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Abstract: In our present investigation, we introduce and study some new subclasses of analytic functions
associated with Ruscheweyh differential operator Dr. We obtain a Fekete–Szegö inequality for certain

normalized analytic function defined on the open unit disk for which
[
(Drl)′(z)

]ϑ( z(Dr l)′(z)
(Dr l)(z)

)1−ϑ
≺ ez

(0 ≤ ϑ ≤ 1) lies in a starlike region with respect to 1 and symmetric with respect to the real axis.
As a special case of this result, the Fekete–Szegö inequality for a class of functions defined through
Poisson distribution series is obtained.

Keywords: Fekete–Szegö problem; analytic functions; starlike and convex functions; subordination;
Ruscheweyh differential operator; Poisson distribution series

MSC: 30C45; 30C50

1. Introduction

Let A denote the class of functions l of the form:

l(z) = z +
∞

∑
k=2

akzk, (1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1}. Further, let S denote
the class of functions that are univalent in D. If l and h are analytic in D, we say that
l is subordinate to h, written as l ≺ h in D or l(z) ≺ h(z) (z ∈D), if there exists a
Schwarz function ω(z) that is analytic in D with ω(0) = 0 and |ω(z)| < 1 (z ∈D) such
that l(z) = h(ω(z)) (z ∈D). In particular, if the function h(z) is univalent in D, then the
following equivalence holds (see [1]):

l(z) ≺ h(z)⇐⇒ l(0) = h(0) and l(D) ⊂ h(D).

For a constant 0 6 α < 1, a function l in A is called starlike of order α if

<
(

zl′(z)
l(z)

)
> α

for z ∈D, denoted by S∗(α). Note that the class S∗(0) = S∗ is known to consist of starlike
functions in A.

For a constant 0 6 α < 1, a function l in A is called convex of order α if

<
(

1 +
zl′′(z)
l′(z)

)
> α
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for z ∈D denoted by C(α). Note that the class C(0) = C is known to consist of convex
functions in A.

By definition, it is obvious that for 0 6 α < 1,

C(α) ⊂ C ⊂ S∗(α) ⊂ S∗ ⊂ S .

Nasr and Aouf (see [2]), Wiatrowski (see [3]), and Nasr and Aouf (see [4]) investigated
some properties of α−starlikeness and α−convexity.

The familiar coefficient conjecture for the functions l ∈ S having the series form (1),
was given by Bieberbach in 1916 and it was later proved by Louis de-Branges [5] in 1985.
It was one of the most celebrated conjectures in classical analysis, one that has stood as a
challenge to mathematicians for a very long time. Numerous mathematicians studied to
calculate this conjecture, and due to this, they were able to derive coefficient bounds for
various subfamilies of the class S of univalent functions.

Ma and Minda [6] established two classes of analytical functions;

S∗(ϕ) =

{
l ∈ A:

zl′(z)
l(z)

≺ ϕ(z), (z ∈ D)

}
and

C(ϕ) =

{
l ∈ A: 1 +

zl′′(z)
l′(z)

≺ ϕ(z), (z ∈ D)

}
,

where the function ϕ is an analytic univalent function that maps D onto a region that is
starlike with respect to 1 and symmetric with respect to the real axis, and <(ϕ(z)) > 0 in D

with ϕ(0) = 1 and ϕ′(0) > 0. By choosing ϑ = 0, ϑ = 1, r = 0 and changing the function ϕ
several well-known classes can be obtained as the following:

1. For ϕ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1), we obtain the class S∗(A, B), for more

information see [7].
2. S∗(α) = S∗(1− 2α,−1) is displayed in [8] for various values of A and B.

3. For ϕ(z) = 1 + 2
π2

(
log 1+

√
z

1−
√

z

)2
, the class was described and investigated in [9].

4. For ϕ(z) =
√

1 + z, the class is denoted by S∗L . Further research on this class can be
found in [10,11].

5. For ϕ(z) = z +
√

1 + z2 the class is indicated by S∗l , for further information see [12].
6. If ϕ(z) = 1 + 4

3 z + 2
3 z2, then this class, denoted by S∗C, was first presented by [13] and

was later researched by [14].
7. For ϕ(z) = ez, the class S∗e was defined and researched in [15,16].
8. For ϕ(z) = cos z the class is denoted by S∗cosh, for more information see [17].
9. The class is indicated for ϕ(z) = 1 + sin z by S∗sin see [18]. For further information

and additional research, see [19].

Recently in [14,20–23] by selecting a specific function for ϕ as described above, inequal-
ities relating to the coefficient bounds of several subclasses of univalent functions have
been thoroughly addressed. One of the inequalities Fekete and Szegö (1933) discovered for
the coefficients of univalent analytic functions and connected to the Bieberbach conjecture
is the Fekete–Szegö inequality.

The Fekete–Szegö functional is also known as the functional a3 − a2
2, and it is typical

to discuss the more generalized functional a3 − ηa2
2 where η is a real number (see [24]).

The Fekete–Szegö problem is the estimation of
∣∣a3 − ηa2

2

∣∣’s upper bound.

∣∣∣a3 − ηa2
2

∣∣∣ 6


3− 4η if η 6 0,
1 + 2 exp

(
−2η
1−η

)
if 0 < η < 1,

4η − 3 if η > 1.
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It is well known that
∣∣a3 − a2

2

∣∣ 6 1 for l ∈ S given by (1). This is known as classic
Fekete–Szegö’s theorem (see [24]) and the inequality is sharp. Pfluger (see [25]) has since
taken into account the complex values of η and given∣∣∣a3 − ηa2

2

∣∣∣ 6 1 + 2
∣∣∣∣exp

(
−2η

1− η

)∣∣∣∣.
For the classes of starlike and convex functions, the Fekete–Szegö problem was re-

solved in 1969 by Keogh and Merkes [26]. The publication by Orhan et al. [27] contains
special cases of the Fekete–Szegö problem for the classes of starlike functions of order η and
convex functions of order η.

In fact, a number of writers have studied the Fekete–Szegö problem for various
subclasses of A, for example, the upper bound for

∣∣a3 − ηa2
2

∣∣ has been studied by a number
of authors (see [27–31]).

Then the Hadamard product (or convolution) l(z) ∗ h(z) of l(z) and h(z) is defined by

(l ∗ h)(z) = z +
∞

∑
k=2

akbkzk = (h ∗ l)(z) (z ∈ D),

where the function h(z) = z +
∞
∑

k=2
bkzk is also analytic in D.

For a function l ∈ A defined by (1), the Ruscheweyh derivative operator Dr : A → A
(see [32]) is defined as follows:

(Dr l)(z) =
z(zr−1l(z))(r)

r!
=

z
(1− z)r+1 ∗ l(z) = z +

∞

∑
k=2

Γ(r + k)
Γ(r + 1)(k− 1)!

akzk(r > −1). (2)

Let us start with the definition that follows.

Definition 1 ([33]). Let 0 ≤ ϑ ≤ 1. A function l ∈ A is said to be in the class S∗exp(r, ϑ) if it
satisfies the following subordination condition.

[
(Drl)′(z)

]ϑ
(

z(Drl)′(z)
(Drl)(z)

)1−ϑ

≺ ez

where (Drl)(z) is defined by (2).

Note that,

S∗exp(r, 0) = S∗exp(r; ez) =

{
l ∈ A:

(
z(Drl)′(z)
(Drl)(z)

)
≺ ez

}

and
S∗exp(r, 1) = Sexp(r) =

{
l ∈ A:

(
(Drl)′(z)

)
≺ ez

}
.

2. Main Results

As is usually the case, we let p be the family of functions p(z) = 1 + c1z + c2z2 + · · ·
regular and with p(0) = 1 and <p(z) > 0 for z in D. We denote by the symbol P the family
of all functions p, analytic in D. The following lemmas allow us to prove our next theorem.

Lemma 1 ([34]). Let p(z) ∈ P , then

|ck| 6 2, for k > 1.
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If |c1| = 2 then p(z) ≡ p1(z) = (1 + γ1z)/(1 − γ1z) with γ1 = c1/2. Conversely,
if p(z) ≡ p1(z) for some |γ1| = 1, then c1 = 2γ1 and |c1| = 2. Furthermore, we have∣∣∣∣∣c2 −

c2
1

2

∣∣∣∣∣ 6 2− |c1|2

2
.

If |c1| < 2 and
∣∣∣∣c2 −

c2
1
2

∣∣∣∣ = 2− |c1|2
2 , then p(z) ≡ p2(z), where

p2(z) =
1 + z γ2z+γ1

1+γ̄1γ2z

1− z γ2z+γ1
1+γ̄1γ2z

,

and γ1 = c1/2, γ2 =
2c2−c2

1
4−|c1|2

. Inversely, if p(z) ≡ p2(z), then γ1 = c1/2, γ2 =
2c2−c2

1
4−|c1|2

and∣∣∣∣c2 −
c2

1
2

∣∣∣∣ 6 2− |c1|2
2 for some |γ1| < 1 and |γ2| = 1.

Lemma 2 ([35]). Let p ∈ P with p(z) = 1 + c1z + c2z2 + · · · , then for v ∈ C∣∣∣c2 − vc2
1

∣∣∣ 6 2 max{1, |2v− 1|},

and for the functions provided by, the conclusion is sharp

p(z) =
1 + z2

1− z2 , p(z) =
1 + z
1− z

.

Lemma 3 ([6]). Let p ∈ P with p(z) = 1 + c1z + c2z2 + · · · , then

∣∣∣c2 − vc2
1

∣∣∣ 6

−4v + 2, if v ≤ 0,

2, if 0 ≤ v ≤ 1,
4v− 2, if v ≥ 1.

If v < 0 or v > 1, the equality holds if and only if p(z) is (1 + z)/(1− z) or one of its
rotations. If 0 < v < 1, then equality holds if and only if p(z) is

(
1 + z2)/(1− z2) or one of its

rotations. If and only if v = 0, or one of its rotations, the equality holds true.

p(z) =
(

1
2
+

1
2

λ

)
1 + z
1− z

+

(
1
2
− 1

2
λ

)
1− z
1 + z

(0 ≤ λ ≤ 1).

Only when p is the reciprocal of one of the functions that guarantee the equality when v = 0
does the equality hold if v = 1 and only in that case.

We begin with the following result.

3. Coefficient Bounds and the Fekete-Szegö Inequality for l ∈ S∗exp(r, ϑ)

We will establish the bounds on the coefficients for the function class S∗exp(r, ϑ) in the
first theorem.

Theorem 1. If l ∈ S∗exp(r, ϑ) and l is defined by (1), then

|a2| 6
1

(1 + ϑ)(r + 1)
, (3)

|a3| 6
2

(2 + ϑ)(r + 1)(r + 2)
max

{
1,

∣∣∣∣∣ ϑ + 3

2(1 + ϑ)2

∣∣∣∣∣
}

(4)



Axioms 2022, 11, 560 5 of 12

and ∣∣∣a3 − ηa2
2

∣∣∣ ≤ 2
(2 + ϑ)(r + 1)(r + 2)

max

{
1,

∣∣∣∣∣ (ϑ + 3)(r + 1)− η(2 + ϑ)(r + 2)

2(1 + ϑ)2(r + 1)

∣∣∣∣∣
}

, (5)

where η ∈ C.

Proof. Given that l ∈ S∗exp(r, ϑ) in accordance with the subordination relationship, a Schwarz
function ω(z) with ω(0) = 0 and |ω(z)| < 1 exists, satisfying

[
(Drl)′(z)

]ϑ
(

z(Drl)′(z)
(Drl)(z)

)1−ϑ

= eω(z).

Here,

[
(Dr l)′(z)

]ϑ
(

z(Dr l)′(z)
(Dr l)(z)

)1−ϑ

= 1 + (1 + ϑ)(r + 1)a2z

+
(2 + ϑ)

2

[
(r + 1)(r + 2)a3 − (1− ϑ)(r + 1)2a2

2

]
z2

+
(3 + ϑ)

6

[
(1− ϑ)(2− ϑ)(r + 1)3a3

2 − 3(1− ϑ)(r + 1)2(r + 2)a2a3

+(r + 1)(r + 2)(r + 3)a4]z3 + . . . (6)

Now, we define a function

p(z) =
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + c3z3 + . . . .

It is obvious that p(z) ∈ P and

ω(z) =
p(z)− 1
p(z) + 1

=
c1

2
z +

(
c2

2
−

c2
1

4

)
z2 +

(
c3

1
8
+

c3

2
− c1c2

2

)
z3 + . . . (7)

On the other hand,

eω(z) = 1 +
c1

2
z +

(
c2

2
−

c2
1

8

)
z2 +

(
c3

1
48

+
c3

2
− c1c2

4

)
z3

+

(
c4

1
384

+
c4

2
−

c2
2

8
+

c2
1c2

16
− c1c3

4

)
z4 + . . . (8)

Comparing the coefficients of z, z2, z3 between the Equations (6) and (8), we obtain

a2 =
c1

2(1 + ϑ)(r + 1)
, (9)

(2 + ϑ)
[
(r + 1)(r + 2)a3 − (1− ϑ)(r + 1)2a2

2

]
= c2 −

c2
1

4
, (10)

(3 + ϑ)

3

[
(1− ϑ)(2− ϑ)(r + 1)3a3

2 − 3(1− ϑ)(r + 1)2(r + 2)a2a3

+(r + 1)(r + 2)(r + 3)a4]

=
c3

1
24

+ c3 −
c1c2

2
(11)
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Applying Lemma 1, we easily obtain

|a2| 6
1

(1 + ϑ)(r + 1)
,

a3 =
1

(2 + ϑ)(r + 1)(r + 2)

[
c2 − c2

1

(
2ϑ2 + 3ϑ− 1

4(1 + ϑ)2

)]
(12)

|a3| =
1

(2 + ϑ)(r + 1)(r + 2)

∣∣∣∣∣c2 − c2
1

(
2ϑ2 + 3ϑ− 1

4(1 + ϑ)2

)∣∣∣∣∣
=

1
(2 + ϑ)(r + 1)(r + 2)

∣∣∣c2 − vc2
1

∣∣∣,
where v = 2ϑ2+3ϑ−1

4(1+ϑ)2 . Now, by applying Lemma 2, we obtain

|a3| 6
2

(2 + ϑ)(r + 1)(r + 2)
max

{
1,

∣∣∣∣∣ ϑ + 3

2(1 + ϑ)2

∣∣∣∣∣
}

.

From (9) and (12), we have

a3 − ηa2
2

=
1

(2 + ϑ)(r + 1)(r + 2)

[
c2 − c2

1

(
2ϑ2 + 3ϑ− 1

4(1 + ϑ)2

)]
− ηc2

1
1

4(1 + ϑ)2(r + 1)2

=
1

(2 + ϑ)(r + 1)(r + 2)

[
c2 − c2

1

(
2ϑ2 + 3ϑ− 1

4(1 + ϑ)2

)
− ηc2

1

(
(2 + ϑ)(r + 2)

4(1 + ϑ)2(r + 1)

)]
(13)

=
1

(2 + ϑ)(r + 1)(r + 2)

[
c2 − c2

1

((
2ϑ2 + 3ϑ− 1

)
(r + 1) + η(2 + ϑ)(r + 2)

4(1 + ϑ)2(r + 1)

)]

=
1

(2 + ϑ)(r + 1)(r + 2)

{
c2 − vc2

1

}
,

where

v =

(
2ϑ2 + 3ϑ− 1

)
(r + 1) + η(2 + ϑ)(r + 2)

4(1 + ϑ)2(r + 1)
.

Our result now follows by an application of Lemma 2 to get

∣∣∣a3 − ηa2
2

∣∣∣ ≤ 2
(2 + ϑ)(r + 1)(r + 2)

max

{
1,

∣∣∣∣∣ (ϑ + 3)(r + 1)− η(2 + ϑ)(r + 2)

2(1 + ϑ)2(r + 1)

∣∣∣∣∣
}

. (14)

This completes the proof of Theorem 1.

Remark 1. By taking η = 1 in Theorem 1, we have

∣∣∣a3 − a2
2

∣∣∣ ≤ 2
(2 + ϑ)(r + 1)(r + 2)

max

{
1,

∣∣∣∣∣ (ϑ + 3)(r + 1)− (2 + ϑ)(r + 2)

2(1 + ϑ)2(r + 1)

∣∣∣∣∣
}

.

Remark 2. If η = 1, ϑ = 0 in Theorem 1 and l ∈ S∗exp(r), then we obtain

∣∣∣a3 − a2
2

∣∣∣ ≤ 1
(r + 1)(r + 2)

max
{

1,
∣∣∣∣3(r + 1)− 2(r + 2)

2(r + 1)

∣∣∣∣}
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and if η = 1, ϑ = 1 in Theorem 1 and l ∈ Sexp(r), we have∣∣∣a3 − a2
2

∣∣∣ ≤ 2
3(r + 1)(r + 2)

max
{

1,
∣∣∣∣4(r + 1)− 3(r + 2)

8(r + 1)

∣∣∣∣}.

Corollary 1. If r = 0 in Remark 2 and l ∈ S∗exp, then we obtain∣∣∣a3 − a2
2

∣∣∣ ≤ 1
2

and if r = 0 in Remark 2 and l ∈ Sexp, then we have∣∣∣a3 − a2
2

∣∣∣ ≤ 1
3

.

Theorem 2. If the function l ∈ S∗exp(r, ϑ) and is of the form (1), then for η ∈ R,

∣∣∣a3 − ηa2
2

∣∣∣ 6

− 1

(2+ϑ)(r+1)(r+2)

(
−(ϑ+3)(r+1)
(1+ϑ)2(r+1)

+ η(2+ϑ)(r+2)
(1+ϑ)2(r+1)

)
, if η < ρ1,

2
(2+ϑ)(r+1)(r+2) , if ρ1 ≤ η ≤ ρ2,

1
(2+ϑ)(r+1)(r+2)

(
−(ϑ+3)(r+1)
(1+ϑ)2(r+1)

+ η(2+ϑ)(r+2)
(1+ϑ)2(r+1)

)
, if η > ρ2,

,

where

ρ1 =
−
(
2ϑ2 + 3ϑ− 1

)
(r + 1)

(2 + ϑ)(r + 2)
and ρ2 =

(
2ϑ2 + 5ϑ + 5

)
(r + 1)

(2 + ϑ)(r + 2)
.

Proof. From (14), we have

a3 − ηa2
2 =

1
(2 + ϑ)(r + 1)(r + 2)

[
c2 − c2

1

((
2ϑ2 + 3ϑ− 1

)
(r + 1) + η(2 + ϑ)(r + 2)

4(1 + ϑ)2(r + 1)

)]

=
1

(2 + ϑ)(r + 1)(r + 2)

(
c2 − vc2

1

)
where

v =

(
2ϑ2 + 3ϑ− 1

)
(r + 1) + η(2 + ϑ)(r + 2)

4(1 + ϑ)2(r + 1)

By an application of Lemma 3, the conclusion of Theorem 2 follows.
Thus, the proof of Theorem 2 is finished.

4. Coefficient Inequalities for l−1

Theorem 3. In the event that l ∈ S∗exp(r, ϑ), which is given by (1) and l−1(w) = w+∑∞
k=2 dkwk

of the inverse function of l with |w| < r0, where r0 > 1
4 is the radius of the Koebe domain, which is

the analytic continuation to D, then for any η ∈ C, we obtain

|d2| ≤
1

(1 + ϑ)(r + 1)
, (15)

|d3| ≤
2

(2 + ϑ)(r + 1)(r + 2)
max

{
1,

∣∣∣∣∣ (ϑ + 3)(r + 1)− 2(2 + ϑ)(r + 2)

2(1 + ϑ)2(r + 1)

∣∣∣∣∣
}

(16)

and ∣∣∣d3 − ηd2
2

∣∣∣ 6 2
(2 + ϑ)(r + 1)(r + 2)

max

{
1,

∣∣∣∣∣ (ϑ + 3)(r + 1) + (η + 2)(2 + ϑ)(r + 2)

2(1 + ϑ)2(r + 1)

∣∣∣∣∣
}

. (17)
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Proof. Since

l−1(w) = w +
∞

∑
k=2

dkwk (18)

is the inverse of l,
l−1(l(z)) = l

(
l−1(z)

)
= z. (19)

From Equation (19), we have

l−1

(
z +

∞

∑
k=2

akzk

)
= z. (20)

Thus, (19) and (20) yield

z + (a2 + d2)z2 + (a3 + 2a2d2 + d3)z3 + ... = z, (21)

Thus, equating the respective coefficients of z, it can be seen that

d2 = −a2, (22)

d3 = 2a2
2 − a3. (23)

From relations (9), (12), (22) and (23)

d2 = − c1

2(1 + ϑ)(r + 1)
, (24)

d3 =
c2

1

2(1 + ϑ)2(r + 1)2

− 1
(2 + ϑ)(r + 1)(r + 2)

[
c2 − c2

1

(
2ϑ2 + 3ϑ− 1

4(1 + ϑ)2

)]

= − 1
(2 + ϑ)(r + 1)(r + 2)

×
[

c2 − c2
1

((
2ϑ2 + 3ϑ− 1

)
(r + 1)− 2(2 + ϑ)(r + 2)

4(1 + ϑ)2(r + 1)

)]
(25)

We obtain (15) and (16) by using Lemma 2 and taking the modulus on both sides.
Think about any complex number η.

d3 − ηd2
2 =

−1
(2 + ϑ)(r + 1)(r + 2)

×
[

c2 − c2
1

((
2ϑ2 + 3ϑ− 1

)
(r + 1)− 2(2 + ϑ)(r + 2)

4(1 + ϑ)2(r + 1)

− η(2 + ϑ)(r + 2)

4(1 + ϑ)2(r + 1)

)]
(26)

By applying Lemma 2 on the right side of (26) and taking the modulus on both sides,
one can arrive at the same conclusion as in (17).

The proof is now complete.
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5. Functions Described by the Poisson Distribution

If a variable χ takes the values 0, 1, 2, 3, . . . with probability, it is said to have a Poisson
distribution e−ξ , ξ e−ξ

1! , ξ2 e−ξ

2! , ξ3 e−ξ

3! , . . . respectively, where ξ is called the parameter. Thus,

P(χ = τ) = ξτ e−ξ

τ!
, τ = 0, 1, 2, . . . .

Porwal [36] introduced a power series whose coefficients are probabilities of Pois-
son distribution

I(ξ, z) = z +
∞

∑
k=2

ξk−1

(k− 1)!
e−ξ zk, (z ∈ D),

where ξ > 0. We observe that the radius of convergence of the above series is infinite, as
can be verified by the ratio test. Due to recent research on [36,37], let the linear operator

Iξ(z) : A −→ A

be given by (
Iξ Drl

)
(z) = I(ξ, z) ∗ (Drl)(z)

= z +
∞

∑
k=2

[
ξk−1

(k− 1)!
e−ξ Γ(r + k)

Γ(r + 1)(k− 1)!

]
akzk

= z +
∞

∑
k=2

Υk(ξ, r)akzk,

where Υk(ξ, r) = ξk−1

(k−1)! e
−ξ Γ(r+k)

Γ(r+1)(k−1)! and ∗ stand for the Hadamard product or convolu-
tion of two series. In particular,

Υ2(ξ, r) = ξe−ξ(r + 1), Υ3(ξ, r) =
1
4

ξ2e−ξ(r + 1)(r + 2). (27)

According to the definition below, the class S∗exp(r, ϑ; Υ) is:

S∗exp(r, ϑ; Υ) =
{

l ∈ A:
(
Iξ Drl

)
(z)∈S∗exp(r, ϑ; Υ)

}
.

where by Definition 1 provides S∗exp(r, ϑ; Υ) and(
Iξ Drl

)
(z)= z+Υ2(ξ, r)a2z2 + Υ3(ξ, r)a3z3 + Υ4(ξ, r)a4z4 + . . . .

The same method used in Theorems 1 and 2 can be used to obtain the coefficient
bound for functions in S∗exp(r, ϑ; Υ) from the equivalent bounds for functions in S∗exp(r, ϑ).

Theorem 4. Let 0 ≤ ϑ ≤ 1 and
(
Iξ Drl

)
(z)= z+Υ2(ξ, r)a2z2 + Υ3(ξ, r)a3z3 + Υ4(ξ, r)a4z4 +

. . . . If l ∈ S∗exp(r, ϑ; Υ), then for η ∈ C, we have

∣∣∣a3 − ηa2
2

∣∣∣ 6 1
(2 + ϑ)Υ3(ξ, r)

max

{
1,

∣∣∣∣∣η(2 + ϑ)Υ3(ξ, r)

(1 + ϑ)2Υ2
2(ξ, r)

− ϑ + 3

2(1 + ϑ)2

∣∣∣∣∣
}

. (28)

Proof. Since l ∈ S∗exp(r, ϑ; Υ), for
(
Iξ Drl

)
(z)= z+Υ2(ξ, r)a2z2 +Υ3(ξ, r)a3z3 +Υ4(ξ, r)a4z4

+ . . . , we have [(
Iξ Drl

)′
(z)
]ϑ
(

z
(
Iξ Drl

)′
(z)(

Iξ Drl
)
(z)

)1−ϑ

= eω(z)
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By (6), we can easily obtain

[(
Iξ Drl

)′
(z)
]ϑ
(

z
(
Iξ Drl

)′
(z)(

Iξ Drl
)
(z)

)1−ϑ

= 1 + (1 + ϑ)Υ2(ξ, r)a2z +
(2 + ϑ)

2

[
2Υ3(ξ, r)a3 − (1− ϑ)Υ2

2(ξ, r)a2
2

]
z2

+
(3 + ϑ)

6

[
(1− ϑ)(2− ϑ)Υ3

2(ξ, r)a3
2

−6(1− ϑ)Υ2(ξ, r)Υ3(ξ, r)a2a3 − 6Υ4(ξ, r)a4]z3 + .... (29)

Thus, by (29) and (8), we have

1 + (1 + ϑ)Υ2(ξ, r)a2z +
(2 + ϑ)

2

[
2Υ3(ξ, r)a3 − (1− ϑ)Υ2

2(ξ, r)a2
2

]
z2

+
(3 + ϑ)

6

[
(1− ϑ)(2− ϑ)Υ3

2(ξ, r)a3
2 − 6(1− ϑ)Υ2(ξ, r)Υ3(ξ, r)a2a3 − 6Υ4(ξ, r)a4

]
z3 + . . .

= 1 +
c1
2

z +

(
c2
2
−

c2
1
8

)
z2 +

(
c3

1
48

+
c3
2
− c1c2

4

)
z3 + . . .

Now, by equating corresponding coefficients of z, z2 and proceeding as in Theorem 1,

a2 =
c1

2(1 + ϑ)Υ2(ξ, r)
, (30)

a3 =
1

2(2 + ϑ)Υ3(ξ, r)

[
c2 − c2

1

(
2ϑ2 + 3ϑ− 1

4(1 + ϑ)2

)]
. (31)

From (30) and (31), we obtain

a3 − ηa2
2 =

1
2(2 + ϑ)Υ3(ξ, r)

[
c2 − c2

1

(
2ϑ2 + 3ϑ− 1

4(1 + ϑ)2

)]
−

ηc2
1

4(1 + ϑ)2Υ2
2(ξ, r)

=
1

2(2 + ϑ)Υ3(ξ, r)

[
c2 − c2

1

(
2ϑ2 + 3ϑ− 1

4(1 + ϑ)2 +
2η(2 + ϑ)Υ3(ξ, r)

4(1 + ϑ)2Υ2
2(ξ, r)

)]
. (32)

By using Lemma 2, we achieve the desired result.
Consequently, the proof of Theorem 4 is finished.

Theorem 5. Let 0 ≤ ϑ ≤ 1 and
(
Iξ Drl

)
(z)= z+Υ2(ξ, r)a2z2 + Υ3(ξ, r)a3z3 + Υ4(ξ, r)a4z4

+ . . . , with η ∈ R, then

∣∣∣a3 − ηa2
2

∣∣∣ 6

− 1

2(2+ϑ)Υ3(ξ,r)

(
−(ϑ+3)
(1+ϑ)2 + 2η(2+ϑ)Υ3(ξ,r)

(1+ϑ)2Υ2
2(ξ,r)

)
, if η < ρ1,

1
(2+ϑ)Υ3(ξ,r) , if ρ1 ≤ η ≤ ρ2,

1
2(2+ϑ)Υ3(ξ,r)

(
−(ϑ+3)
(1+ϑ)2 + 2η(2+ϑ)Υ3(ξ,r)

(1+ϑ)2Υ2
2(ξ,r)

)
, if η > ρ2,

where

ρ1 =
−
(
2ϑ2 + 3ϑ− 1

)
Υ2

2(ξ, r)
2(2 + ϑ)Υ3(ξ, r)

and ρ2 =

(
2ϑ2 + 5ϑ + 5

)
Υ2

2(ξ, r)
2(2 + ϑ)Υ3(ξ, r)

.

In particular, by using Υ2(ξ, r) = ξe−ξ(r + 1) and Υ3(ξ, r) = 1
4 ξ2e−ξ(r + 1)(r + 2), we

may readily assert the results above that are connected to Poisson distribution series.
We accomplish the desired result by applying Lemma 3 and Equation (32).
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