(κ, ω) = β(κ, ω) = 1 in Theorem 2.
�

4. Fixed-Point Results in Partially Ordered Double-Controlled Metric Spaces

In this section, we provide some new fixed-point results in the context of partially
ordered double-controlled metric spaces. To further demonstrate the significance of the
established results, we also offer several examples.

Definition 9. Consider X to be a non-empty set. If (Ξ, ∆) is a DCMS and (Ξ,≺) is a partially
ordered set, then (Ξ, ∆,≺) is called a partially ordered double-controlled metric space. Then,
κ1,κ2 ∈ Ξ are said to be comparable if κ1 ≺ κ2 and κ2 ≺ κ1 holds.

Theorem 3. Assume (Ξ, ∆,≺) is called a partially ordered double-controlled metric space. Let
T : Ξ→ Ξ be an increasing mapping. Assume that there exists κo ≺ T(κo) and define the
sequence {κn} by κ1 = T(κo), κ2 = T(κ1), κ3 = T(κ2), . . . κn = T(κn−1). Suppose there
exists a function µ : [1, ∞)→ [0, k) where 0 < k < 1, satisfying µ(κn)→ 1 implies κn → 0
such that

∆(T(κ), T(ω)) ≤ µ(∆(κ, ω))∆(κ, ω) for each ∈ Ξ with κ ≺ ω. (16)

Assume that T is continuous or Ξ is such that:
If a sequence (κn)→ κ is an increasing sequence, then κn ≺ κ ∀ n. Moreover, if for each
κ, ω ∈ Ξ there exists z ∈ Ξ, which is comparable to κ and ω.

In addition, for every κ ∈ Ξ, we have

lim
n→∞

α(κn+1,κ) and lim
n→∞

α(κ,κn+1), lim
n→∞

β(κn+1,κ) and lim
n→∞

β(κ,κn+1), (17)

which exist and are finite. Suppose that

sup
m≥i

lim
i→∞

α(κi+1,κi+2)

α(κi,κi+1)
β(κi+1,κm) <

1
k

(18)

then T has a unique fixed point.
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Proof: Since κo ≺ T(κo) and T is an increasing function, then by induction, we obtain
κo ≺ T(κo) ≺ T2(κo) ≺ T3(κo). . . ≺ Tn(κo) ≺ Tn+1(κo). We denote Tn(κo) = κn,
n = 1,2, . . . �

Since κn ≺ κn+1 for each n ∈ N, then by (1), we get

∆(κn+1,κn+2) = ∆
(
Tn+1(κo), Tn+2(κo)

)
∆(κn+1,κn+2) ≤ µ(∆(κn,κn+1))∆(κn,κn+1)

∆(κn+1,κn+2) ≤ k∆(κn,κn+1)

∆(κn+1,κn+2) ≤ k2∆(κn−1,κn)
...

∆(κn+1,κn+2) ≤ kn∆(κ0,κ1).

(19)

Therefore, we can conclude from (19) that

lim
n→∞

∆(κn,κn+1) = 0

Now we show that {κn} is a Cauchy sequence. Now, using triangular inequality,

∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) + β(κn+1, κm)∆(κn+1, κm)

∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) + β(κn+1, κm)α(κn+1, κn+2)∆(κn+1, κn+2)

+β(κn+1, κm)β(κn+2, κm)∆(κn+2, κm)

∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) + β(κn+1, κm)α(κn+1, κn+2)∆(κn+1, κn+2)

+β(κn+1, κm)β(κn+2, κm)α(κn+2, κn+3)∆(κn+2, κn+3)+

β(κn+1, κm)β(κn+2, κm)

β(κn+3, κm)∆(κn+3, κm)

...

∆(κn,κm) ≤ α(κn, κn+1)∆(κn, κn+1) +
m−2
∑

i=n+1

(
i

∑
j=n+1

β
(
κj, κm

))
α(κi, κi+1)∆(κi, κi+1)

+
m−1
∑

i=n+1
β(κi, κm)∆(κm−1, κm)

∆(κn,κm) ≤ α(κn, κn+1)kn∆(κ0, κ1) +
m−2
∑

i=n+1

(
i

∑
j=n+1

β
(
κj, κm

))
α(κi, κi+1)ki∆(κ0, κ1)+

m−1
∑

i=n+1
β(κi, κm)km∆(κ0, κ1)

∆(κn,κm) ≤ α(κn, κn+1)kn∆(κo, κ1) +
m−1

∑
i=n+1

(
i

∑
j=n+1

β
(
κj, κm

))
α(κi, κi+1)ki∆(κo, κ1)

∆(κn,κm) ≤ α(κn, κn+1)kn∆(κo, κ1) +
m−1

∑
i=n+1

(
i

∑
j=0

β
(
κj, κm

))
α(κi, κi+1)ki∆(κo, κ1).

(20)
We denote

ψs =
s

∑
i=0

(
i

∑
j=0

β
(
κj, κm

))
α(κi, κi+1)ki∆(κo, κ1).
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Then from (20), we have

∆(κn,κm) ≤ ∆(κo, κ1)[kn∆(κn, κn+1) + (ψm−1 − ψn)]. (21)

Using (17) and by taking into account (17) and (18), we deduce that lim
n→∞

ψs exists and is

finite. The sequence {ψs}is a Cauchy sequence. Hence, if we take the limit in the inequality
(21) as n, m → ∞ , we conclude that

lim
n, m→∞

∆(κn,κm) = 0.

which affirms that {κn} is a Cauchy sequence in the complete partially ordered double-
controlled metric space (X, d, ≺), and then {κn} converges to some point κ ∈ Ξ.

Now we need to prove that κ is a fixed point of T. Since T is continuous, we have

κ = lim
n→∞

κn = lim
n→∞

Tn(κo) = lim
n→∞

Tn+1(κo) = T
(

lim
n→∞

Tn(κo)
)
= T(κ).

Then, κ is a fixed point of T.

Uniqueness:

Let u be another fixed point of T. Then,

∆(κ, u) = ∆(T(κ), T(u)) ≤ µ(∆(κ, u))∆(κ, u).

which holds unless ∆(κ, u) = 0, and then κ = u; hence, T has a fixed point, which is unique.

Example 3. Assume that Ξ = { 1, 2, 3}. We define the double control metric d : X× X → R
as follows:

d(1, 1) = d(2, 2) = d(3, 3) = 0, d(1, 2) = d(2, 1) = 5et,

d(2, 3) = d(3, 2) = 2et, d(1, 3) = d(3, 1) = et,

where α, β : Ξ× Ξ→ [1, ∞) is defined as
α(κ, ω) 1 2 3

1 0 4 4

2 4 1 4

3 4 4 1

and
β(κ, ω) 1 2 3

1 1
2

6
4

6
4

2 6
4

1
2

6
4

3 6
4

6
4

1
2

Given T : Ξ→ Ξ as T(1) = 1, T(2) = 3, T(3) = 1, with partial order

≺= {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}

and considering p = q = 1
4 , r = 1

5 , then it is evident that each condition of Theorem 3 is
true, so T has a unique fixed point, which is 1.

5. Fractional Differential Equation

Let C1−ϑ(J,R) =
{

f ∈ C(0, T],R) : t1−ϑ ∈ C(J,R)
}

. We define the following
weight norm:

‖ f ‖ = max
[0,T]

t1−ϑ|κ(t)|.
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Theorem 4. Let ϑ ∈ (0, 1), f ∈ C(J ×R,R) increasing and Λ : [0, ∞)→ [0, k) where 0 < k <
1. In addition, we assume the following hypothesis:

(a) | f (κ1(t), ω1(t))− f (κ2(t), ω2(t))| ≤ Γ(2ϑ)
Tϑ Λ

(
t1−ϑ(v1 − v2)

)
|v1 − v2|

(b) Γ(2ϑ)
Tϑ ≤ 1

k .

Then the problem P has a unique solution.

Proof: Problem P is equivalent to the problem Mκ = κ, where

Mκ(t) = rt1−ϑ +
1

Γ(ϑ)

t∫
0

(t− s)ϑ−1Fκ(s)∆s.

�
In fact, proving that the operator T has a fixed point is sufficient to say that problem

M has a unique solution. We use Banach fixed-point theorem. Therefore, we need to check
that hypothesis in Theorem 3 is satisfied.
Indeed A = C1−ϑ(J,R) is a partially ordered set. Now, if we define the following order
relation in A,

U, V ∈ C1−ϑ(J,R), U ≤ V iff U(t) ≤ V(t) ∀ t ∈ J.

In addition, (A, ∆) is a complete metric space. If we choose

∆(κ, ω) = max
[0,T]

t1−ϑ|κ(t)−ω(t)|2, κ, ω ∈ C1−ϑ(J,R).

the mapping M is increasing, since f is increasing.
Now we can prove M is a contraction map. Let κ, ω ∈ C1−ϑ(J,R), 0 < ϑ < 1.

‖Mκ −Mω‖ = 1
Γ(ϑ)

max
t∈[0,T]

t1−ϑ

t∫
0

(t− s)ϑ−1| f (t,κ(s))− f (t, ω(s))|2∆s.

Since
‖Mκ −Mω‖ = max t1−ϑ|κ(s)−ω(s)|2

then
|κ(s)−ω(s)|2 = ‖κ(s)−ω(s)‖max sϑ−1.

Subsequently, using the first hypothesis of the theorem, we get

‖Mκ −Mω‖ ≤ 1
Γ(ϑ) max

t∈[0,T]
t1−ϑ

t∫
0
(t− s)ϑ−1 Γ(2ϑ)

Γ(ϑ) Λ
(

sϑ−1|κ(s)−ω(s)|2
)
|κ(s)−κ(s)|2

‖Mκ −Mω‖ = 1
Γ(ϑ) max

t∈[0,T]
t1−ϑ

t∫
0
[(t− s)ϑ−1 Γ(2ϑ)

Γ(ϑ) Λ
(
s1−ϑ‖κ(s)−ω(s)‖max sϑ−1)

‖κ(s)−ω(s)‖2max sϑ−1]∆s

‖Mκ−Mω‖ ≤ 1
Γ(ϑ)

max
t∈[0,T]

t1−ϑ‖κ(s)−ω(s)‖ Λ(‖κ(s)−ω(s)‖)Γ(2ϑ)

Γ(ϑ)

t∫
0

(t− s)ϑ−1sϑ−1∆s.

From the Riemann–Liouville fractional integral, we have∫ t

0
[(t− s)ϑ−1sϑ−1∆s =

Γ(2ϑ)

Γ(ϑ)
(t)2ϑ−1.
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Therefore, we have

‖Mκ −Mω‖ ≤ Λ(‖κ(s)−ω(s)‖)‖κ(s)−ω(s)‖.

6. Monotone Iterative Method

First, we present the following hypothesis:

Hypothesis 1.

(1) L(t) = L, t ∈ Jor
(2) The function L is non-constant on J and

(ϑ)(ϑ)

Γ(2ϑ)
max|L(t)| < 1 Only if ϑ ∈

(
0, 1

2

)
.

Next, we present the following consequence of Theorem 4.

Lemma 1. If ϑ ∈
(

0, 1
2

)
, L ∈ C(J,R), z ∈ C1−ϑ(J,R), and hypothesis 1 holds, the problem P

has a unique solution.

Hypothesis 2.

(1) L(t) = L, t ∈ J or
(2) The function L is non-constant and if L(t) is negative, then there existsLnon-decreasing where

−L(t) ≤ L(t)on J and for every∈ J, we have

1
Γ(ϑ)

∫ a

0
(a− τ)ϑ−1L(t)∆τ < 1.

Now, we prove the following lemma to fulfill our requirements.

Lemma 2. Assume that ϑ ∈
(

0, 1
2

)
, and L ∈ C(J, [0, ∞ )) orL ∈ C(J, (−∞, 0] ). Assume that

q ∈ C1−ϑ((J, R)) is the solution of following problem:

Dϑq(t) ≤ −L(t)q(t), t ∈ J0q(0) < 0. (22)

If hypothesis 2 holds, then q(t) ≤ 0 for all t ∈ J.

Proof: Contrarily assume that there exists κ, ω ∈ (−∞, a] such that q(κ) = 0, q(ω) > 0
and q(t) ≤ 0 for t ∈ (0,κ] ; q(t) > 0 and for t ∈ (κ, ω] . Let κo be the first maximal point of
q on [κ, ω]. �

Case 1. Consider L(t) ≥ 0 for all t ∈ J. Therefore, Dϑ,ρq(t) ≤ 0 for t ∈ [κ, ω]. Hence∫ κo

κ
Dϑq(t) ≤ 0.

Therefore, B ≡ I1−ϑq(κo)− I1−ϑq(κo) ≤ 0. However,

B = 1
Γ(1−ϑ)

[
κo∫
0
(κo − τ)−ϑq(τ)∆τ −

κ∫
0
(κo − τ)−ϑq(τ)∆τ

]

B = 1
Γ(1−ϑ)

{
κo∫
0

[
(κo − τ)−ϑ − (κ − τ)−ϑ

]
q(τ)∆τ +

κo∫
0
(κo − τ)−ϑq(τ)∆τ

}
B ≥ 1

Γ(1−ϑ)

κo∫
0
(κo − τ)−ϑq(τ)∆τ > 0.

which contradicts the fact that B ≤ 0.
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Case 2. Assume that L(t) ≥ 0 for all t ∈ J. Consider L to be non-decreasing on J. Now, if we apply
Iϑ on problem (22), we obtain

q(t)− q(0)
tϑ−1

Γ(ϑ)
≤ −Iϑ[L(t)q(t)] for t ∈ [κ, κ0].

Notice that q(0) tϑ−1

Γ(ϑ) ≤ 0, and that is due to the fact that q(0) ≤ 0. Thus,

q(κo) ≤ − 1
Γ(ϑ)

κo∫
0
(κo − τ)ϑ−1L(τ)q(τ)∆τ

q(κo) = − 1
Γ(ϑ)

[
κ∫
0
(κo − τ)ϑ−1L(τ)q(τ)∆τ +

κo∫
0
(κo − τ)ϑ−1L(τ)q(τ)∆τ

]
q(κo) < − q(κo)

Γ(ϑ)

κo∫
0
(κo − τ)ϑ−1L(τ)q(τ)∆τ.

Let σ = τ
κo

q(κo) = − q(κo)κϑ
o

Γ(ϑ)

1∫
0
(1− τ)ϑ−1L(σκo)∆σ

q(κo) ≤ q(κo)κϑ
o

Γ(ϑ)

1∫
0
(1− τ)ϑ−1 L̃(σa)∆σ

q(κo) =
q(κo)κϑ

o
Γ(ϑ)aϑ

1∫
0
(a− τ)ϑ−1 L̃(τ)∆τ

q(κo) ≤ q(κo)
Γ(ϑ)

a∫
0
(a− τ)ϑ−1 L̃(τ)∆τ.

Hence,

q(κo)

[
1− 1

Γ(ϑ)

∫ a

0
(a− τ)ϑ−1 L̃(τ)∆τ

]
≤ 0.

Using hypothesis 2, this implies that q(κo) ≤ 0, and it completes our proof by leading
us to a contradiction.

Now we say that ω is a lower solution of problem (P), if

Dϑω(t) ≤ Fω(t), t ∈ Jo; ω̃(0) ≤ 0,

We say that ω is an upper solution of problem (P), if

Dϑω(t) ≥ Fω(t), t ∈ Jo; ω̃(0) ≤ 0,

Now we define the following hypothesis:

Hypothesis 3. There exists a function L ∈ C(J,R), where

|g(t,κ1,κ2)− g(t, ω1, ω2)| ≤ L(t)|ω1 −κ1|,

whenever κo ≤ κ1 ≤ ω1 ≤ ωo, κ2 ≤ ω2.

Theorem 5. Assume that κ0 is a lower solution of problem (P) , and ω0 is an upper solution of
problem (P), where κ0, ω0 ∈ C1−α(J, R). Moreover, assuming that hypotheses 6.1, 6.2, and 6.3
hold, the problem (P) has solutions in

[κ0, ω0] = {y ∈ C1−α(J, R),κ0(t) ≤ ω(t) ≤ ω0(t), t ∈ J0, κ̃0(0) ≤ ω̃(0) ≤ ω̃0(0)}

Proof: By using Lemmas 1 and 2, we can prove in a similar way to Theorem 1 in [27]. �
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7. Conclusions

In this manuscript, we proved the uniqueness and existence of fixed-point theorems
for a contractive mapping in DCMSs and partially ordered DCMSs, using Reich-type and
(α, F)-contractions. Several non-trivial examples are also provided to show the validity of
our main results. We were also able to use our results to show that the fractional differential
equation has a solution. Moreover, we also used the monotone iterative method to find the
existence of a solution. This work can extend the context of triple-controlled metric-type
spaces, complex valued triple-controlled type metric spaces, double-controlled fuzzy metric
spaces, and pentagonal fuzzy-controlled metric spaces.
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28. Huang, H.; Zoto, K.; Mitrović, Z.D.; Radenović, S. Fixed Point Results for Generalized F-Contractions in b-Metric-like Spaces.

Fractal Fract. 2022, 6, 272. [CrossRef]
29. Saleem, N.; Ishtiaq, U.; Guran, L.; Bota, M.F. On Graphical Fuzzy Metric Spaces with Application to Fractional Differential

Equations. Fractal Fract. 2022, 6, 238. [CrossRef]
30. Saleem, N.; Javed, K.; Uddin, F.; Ishtiaq, U.; Ahmed, K.; Abdeljawad, T.; Alqudah, M.A. Unique solution of integral equations via

intuitionistic extended fuzzy b-metric-like spaces. Comp. Model. Eng. Sci. 2022, 135, 23. [CrossRef]
31. Asjad, M.I.; Faridi, W.A.; Al-Shomrani, M.M.; Yusuf, A. The generalization of Hermite-Hadamard type Inequality with exp-

convexity involving non-singular fractional operator. AIMS Math. 2022, 7, 7040–7055. [CrossRef]
32. Asjad, M.I.; Faridi, W.A.; Jhangeer, A.; Abu-Zinadah, H.; Ahmad, H. The fractional comparative study of the non-linear directional

couplers in non-linear optics. Results Phys. 2021, 27, 104459. [CrossRef]
33. Ishtiaq, U.; Javed, K.; Uddin, F.; Sen, M.D.L.; Ahmed, K.; Ali, M.U. Fixed point results in orthogonal neutrosophic metric spaces.

Complexity 2021, 2021, 2809657. [CrossRef]

http://doi.org/10.1155/2020/2108167
http://doi.org/10.1186/1687-1812-2012-94
http://doi.org/10.1186/1687-1812-2013-277
http://doi.org/10.1134/S1995080219020094
http://doi.org/10.2298/FIL1406143M
http://doi.org/10.3390/math6120320
http://doi.org/10.1016/j.na.2011.10.014
http://doi.org/10.1016/j.aml.2012.10.002
http://doi.org/10.1155/2022/1491683
http://doi.org/10.3390/fractalfract6050272
http://doi.org/10.3390/fractalfract6050238
http://doi.org/10.32604/cmes.2022.021031
http://doi.org/10.3934/math.2022392
http://doi.org/10.1016/j.rinp.2021.104459
http://doi.org/10.1155/2021/2809657

	Introduction and Preliminaries 
	Result on Reich-Type Contraction 
	Results on (, F)-Contraction 
	Fixed-Point Results in Partially Ordered Double-Controlled Metric Spaces 
	Fractional Differential Equation 
	Monotone Iterative Method 
	Conclusions 
	References

