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Hermite–Hadamard Type Inequalities
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m_amer_latif@hotmail.com or mlatif@kfu.edu.sa

Abstract: Throughout this study, the concept of symmetrized harmonically convex stochastic pro-
cesses will be discussed in further detail. Some certain characterizations for symmetrized harmon-
ically convex stochastic processes are discussed that use Hermite–Hadamard-type inequalities. A
Hyers–Ulam-type stability result for harmonically convex stochastic processes is given as well.
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1. Introduction

Nikodem [1] proposed the concept of convex stochastic processes in 1980.
Skowroński [2] then extended the well-known characteristics of convex functions to convex
stochastic processes. Kotrys [3] proved the Hermite–Hadamard inequality using convex
stochastic processes in his study. A number of scholars have examined numerous integral
inequalities in recent papers on convex stochastic processes. In [4], Agahi and Babakhani
studied fractional inequalities related to the Hermite–Hadamard and Jensen types for
convex stochastic processes. Kotrys [3] obtained the Hermite–Hadamard inequality for
convex stochastic processes. In another study, Kotrys [5] discussed properties of strongly
convex stochastic processes. Li and Hao [6] acquired the Hermite–Hadmard inequality
for h-convex stochastic processes. Dragomir [7] defined symmetrized convex functions
and highlighted their several features. Haq and Kotrys [8] introduced the concept of sym-
metrized convex stochastic processes and analyzed the Hermite–Hadmard-type inequalities
in the perspective of the preceding papers. Additionally, Haq and Kotrys [8] addressed
various ways of characterizing symmetrized convex stochastic processes. Okur et al. [9]
extended a well-known work on harmonically convex functions to harmonically convex
stochastic processes. In addition, the authors intended to find Hermite–Hadmard-type in-
equalities for harmonically convex stochastic processes. Following the prior studies on this
topic, we introduce the concept of symmetrized harmonically convex stochastic processes
and investigate the Hermite–Hadmard-type inequalities for symmetrized harmonically
convex functions as well as their applications. In this study, we also describe a number of
characterizations of harmonic symmetrized convex stochastic processes.

2. Preliminaries Section

Let (Λ,F ,P) be an arbitrary probability space. A function H : Λ → R is a random
variable if it is F -measurable. Let I ⊂ R be an interval. A function H : I ×Λ → R is a
stochastic process if the functionH(ν, ·) is a random variable for all ν ∈ I .

Definition 1 ([8]). A stochastic processH : I ×Λ→ R is said to be continuous in probability in
I , if for all ν0 ∈ I

P − lim
ν→ν0
H(ν, ·) = H(ν0, ·),

where P − lim denotes the limit in probability.
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Definition 2 ([8]). A stochastic processH : I ×Λ→ R is said to be mean-square continuous in
I , if for every ν0 ∈ I

lim
ν→ν0

E
[
(H(ν)−H(ν0))

2
]
= 0,

where E[H(ν)] denotes the expectated value of the random variableH(ν, ·).

To be clear, it is important to note that mean-square continuity of H : I × Λ → R
implies probability continuity but the converse does not hold true.

To refresh our memory, let us have a look at the mean-square integral.

Definition 3 ([8]). For any normal sequence of partitions [α1, α2] ⊂ I , a random variable Y :
Λ → R is called the mean-square integral of the stochastic process H : I × Λ → R with
E
[
(H(ν))2

]
< ∞, if the condition

lim
n→∞

E

( n

∑
k=1
H(xk)(νk − νk−1)−Y

)2
 = 0

holds, where xk ∈ [νk−1, νk], k = 1, 2, 3, ..., n and α1 = ν0 < ν1 < ν2 < · · · < νn = α2 is the
partition of [α1, α2]. In this case, we can write∫ α2

α1

H(ν, ·)dν = Y(·) (a.e.).

Remark 1. A stochastic process must have mean-square continuity in order for the mean-square
integral to exist. The following inference follows directly from the concept of a mean-square integral.
If for all ν ∈ [α1, α2] the inequalityH(ν, ·) ≤ Y(ν, ·) (a.e.) holds, then∫ α2

α1

H(ν, ·)dν ≤
∫ α2

α1

Y(ν, ·)dν (a.e.).

This shows that the mean-square integral satisfies the monotonocity property.

The monotonicity of mean-square integrals and the positivity of stochastic processes
will be used extensively throughout this paper.

The proof of the following Lemma exists in [8].

Lemma 1 ([8]). LetH : I ×Λ→ R be a mean-square continuous in I stochastic process, and let
ν ∈ [α1, α2] ⊂ I . The following condition holds∫ −α2+n

−α1+n
H(ν, ·)dν = −

∫ α2

α1

H(−ν + n, ·)dν (a.e.) (1)

for every n ∈ R.

We also need the following lemma to prove our results.

Lemma 2. Let H : I × Λ → R be a mean-square continuous in I stochastic process, and let
ν ∈ [α1, α2]\{0} ⊂ I . The following condition holds

∫ α2
−1+nα2

α1
−1+nα1

H(ν, ·)
ν2 dν = −

∫ α2

α1

H
(

ν
−1+nν , ·

)
ν2 dν (a.e.) (2)

for every n ∈ R.
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Proof. By making use of the change of u = ν
−1+nν for every ν ∈ [α1, α2]\{0}. We obtain

1
u = − 1

ν + n or every ν ∈ [α1, α2]\{0}.
Hence ∫ α2

α1

H
(

ν
−1+nν , ·

)
ν2 dν = −

∫ α2
−1+nα2

α1
−1+nα1

H(u, ·)
u2 du.

Thus, the result is achieved.

We recall the definition of a convex stochastic process

Definition 4 ([1]). A convex stochastic process. H : I ×Λ → R is convex, if for all σ ∈ [0, 1]
and ν1, ν2 ∈ I the following inequality holds

H(σν1 + (1− σ)ν2, ·) ≤ σH(ν1, ·) + (1− σ)H(ν2, ·) (α1.e.). (3)

If the above inequality (3) holds for every ν1, ν2 ∈ I and σ = 1
2 , then H is known as

Jensen-convex or 1
2 -convex. A stochastic processH is said to be concave if (−H) is convex.

Haq and Kotrys [8] defined the symmetrical form of a stochastic process as follows:

Definition 5. A symmetrical form of a stochastic processH : [α1, α2]×Λ→ R denoted byH is
defined as

H(ν, ·) = 1
2
[H(ν, ·) +H(α1 + α2 − ν, ·)] (a.e.).

The notion of a symmetrized convex stochastic process is given in the definition below:

Definition 6 ([8]). A stochastic processH : [α1, α2]×Λ→ R is symmetrized convex (concave)
on the interval [α1, α2], if its symmetrical formH is convex (concave).

It is observed that every convex stochastic process is symmetrized convex, but there
exists a stochastic processH which is not convex on [α1, α2], whereas its symmetrical form
is convex (see for instance [7]).

The well-known Hermite–Hadmard integral inequality for convex stochastic processes
was proved by Kotrys in [3]:

Theorem 1 ([3]). IfH : I ×Λ→ R is Jensen-convex and mean square continuous in the interval
I ×Λ, then for any α1, α2 ∈ I with α1 < α2 we have

H
(

α1 + α2

2
, ·
)
≤ 1

α2 − α1

∫ α2

α1

H(ν, ·)dν ≤ H(α1, ·) +H(α2, ·)
2

(a.e.). (4)

Haq and Kotrys [8] investigated with a counterpart of the Hermite–Hadmard inequal-
ity for symmetrized convex stochastic processes.

Theorem 2 ([8]). If H : I ×Λ → R is be a symmetrized convex and mean-square continuous
stochastic process, then the inequality holds

H
(

α1 + α2

2
, ·
)
≤ 1

α2 − α1

∫ α2

α1

H(ν, ·)dν ≤ H(α1, ·) +H(α2, ·)
2

(a.e.). (5)
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3. Hermite–Hadmard-Type Inequalities and Symmetrized Harmonic Convex
Stochastic Process

It is our primary goal to discuss both the notion of the harmonic symmetrized form
of stochastic processes and the inequalities of the Hermite–Hadmard-type that we will
obtain as an application of the harmonic symmetrized stochastic processes. We also discuss
the separation theorem for harmonically convex stochastic processes and the Hyers–Ulam
stability of these stochastic processes as a result of the separation theorem. We construct
Hyers–Ulam stability conditions for symmetrized harmonically convex stochastic processes
by making use of this separation theorem.

Okur et al. [9] extended some results concerning harmonically convex functions to har-
monically convex stochastic processes and obtained Hermite–Hadmard-type inequalities
for harmonically convex stochastic processes.

Definition 7 ([9]). Let I ⊆ R\{0}. A stochastic processH : I ×Λ→ R is said to be harmoni-
cally convex stochastic process, if

H
(

ν1ν2

σν1 + (1− σ)ν2
, ·
)
≤ (1− σ)H(ν1, ·) + σH(ν2, ·) (a.e.)

for all ν1, ν2 ∈ I and σ ∈ [0, 1]. If the inequality above is reversed, then H is said to be
harmonically concave.

The following result of the Hermite–Hadmard-type inequalities holds.

Theorem 3 ([9]). Let I ⊆ R\{0} and H : I × Λ → R be a harmonically convex stochastic
process α1,α2 ∈ I with α1 < α2. IfH ∈ L([α1, α2]), then the following inequalities hold

H
(

2α1α2

α1 + α2
, ·
)
≤ α1α2

α2 − α1

∫ α2

α1

H(ν, ·)
ν2 dν ≤ H(α1, ·) +H(α2, ·)

2
(a.e.). (6)

In what follows, we denote the symmetrical form of a harmonically convex stochastic
processH : [α1, α2]\{0} ×Λ→ R byH and is defined as follows:

H(ν, ·) = 1
2

[
H(ν, ·) +H

(
α1α2ν

(α1 + α2)ν− α1α2
, ·
)]

(a.e.) (7)

for all ν ∈ [α1, α2]\{0}.

Lemma 3. If H : [α1, α2]\{0} × Λ → R is a harmonically convex stochastic process, then
H : [α1, α2]\{0} ×Λ→ R is a harmonically convex stochastic process.
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Proof. Let σ ∈ [0, 1] and ν1, ν2 ∈ [α1, α2]\{0}, then

H
(

ν1ν2

σν2 + (1− σ)ν1
, ·
)

=
1
2

[
H
(

ν1ν2

σν2 + (1− σ)ν1
, ·
)
+H

(
1

1
α1

+ 1
α2
− σ 1

ν1
− (1− σ) 1

ν2

, ·
)]

=
1
2

[
H
(

ν1ν2

σν2 + (1− σ)ν1
, ·
)

+H

 1

σ
(

1
α1

+ 1
α2
− 1

ν1

)
+ (1− σ)

(
1
α1

+ 1
α2
− 1

ν2

) , ·


≤ 1

2
[σH(ν1, ·) + (1− σ)H(ν2, ·)

+σH
(

α1α2ν1

(α1 + α2)ν1 − α1α2
, ·
)
+ (1− σ)H

(
α1α2ν2

(α1 + α2)ν2 − α1α2
, ·
)]

= σ
1
2

[
H(ν1, ·) +H

(
α1α2ν1

(α1 + α2)ν1 − α1α2
, ·
)]

+ (1− σ)
1
2

[
H(ν2, ·) +H

(
α1α2ν2

(α1 + α2)ν2 − α1α2
, ·
)]

= σH(ν1, ·) + (1− σ)H(ν2, ·) (a.e.).

Thus, the result is established.

The discussion presented above leads us to introduce the following definition of the
symmetrized harmonically convex stochastic process.

Definition 8. A stochastic process H : [α1, α2]\{0} × Λ → R is symmetrized harmonically
convex (concave) on an interval [α1, α2]\{0}, if its symmetrical form H is harmonically convex
(concave) on [α1, α2]\{0}.

We conclude, that every harmonically convex stochastic process is symmetrized har-
monically convex. The following example illustrates that there are stochastic processes
which are not harmonically convex, but their symmetrical form is harmonically convex.

Example 1. LetH : [1, 2]×Λ→ R be defined asH(u, ·) = u3, thenH(u, ·) is not harmonically
convex on [1, 2], whereas its symmetrical formH : [α1, α2]\{0} ×Λ→ R given by

H(ν, ·) = 1
2

[
H(u, ·) +H

(
α1α2u

(α1 + α2)u− α1α2
, ·
)]

=
9u4(3u2 − 6u + 4

)
2(3u− 2)3

is harmonically convex as evident from the Figures 1 and 2.

0.2 0.4 0.6 0.8 1.0

2

4

6

8

Figure 1. The graph shows that X(u, ·) = u3 is not harmonically convex on [1, 2].
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0.2 0.4 0.6 0.8 1.0

2.5

3.0

3.5

4.0

4.5

Figure 2. The graph shows that X̆(u, ·) = u3 is not harmonically convex on [1, 2].

Theorem 4. LetH : [α1, α2]\{0} ×Λ→ R be a symmetrized harmonically convex, mean-square
continuous stochastic process. The following inequality holds

H
(

2α1α2

α1 + α2
, ·
)
≤ α1α2

α2 − α1

∫ α2

α1

H(ν, ·)
ν2 dν ≤ H(α1, ·) +H(α2, ·)

2
(a.e.). (8)

Proof. Since H is a symmetrized convex process, its symmetrical form is harmonically
convex. By inequality (6), we obtain

H
(

2α1α2

α1 + α2
, ·
)
≤ α1α2

α2 − α1

∫ α2

α1

H(ν, ·)
ν2 dν ≤ H(α1, ·) +H(α2, ·)

2
(a.e.). (9)

By the harmonically symmetrical form ofH, we have

H
(

2α1α2

α1 + α2
, ·
)
=

1
2

H( 2α1α2

α1 + α2
, ·
)
+H

 α1α2

(
2α1α2
α1+α2

)
(α1 + α2)

(
2α1α2
α1+α2

)
− α1α2

, ·


= H

(
2α1α2

α1 + α2
, ·
)

(a.e.)

and

H(α1, ·) +H(α2, ·)
2

=

1
2

[
H(α1, ·) +H

(
α2

1α2
(α1+α2)α1−α1α2

, ·
)]

+ 1
2

[
H(α2, ·) +H

(
α1α2

2
(α1+α2)α2−α1α2

, ·
)]

2

=
H(α1, ·) +H(α2, ·)

2
(a.e.).

By Lemma 2 and the basic properties of the mean-square integral, we obtain

∫ α2

α1

H
(

1
1

α1
+ 1

α2
− 1

ν

, ·
)

ν2 dν =
∫ α2

α1

H(ν, ·)
ν2 dν (a.e).

Thus, we obtain

α1α2

α2 − α1

∫ α2

α1

H(ν, ·)
ν2 dν =

α1α2

α2 − α1

∫ α2

α1

H(ν, ·)
ν2 dν (a.e.).

The proof is thus accomplished.

Similarly, as in the real function case, we can prove the following result.
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Theorem 5. Let H : [α1, α2]\{0} × Λ → R be a symmetrized harmonically convex stochastic
process. Then, the inequality

H
(

2α1α2

α1 + α2
, ·
)
≤ H(ν, ·) ≤ H(α1, ·) +H(α2, ·)

2
(a.e.) (10)

hold ∀ ν ∈ [α1, α2]\{0}.

Proof. Since H is harmonically convex, it is also Jensen harmonically convex. By this
property, we have

H
(

2α1α2

α1 + α2
, ·
)
= H

(
2α1α2

α1 + α2
, ·
)

= H

 1
1
2

1
ν + 1

2

(
1
α1

+ 1
α2
− 1

ν

) , ·

 ≤
H(ν, ·) +H

(
1

1
α1

+ 1
α2
− 1

ν

, ·
)

2
(a.e.).

We also observe that

H(ν, ·) +H
(

1
1

α1
+ 1

α2
− 1

ν

, ·
)

2
=

H(ν, ·) +H
(

1
1

α1
+ 1

α2
− 1

ν

, ·
)

2
= H(ν, ·) (a.e.)

holds; thus, it is proved the left-hand side of the inequality (10) is valid.
We can write any ν ∈ [α1, α2]\{0} as follows

ν =
1

α2(ν−α1)
ν(α2−α1)

1
α2

+ α1(α2−α1)
(α2−α1)ν

1
α1

.

By using the harmonic convexity ofH

H(ν, ·) = H

 1
α2(ν−α1)
ν(α2−α1)

1
α2

+ α1(α2−α1)
(α2−α1)ν

1
α1

, ·


≤ α2(ν− α1)

ν(α2 − α1)
H(α1, ·) + α1(α2 − α1)

(α2 − α1)ν
H(α2, ·)

=
α2(ν− α1)

ν(α2 − α1)

H(α1, ·) +H(α2, ·)
2

+
α1(α2 − α1)

(α2 − α1)ν

H(α1, ·) +H(α2, ·)
2

=
H(α1, ·) +H(α2, ·)

2
(a.e.).

The theorem is thus accomplished.

4. Hyers–Ulam Type Stability and Harmonic Convexity

González et al. [10] demonstrated a separation theorem for convex stochastic processes
and subsequently analyzed their Hyers–Ulam stability. Using this separation concept, the
Hyers–Ulam stability criterion for symmetrized harmonically convex processes can be
derived. See [10] for the usual result of the Hyers–Ulam stability. Let us recall the following
definition of a ε-convex stochastic process.

Definition 9 ([10]). Let ε be a positive constant. A stochastic process H : I × Λ → R is
ε-convex if

H
(

n

∑
i=1

σiνi, ·
)
≤

n

∑
i=1

σiH(νi, ·) + ε (a.e.)
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for all n ∈ N, ν1, . . . , νn ∈ I and σ1, . . . , σn ≥ 0 with σ1 + · · ·+ σn = 1.

Haq and Kotrys [8] introduced the definition of ε-symmetrized convex stochastic pro-
cesses and showed a Hyers–Ulam-type stability result for ε-symmetrized convex stochas-
tic processes.

Definition 10 ([8]). A stochastic process H : [α1, α2]×Λ → R is ε-symmetrized convex if its
symmetrical form is ε-convex.

For symmetrical stochastic processes, Haq and Kotrys [8] demonstrated Hyers–Ulam-
type stability.

Theorem 6 ([8]). LetH : [α1, α2]×Λ→ R be a ε-symmetrized convex stochastic process. Then,

(i) for the symmetrical formH ofH, we can find a convex stochastic processW : [α1, α2]×Λ→
R with

|H(ν, ·)−W(ν, ·)| ≤ ε

2
(a.e.)

∀ ν ∈ [α1, α2] and
(ii) for every symmetrized convex stochastic processW : [α1, α2]×Λ→ R with

W(ν, ·) = W(ν, ·) +W(α1 + α2 − ν, ·)
2

(a.e.)

the inequality

||H(ν, ·)−W(ν, ·)| − |H(α1 + α2 − ν, ·)−W(α1 + α2 − ν, ·)|| ≤ ε (a.e.)

holds ∀ ν ∈ [α1, α2].

The following variant of Jensen’s inequality for a convex stochastic process can be
established in a similar way as proved in Dragomir [11].

Theorem 7 ([11]). Let I\{0} be an interval andH : I\{0} ×Λ→ R be a harmonically convex
stochastic process. Then, the Jensen-type inequality holds

H
(

1
∑n

i=1
σi
νi

, ·
)
≤

n

∑
i=1

σiY(νi, ·) (a.e.)

for all n ∈ N, ν1, . . . , νn ∈ I\{0} and σ1, . . . , σn ≥ 0 with σ1 + · · ·+ σn = 1.

Now, we present the main result of this section. It gives a condition under which two
given stochastic processes can be separated by a harmonically convex stochastic process.

Theorem 8. Let H, Y : (I\{0})×Λ → R be stochastic processes, there exists a harmonically
convex stochastic processW : (I\{0})×Λ→ R with

H(ν, ·) ≤ W(ν, ·) ≤ Y(ν, ·) (a.e.)

∀ ν ∈ I iff

H
(

1
∑n

i=1
σi
νi

, ·
)
≤

n

∑
i=1

σiY(νi, ·) (a.e.) (11)

∀ n ∈ N, ν1, . . . , νn ∈ I\{0} and σ1, . . . , σn ≥ 0 with σ1 + · · ·+ σn = 1.
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Proof. Let H, Y : (I\{0}) × Λ → R be the stochastic processes, then we can find a
harmonically convex stochastic processW : (I\{0})×Λ→ R such that

H(ν, ·) ≤ W(ν, ·) ≤ Y(ν, ·) (a.e.)

∀ ν ∈ I\{0}, then

H
(

1
∑n

i=1
σi
νi

, ·
)
≤ W

(
1

∑n
i=1

σi
νi

, ·
)
≤

n

∑
i=1

σiW(νi, ·) ≤
n

∑
i=1

σiY(νi, ·) (a.e.). (12)

Now, we prove the “if” part of the result, fix ν ∈ I\{0} and define the processW by

W(ν, ·) = ess inf

{
n

∑
i=1

σiY(νi, ·) : n ∈ N, ν1, . . . , νn ∈ I , σ1, . . . , σn ∈ [0, 1]

with σ1 + · · ·+ σn = 1 and
1
ν
=

σ1

ν1
+ · · ·+ σn

νn

}
(a.e.). (13)

By (11) and the definition of essential infimum, we have

H(ν, ·) ≤ W(ν, ·) (a.e.), ν ∈ I\{0}.

By the definition ofW (taking n = 1, σ1 = 1 and ν1 = ν), we also obtain that

W(ν, ·) ≤ Y(ν, ·) (a.e.), ν ∈ I\{0}.

To prove that W is harmonically convex, fix ν1, ν2 ∈ I\{0} and σ ∈ [0, 1]. Take
arbitrary u1, · · · , un ∈ I\{0}, µ1, · · · , µn ∈ [0, 1] and v1, · · · , vm ∈ I\{0}, β1, · · · , βm ∈
[0, 1] such that µ1 + · · · + µn = 1, β1 + · · · + βm = 1 and 1

ν1
= µ1

u1
+ · · · + µn

un
, 1

ν2
=

β1
v1

+ · · ·+ βm
vm

. Since
n

∑
i=1

σµi +
m

∑
j=1

(1− σ)β j = 1,

thus the point 1
σ 1

ν1
+(1−σ) 1

ν2

is a harmonic mean of u1, · · · , un, v1, · · · , vm and

1
σ 1

ν1
+ (1− σ) 1

ν2

=
1

σ ∑n
i=1

µi
ui
+ (1− σ)∑m

j=1
β j
vj

.

Hence by the definition ofW , we have

W
(

1
σ 1

ν1
+ (1− σ) 1

ν2

, ·
)

≤ σ
n

∑
i=1

µiY(ui, ·) + (1− σ)
m

∑
j=1

β jY(vi, ·) (a.e.). (14)

This inequality holds for every n ∈ N, u1, · · · , un ∈ I , µ1, · · · , µn ∈ [0, 1] such that
µ1 + · · ·+ µn = 1 as well as for all m ∈ N, v1, · · · , vm ∈ I , µ1, · · · , µn ∈ [0, 1] such that
µ1 + · · · + µn = 1, β1, · · · , βm ∈ [0, 1] such that µ1 + · · · + µn = 1, β1 + · · · + βm = 1.
Therefore, by taking the essential infimum using the the definition of essential infimumon,
we obtain from (14) that

W
(

1
σ 1

ν1
+ (1− σ) 1

ν2

, ·
)
≤ σW(ν1, ·) + (1− σ)σW(ν2, ·) (a.e.). (15)

This shows thatW is harmonically convex.
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As an immediate consequence of the above theorem, we obtain the following Hyers–
Ulam-type stability results for harmonically convex stochastic processes. For the classical
Hyers–Ulam theorem, see [12].

Firstly, we introduce an ε-harmonically convex stochastic process and ε-symmetrized
harmonically convex stochastic processes and establish a Hyers–Ulam-type stability result
for ε-symmetrized harmonic stochastic processes.

Definition 11. Let ε > 0. A stochastic processH : (I\{0})×Λ→ R is ε-harmonically convex if

H
(

1
∑n

i=1
σi
νi

, ·
)
≤

n

∑
i=1

σiH(νi, ·) + ε (a.e.) (16)

∀ n ∈ N, ν1, . . . , νn ∈ I\{0} and σ1, . . . , σn ≥ 0 with σ1 + · · ·+ σn = 1.

Corollary 1. If a stochastic processH : I\{0} ×Λ→ R is ε-harmonically convex, we can find a
harmonically convex stochastic processW with

|H(ν, ·)−W(ν, ·)| ≤ ε

2
(a.e.) (17)

∀ ν ∈ I\{0}.

Proof. Let Y(ν, ·) = W(ν, ·) + ε, ν ∈ I\{0}. According to (16), the processes H and Y
satisfy (11). Therefore, by Theorem 8, there exists a convex processW1 : I\{0} ×Λ→ R,
such that H(ν, ·) ≤ W1(ν, ·) ≤ H(ν, ·) + ε (a.e.), for all ν ∈ I\{0}. Putting W(ν, ·) =
W1(ν, ·) + ε

2 , we obtain (17).

Definition 12. A stochastic processH : [α1, α2]×Λ→ R is ε-symmetrized harmonically convex
if its symmetrical form is ε-harmonically convex.

Let us prove a Hyers–Ulam-type stability result for ε-symmetrized stochastic processes.

Theorem 9. LetH : [α1, α2]\{0} ×Λ→ R be a ε-symmetrized harmonically convex stochastic
process. Then,

(i) for symmetrical form H of H we can find a harmonically convex stochastic process W :
[α1, α2]\{0} ×Λ→ R with

|H(ν, ·)−W(ν, ·)| ≤ ε

2
(a.e.) (18)

∀ ν ∈ [α1, α2]\{0} and
(ii) for every symmetrized harmonically convex stochastic process W : [α1, α2]\{0} × Λ →

R with

W(ν, ·) =
W(ν, ·) +W

(
1

1
α1

+ 1
α2
− 1

ν

, ·
)

2
(a.e.)

∀ ν ∈ [α1, α2]\{0}, the inequality∣∣∣∣∣|H(ν, ·)−W(ν, ·)| −
∣∣∣∣∣H
(

1
1
α1

+ 1
α2
− 1

ν

, ·
)
−W

(
1

1
α1

+ 1
α2
− 1

ν

, ·
)∣∣∣∣∣
∣∣∣∣∣ ≤ ε (a.e),

holds ∀ ν ∈ [α1, α2]\{0}.

Proof. (i) The proof follows from Corollary 1.
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(ii)H is harmonically convex following from Definition 8 and conditions onH. By (i), there
exists a harmonically convex stochastic processW that fulfills (18). LetW : [α1, α2]\{0} ×
Λ→ R be defined by

W(ν, ·) =
W(ν, ·) +W

(
1

1
α1

+ 1
α2
− 1

ν

, ·
)

2
(a.e.),

∀ ν ∈ [α1, α2]\{0}. The stochastic processW is symmetrized harmonically convex evident
from Definition 8. Using reverse triangle inequality and (18) gives us

ε

2
≥ |H(ν, ·)−W(ν, ·)|

=

∣∣∣∣∣∣∣∣
H(ν, ·) +H

(
1

1
α1

+ 1
α2
− 1

ν

, ·
)

2
−
W(ν, ·) +W

(
1

1
α1

+ 1
α2
− 1

ν

, ·
)

2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
H(ν, ·)−W(ν, ·)

2
−
W
(

1
1

α1
+ 1

α2
− 1

ν

, ·
)
−H

(
1

1
α1

+ 1
α2
− 1

ν

, ·
)

2

∣∣∣∣∣∣∣∣
≥ 1

2

∣∣∣∣∣|H(ν, ·)−W(ν, ·)| −
∣∣∣∣∣W
(

1
1
α1

+ 1
α2
− 1

ν

, ·
)
−H

(
1

1
α1

+ 1
α2
− 1

ν

, ·
)∣∣∣∣∣
∣∣∣∣∣ (a.e.).

The theorem is thus accomplished.

5. Conclusions

This study contains the discussion of the topic of symmetrized harmonically convex
stochastic processes in detail. We used the Hermite–Hadmard-type inequalities to describe
the distinctive nature or features of symmetrized harmonically convex stochastic processes.
We also clearly showed the existence of a Hyers–Ulam-type stability result for harmonically
convex stochastic processes. We expect that this study will be a motivation for researchers
to explore this field of study using the generalization of the theory of convex functions.
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