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Abstract: The function of boundary temperature variation with time, f (t) is generally defined accord-
ing to measured data. For f (t), which has a complicated expression, a corresponding one-dimensional
heat conduction model was constructed under the first type of boundary conditions (Dirichlet condi-
tions) in a semi-infinite domain. By taking advantage of the Fourier transform properties, a theoretical
solution was given for the model, under the condition that f (t) does not directly participate in the
transformation process. The solution consists of the product of erfc(t) and f (0) and the convolution
of erfc(t) and the derivative of f (t). The piecewise linear interpolation equation of f (t), based on the
measured data of temperature, was substituted into the theoretical solution, thus quickly solving the
model and deriving a corresponding analytical solution. Based on the analytical solution under the
linear decay function boundary condition, the inflection point method and curve fitting method for
calculating the thermal diffusivity were introduced and exemplified, and the variation laws of the
appearance moment of the inflection point were discussed. The obtained results show that the values
of thermal diffusivity calculated by the two methods are basically consistent, and that the inflection
point values rise with the increasing values of the initial temperature variation of the boundary, the
decrease in boundary temperature velocity, and the distance from the boundary, respectively.

Keywords: Fourier transform; convolution; curve fitting method; inflection point method

1. Introduction

Joseph Fourier studied the temperature variation of a rod with an infinite length
and adiabatic surface [1]. Its initial temperature is 0 ◦C, and the temperature remains
constant with one end heated. This forms a 1D heat conduction model under Dirichlet
boundary conditions in a semi-infinite domain, which has become one of the most classical
heat conduction problems [2]. Current solving methods of heat conduction problems
mainly include analytical and numerical methods. With the vigorous development of
computer technology, the numerical method has now become the main calculation method
in scientific research and engineering design [3–7], and the importance of an analytical
solution is usually neglected. Actually, the analytical method is an important tool in
the study of mathematical physics models, exhibiting the advantages of clear physical
concepts, distinct physical meaning, and a reliable theoretical basis [8]. The analytical
solution not only reveals the intrinsic mechanism and mathematical laws of heat conduction
problems, but also provides an effective means to test the applicability and correctness
of the numerical method, since the analytical solution can be approximated as an exact
solution under specific boundary conditions [9]. In previous research, the function of
boundary temperature, f (t) is often given with a relatively simple specific expression.
Hence, many methods have been proposed to obtain analytical solutions to models for
practical engineering problems basing on heat conduction equations, such as groundwater
seepage [10,11], contaminant transport [12,13], and geothermal field research [14–16],
especially using integral methods, as well as some new methods based on them. For
example, we cite Laplace transform [17], Fourier transform [18], a new iteration method [19],
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an approximate analytical integral method [20], an integral-balance method [21], and a
boundary integral method [22].

However, in real-world applications, the process of the variation of boundary temper-
ature is sometimes complex, and it is difficult to provide a specific and accurate expression
for its corresponding function f (t). For example, in a test involving the control of a material
temperature field through the Dirichlet boundary, continuous manual intervention is re-
quired to effectively control the temperature variation of the tested material. Consequently,
f (t) is a complex and random function of time. In this case, theoretical solutions of 1D heat
conduction models in the semi-infinite domain can be obtained by utilizing certain specific
properties of the integral transform. During the research of heat conduction problems
with a linear heat source, Wu utilized the convolution and differential properties of the
Laplace transform to provide the general theoretical solution of the model [16]. Neverthe-
less, the calculation process is complicated, and the given solution is complex in form and
inconvenient to apply. Moreover, considering the complexity and variability of bound-
ary conditions, some studies have examined the influence of boundary conditions on the
solving process of the model and the handling of boundaries in specific problems [23,24].
When f (t) changes slowly, the sectional equivalence discrete method can be applied to solve
the model based on the basic solution of the classical model [25]. However, this discrete
method is unable to reveal the cumulative impact of changing boundary conditions within
a specific period.

The aim of this paper is to propose a shortcut method to derive the analytical solution
for a 1D heat conduction model in a semi-infinite space under the condition that the
variation process of boundary temperature is complicated. Based on properties of the
Fourier transform, the theoretical solution for the model is given, which is composed
of commonly used functions with a relatively simple form. Subsequently, the piecewise
linear interpolation function of f (t) established by temperature measurements is directly
substituted into the theoretical solution to obtain the corresponding analytical solution. This
method avoids the tedious deduction process; thus, the calculation process is relatively brief
and easy to apply in practice. Additionally, the cumulative effect of boundary conditions
can be reflected. This method of resolution can also be applied for research regarding
porous media seepage and pollutant diffusion using similar models.

An important application of the derived analytical solution to the problem is to
calculate thermal diffusivity by the measured temperature data. The thermal diffusivity
of soil is a key element in the design of borehole heat exchangers in ground source heat
pump systems [26], which reflects the variation rate of soil temperature with time. In
recent years, the methods for gaining thermal diffusivity have often been divided into
two categories: one is estimation based on in situ temperature records, such as infrared
thermal imaging [27], photothermal beam deflection spectroscopy [28], and the Fourier
spectroscopy method [29], and the other is prediction by building models, including infinite
line source models [30] and semi-empirical models [31]. However, the thermal diffusivity
obtained by the above methods is either estimated, or the solving process is complicated.
Therefore, we propose a simple and relatively accurate method for solving the thermal
diffusivity based on the analytical solution by combining the measured temperature data.

2. Basic Model

A thin-layer material with a heat source at one end is illustrated in Figure 1, which
has the following characteristics:

(1) The material is homogeneous, isotropic, and extends infinitely in the x-direction.
(2) The material has a heat source set at one end, forming a Dirichlet boundary. The outer

surface of both the material and its boundary are insulated surfaces.
(3) The temperature of the material at moment t from the boundary x is noted as T’(x, t),

and the initial temperature of both the material and the boundary is T’(x, 0); the excess
temperature at distance x from the boundary is noted as T(x,t) = T’(x,t) − T’(x,0) (as
shown in Figure 2).
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(4) The excess temperature of the boundary as a function of time is denoted as f (t).
(5) The heat transfer from the heat source to the thin-layer material is regarded as a

one-dimensional process.
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The heat conduction process shown above can be expressed as model (I) as follows [2]:

∂T
∂t

= a
∂2T
∂x2 0 < x < +∞, t > 0 (1)

T(x, t)|t=0 = 0 x > 0 (2)

T(x, t)|x=0 = f (t) t > 0 (3)

T(x, t)|x→∞ = 0 t > 0 (4)

where t is the time (d), x is the distance of the calculation point from the boundary (m),
T(x,t) is the excess temperature function at moment t from the boundary x (◦C), f (t) is the
excess temperature function of the boundary (◦C), and a is the thermal diffusivity of the
thin-layer material (m2/d).

3. Solutions
3.1. Theoretical Solution

According to model (I), the variation range of x is (0, +∞); thus, the Fourier sine
transform to x can be applied. Basing on the characteristics and properties of the Fourier
transform, we get

F[T(x, t)] =
∫ ∞

0
T(x, t) sin ωx dx = T(ω, t) (5)

F
[

∂T
∂t

]
=

dT
dt

(6)

F
[

∂2T
∂x2

]
=
∫ ∞

0

∂2T
∂x2 sin ωx dx = ωT|x=0 −ω2T (7)

where T is the image function for the Fourier transform on T to x, ω is the Fourier operator,
and F is the Fourier transform operator.
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Combining Equation (1) and the boundary condition (3), we see that

dT
dt

= a
[
ω T|x=0 −ω2T

]
= a

[
ω f (t)−ω2T

]
(8)

The general solution of Equation (8) is

T(ω, t) = exp(−ω2at)
∫ t

0
aω f (ξ)· exp(−ω2at)dξ (9)

Considering the relationship between the inverse sine and cosine transformation and
the timely exchanging integral order, T(ω,t) can be derived from Equation (9) as

T(ω, t) = F−1
[ ·

T(ω, t)
]

= 2
π

∫ ∞
0

[
exp(−ω2at

)
·
∫ t

0 aω f (ξ) · exp(−ω2at)dξ] · sin ωxdω

= 2
π

∫ t
0 f (ξ)

{∫ ∞
0 ω exp

[
−ω2a(t− ξ)

]
sin ωxdω

}
dξ

= 2
π

∫ t
0 f (ξ)·

{
[ 1
−2a(t−ξ)

exp
[
−ω2a(t− ξ)

]∞
0

+ 1
2a(t−ξ)

∫ ∞
0 exp

[
−ω2a(t−)x cos ωxdω

]}
dξ

= x
π

∫ t
0

f (ξ)
t−ξ

∫ ∞
0 exp

[
−ω2a(t− ξ)

]
cos ωxdωdξ

(10)

where F−1 is the inverse Fourier transform operator.
The characteristic function of the Fourier transform is∫ ∞

0
exp(−ax) cos θxdx = 2

√
π

a
exp

(
− θ2

4a

)
(11)

According to Equations (10) and (11), T(x, t) can be expressed as

T(x, t) =
x

2
√

πa

∫ t

0

{
f (ξ)

(t− ξ)
3
2
· exp

[
− x2

4a(t− ξ)

]}
dξ (12)

Based on the definition of convolution, combined with the properties of the Fourier
transform, the customary commonly used solution, expressed as a probability density
function, can be obtained as

T(x, t) = f (ξ) ∗ [ x
2t
√

πat
exp(− x2

4at
)] = f (ξ) ∗ d

dt

[
2√
π

∫ +∞

x
2
√

at

exp
(
−τ2

)
dτ

]
= f (ξ) ∗ d

dt

[
erfc

(
x

2
√

at

)]
(13)

where * is convolution operator.
From the differential property of convolution, we obtain

f (t) ∗ d
dt [erfc( x

2
√

at
)] + erfc( x

2
√

at
)|t=0 f (t)

= erfc( x
2
√

at
) ∗ d[ f (t)]

dt + f (t)|t=0·erfc( x
2
√

at
)

(14)

Because erfc
(

x
2
√

at

)∣∣∣
t=0

=0, noting the equivalence between the third line of Equation (13)
and the first term at the left side of Equation (14), Equation (14) can be written as

T(x, t) = f (t)|t=0 · erfc
(

x
2
√

at

)
+ erfc

(
x

2
√

at

)
∗ d[ f (t)]

dt
(15)

Equation (15) is the theoretical solution of the semi-infinite domain one-dimensional
heat conduction model when the function of boundary condition is f (t). During the solving
process, f (t) is not directly involved in the transformation, which provides a solving method
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for models that are difficult to solve by directly applying the Fourier transform due to the
complexity of f (t).

It should be pointed out that f (t) is conducted in the form of operators during the
transformation process, so f (t) should satisfy the requirements of the Fourier transform, i.e.,
f (t) is absolutely integrable in any time segment [32].

3.2. Analytical Solution

In order to solve the model under this condition, the continuous function of bound-
ary condition f (t) is discretized according to the actual measurement process, without
considering its specific form.

In the field of mathematics, interpolation is a method used to obtain unknown data
through known discrete data in numerical analysis, and the commonly used interpolation
methods are piecewise linear interpolation, Lagrange’s interpolation, Newton interpolation,
and Hermite interpolation [33]. Among them, piecewise linear interpolation is the simplest
interpolation method, which connects every two adjacent nodes with a straight line, so that
a fold line as a piecewise linear interpolation function is formed, and the more segments
that appear in a piecewise linear interpolation, the smaller the interpolation error is.

This paper adopts the piecewise linear interpolation method, which is commonly
used in the engineering field to discrete f (t). This interpolation method can satisfy the
computational accuracy and facilitate the solving process, and the derived solution is
convenient for application. Therefore, the computational period is divided into several
computational time segments. Within each time segment, f (t) is described as a linear
variation function.

Initially, the temperature of the boundary is consistent with that of the material, and
then the boundary temperature suddenly changes by ∆T0, followed by a change in a certain
law. Assuming that ∆T0 is formed instantaneously and its duration is negligible, namely
f (0) = ∆T0, the interpolation on f (t) can be conducted by regarding ∆T0 as the reference
point, as illustrated in Figure 3, and the temperature variation in the i-th time segment
(between time points ti-1 and ti), fi(t), can be expressed as

fi(t) = fi−1 +
fi − fi−1

ti − ti−1
(t− ti−1) (16)

where fi is the boundary temperature at the end of the i-th time segment (or at the time
point ti) and ti−1 < t < ti, I ε N*.
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Thus, f (t) can be written as

f (t) = ∆T0 +
n

∑
i=1

βi · (t− ti−1)·H(t− ti−1) (17)

where βi = (fi − fi−1)/(ti − ti−1), t ≥ ti−1, I ε N*, and H(t − ti−1) is the Heaviside function,
when t < ti−1, H(t − ti−1) = 0, when t ≥ ti-1, H(t − ti−1) = 1.
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Substituting Equation (17) into Equation (15) leads to

T(x, t) = f (t)|t=0 · erfc
(

x
2
√

at

)
+ erfc

(
x

2
√

at

)
∗

n

∑
i=1

βi·H(t− ti−1) (18)

Considering f (0) = ∆T0 and that the property of H(t − ti−1) when t ≥ ti−1, gives

T(x, t) = ∆T0 · erfc
(

x
2
√

at

)
+

n

∑
i=1

βi

∫ t

ti−1

erfc
(

x
2
√

aζ

)
dζ (19)

Equation (19) is the analytical solution to this sort of problem.

3.3. Specific Analytical Solutions under Particular Conditions
3.3.1. f(t) = ∆T0

This boundary condition means that the corresponding temperature of the boundary
instantaneously changed by ∆T0, followed by maintaining stability, i.e., I = 0. Therefore,
the second item at the right end of Equation (19) is pointless, and Equation (19) converts to
the solution of the classical model for this sort of problem.

3.3.2. ∆T0 6= 0 ∩ i = 1

At this point, ti−1 = 0, t1 > 0 and Equation (17) becomes

f (t) = ∆T0 + β(t− t1) (20)

where t ≥ t1.
This condition means that the boundary temperature f (t) changes instantaneously by

∆T0 and remains constant until t1, followed linear variation at a rate of β (β > 0 means the
temperature rises, and β < 0 means the temperature falls). Then, T(x,t) can be written as

T(x, t) = ∆T0 · erfc
(

x
2
√

at

)
+ β

∫ t

t1

erfc
(

x
2
√

aζ

)
dζ (21)

The phenomenon that the boundary temperature rapidly changes at the beginning
and then slowly recovers to the initial temperature is common in practice. For example,
in a heat pipeline or an oil pipeline that needs to be heated in winter, the temperature of
the pipeline and its internal fluid rises rapidly at the beginning of the heating period and
then decreases as the heat supply gradually reduces until the next heating period, when
the pipeline temperature reaches the design value [34].

It should be noted that when t1 = 0, which means f (t) starts to change slowly with a
rate of β, following an instantaneous variation of ∆T0, i.e., f (t) = ∆T0 + β·t, then T(x,t) can
be expressed as

T(x, t) = ∆T0 · erfc
(

x
2
√

at

)
+ β

∫ t

0
erfc

(
x

2
√

aζ

)
dζ (22)

The excess temperature variation rate at distance x from the boundary, ϕ(x,t) = ∂T(x,t)/∂t
can be derived from Equation (22) as

ϕ(x, t) =
∆T0

2
√

πat3
· exp

(
− x2

4at

)
+ β · erfc

(
− x2

4at

)
(23)

For the point at distance x from the boundary, the excess temperature variation rate
caused by β is recorded as ϕβ(x,t), which can be resolved through Equation (23) under the
condition that ∆T0 = 0, and the excess temperature response caused by ∆T0 is denoted as
T0(x,t), which can be derived from Equation (22) under the condition that β = 0. Both ϕβ(x,t)
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and T0(x,t) contain erfc(x/2
√

at), meaning that ϕβ(x,t) has a variation rule identical to that
of T0(x,t), which also reflects the cumulative effect of β on T(x,t).

Particularly, when β < 0, meaning that f (t) decays slowly and linearly after an instanta-
neous variation of ∆T0, this type of condition is called the linear decay function boundary.

4. Methods

Based on temperature data obtained in the experiment, the analytical solution of the
heat conduction model under the linear decay function boundary condition is applied to
solve for the thermal diffusivity of soil by using principles of the inflection point method
and the curve fitting method.

4.1. Curve Fitting Method

The curve fitting method is a simple and convenient method for parameter estimation,
avoiding the systematic calculation errors caused by traditional parameter estimation
methods, such as the traditional moment method and the maximum likelihood method;
thus, it is widely used in the field of hydrogeology [35]. For a temperature measurement
point at distance x from the boundary, where the value of x is fixed, ϕt(x,t) can be calculated
for different values of a at different moments t by Equation (23), from which a family of
theoretical curves corresponding to different a values, ϕt(x,t) − t can be drawn. Meanwhile,
from the measured data at the temperature measurement point, the measured temperature
variation rate curve, ϕm(x,t) − t can be drawn.

When the value of a in the ϕm(x,t) − t curve is identical to that of a curve in the
ϕt(x,t) − t theoretical family, the two curves should have the same shape and overlap
exactly. According to this principle, the value of a in the specimen can be determined by
the curve-fitting process of the measured ϕm(x,t) − t curve and the theoretical ϕt(x,t) − t
curve family.

4.2. Inflection Point Method

The inflection point method is a method of plotting curves according to actual measure-
ment data and using its inflection point to graphically solve for parameters [36]; this method
is widely applied in many fields, including civil engineering, chemistry, and hydrogeology.

According to Equation (23), we have

∂ϕ(x, t)
∂t

=
1

2
√

πat3
· exp(− x

4at
) ·
[

∆T0

t

(
−3

2
+

x2

4at

)
+ β

]
(24)

It can be seen from Equation (24) that an inflection points exist on the ϕ(x,t) − t curve.
Let us denote the time corresponding to inflection points as tg, which can be calculated by
tg = 0 as

tg =
∆T0

2β
·

3
2
−

√
(

3
2
)

2
− (β/∆T0)x2

a

 (25)

tg =
∆T0

2β
·

3
2
+

√
(

3
2
)

2
− (β/∆T0)x2

a

 (26)

When the value of x is fixed, the variation process of ϕ(x,t) with time can be drawn as
the ϕ(x,t) − t curve.

It should be noted that, regardless of the positive or negative of β, under the boundary
condition, which is a monotonic function with ∆T0 and β as fixed values, there cannot
be two inflection points on the ϕ(x,t) − t curve at any point. That is, only one of the
Equations (25) and (26) regarding tg is reasonable. From Equation (26), when β < 0, tg < 0,
this is not consistent with the physical meaning of the problem, i.e., Equation (26) is not
universal. The calculation result of Equation (25) does not produce the above contradiction,
i.e., Equation (25) is universal.
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According to the inflection point tg of the measured ϕ(x,t) − t curve, the model
parameter a can be calculated from Equation (25), when combined with the measured ∆T0,
β, and x in the test.

5. Results

A soil specimen (d = 3.0 m, b = 1.5 m, c = 0.3 m, as shown in Figure 1) is taken from an
observation hole buried at a depth of about 20 m in a ground source heat pump project in
Hefei City. A steel pipe with an outside diameter of 0.15 m is pre-set at one end as a heat
source. The steel pipe and the specimen are protected by heat insulation material. Two
temperature measurement fibers are set in the specimen at 0.3 m and 0.5 m from the steel
pipe, respectively.

In a test lasting two days, the initial temperature of the specimen is 17.97 ◦C. At the
initial stage of the test, hot water of 36 ◦C is poured into the steel pipe quickly, then the
water temperature is slowly decreased at an approximately constant rate by the resistance
heater. At the end of the test, the water temperature reaches 35.5 ◦C. Thus, ∆T0 = 18.03 ◦C,
β = −0.25 ◦C/d. The results of the measured Tm(x,t) of measurement point 1 at 0.3 m from
the heat source are given in Table 1.

Table 1. Tm(x,t) and ϕm(x,t) of measurement point 1 (x = 0.3 m).

t (h) Tm(x,t) (◦C) ϕm(x,t) (◦C·h−1)

3 * 18.03 0.020
4 18.10 0.070
5 18.22 0.120
6 18.38 0.160
8 18.80 0.210
10 19.27 0.235
12 19.74 0.235
14 20.20 0.230
16 20.64 0.220
20 21.41 0.193
24 22.09 0.170

36 * 23.47 0.115
* The temperature variation at measurement point 1 is not significant during the first 2 h and last 12 h of the test;
thus, relative measurements are not listed.

5.1. Curve Fitting Method

The curve fitting process is illustrated in Figure 4.
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As shown in Figure 4, the points on the measured curve ϕm(x,t) – t are approximately
in the middle of the theoretical curve ϕt(x,t) – t, with a = 0.031 m2/d and a = 0.032 m2/d.
Hence, the value of a can be determined as 0.0315 m2/d.

Substituting a = 0.0315 m2/d into Equation (23), the temperature variation process
of measurement point 2 can be calculated. We compare the calculation results with the
measured data to verify the reliability of the calculated parameter value and the rationality
of the test process.

The results of the measured Tm(x,t) of measurement point 2 at 0.5 m from the heating
device are given in Table 2 and Figure 5.

Table 2. Tm(x,t), ϕm(x,t) and ϕt(x,t) of measurement point 2 (x = 0.5 m).

t (h) Tm(x,t) (◦C) ϕm(x,t) (◦C·h−1) ϕt(x,t) (◦C·h−1)

8 * 18.05 0.010 0.008
10 18.09 0.020 0.019
12 18.15 0.030 0.032
14 18.24 0.045 0.045
16 18.35 0.055 0.056
20 18.63 0.070 0.072
24 18.95 0.080 0.082
36 19.93 0.082 0.085
48 20.86 0.077 0.077

* The temperature change at measurement point 2 is not significant during the first 7 h of the test; thus, the
corresponding measurement data are not included.
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From Table 2 and Figure 5, it can be seen that the measured curve ϕm(x,t) − t and the
theoretical curve ϕt(x,t) − t at measurement point 2 fit well, indicating that the value of a
derived from the temperature data of measurement point 1 is reliable.

5.2. Inflection Point Method

The ϕm(x,t) − t curve of measurement point 1 is illustrated in Figure 6.
Figure 6 shows that the inflection point of the ϕm(x,t) − t curve, tg appears at 11.4 h or

0.475 d. According to Equation (25), the value of a is calculated as 0.0314 m2/d.
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6. Discussion
6.1. Comparison to Traditional Solving Method

When the variation process of f (t) is complicated, and its expression is outside the
range of the existing Fourier transform table, or the product of the image function of f (t)
and the solution of the ordinary differential equation is not within the range of the existing
inverse Fourier transform table, it will be very difficult to solve the problem using the
traditional Fourier transform method.

The method proposed in this paper to derive the theoretical solution using the Fourier
transform property and to obtain the analytical solution by substituting the piecewise linear
interpolation equation of boundary temperature into the theoretical solution can effectively
solve the above problem. It should be noted that when the form of f (t) is relatively simple,
such as a constant or an exponential function, the analytical solution can be obtained by
substituting f (t) into the theoretical solution directly, thus quickly solving the problem.

6.2. Comparison of Thermal Diffusivity Obtained by the Two Methods

From Section 5, it can be seen that the values of a given by the curve fitting method and
the inflection point method are basically consistent, and are within the range of empirical
values of a in the location of the project [16].

6.3. Variation Laws of the Appearance Moment of the Inflection Point

As indicated in Equation (25), the appearance moment of the inflection point, tg,
is related to the parameters of ∆T0, β, x, and a. Now set the value of a as a fixed
value, i.e., 0.0314 m2/d, and the variation rules of tg with other three parameters are
discussed subsequently.

The corresponding results of inflection point tg at different value of ∆T0, β, and x,
calculated by Equation (25), are listed in Tables 3–5.

Table 3. Results of tg at different values of ∆T0 when x = 0.3 m and β = −0.25 ◦C/d.

∆T0 (◦C) tg (h)

10 11.375
14 11.400
18 11.415
22 11.424
26 11.430
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Table 4. Results of tg at different values of β when x = 0.3 m and ∆T0 = 18 ◦C.

β (◦C·d−1) tg (h)

−0.15 11.435
−0.20 11.425
−0.25 11.415
−0.30 11.405
−0.35 11.395

Table 5. Results of tg at different values of x when ∆T0 = 18 ◦C and β = −0.25 ◦C/d.

x (m) tg (h)

0.20 5.086
0.25 7.937
0.30 11.415
0.35 15.512
0.40 20.224

Tables 3–5 show that the corresponding results of tg rise with the increasing values of
∆T0, β, and x, respectively; that is, the higher the initial temperature of the heat source, the
slower the temperature of the heat source decreases, and the further away from the heat
source, then the later the inflection point of the temperature variation velocity curve ϕ(x,t)
− t appears. Moreover, tg rises more significantly with the increasing value of x than that
of ∆T0 and β; the detailed variation process is illustrated in Figure 7.
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7. Conclusions

In this paper, we presented a new method for deriving analytical solutions for a 1D
heat conduction model and its application for computing thermal diffusivity. The main
findings are summarized as follows.

1. When it is difficult to give a specific and accurate expression for boundary tempera-
ture, due to its complicated variation process, the properties of the Fourier transform
and the differential characteristic of the convolution integral can be fully utilized for
deriving the theoretical solution to the 1D heat conduction model, without consid-
ering the detailed transformation process of f (t). In addition, the piecewise linear
interpolation method is adopted to discretize the actual temperature variation process,
followed by substituting the interpolation function into the theoretical solution, thus
providing a shortcut method to obtain a solution composed of more commonly used
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functions with a relatively simple form. For the study of similar problems based on
this sort of heat conduction model, this resolving method can also be referenced.

2. Based on the derived solution and the variation characteristics of the temperature
variation rate ϕ(x,t) with time t, the curve fitting method and the inflection point
method used to calculate the thermal diffusivity a are given, and the values of a
calculated by the two methods are basically consistent.

3. For a certain material (i.e., a is a fixed value), the higher the initial temperature of the
heat source, the slower the temperature of the heat source decreases, and the further
away from the heat source, then the later the inflection point of the ϕ(x,t)-t curve (the
curve of temperature variation velocity curve at distance x from the boundary with
time t) appears.
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Nomenclature
a thermal diffusivity, m2/d
f boundary temperature, ◦C
F Fourier transform operator
F−1 inverse Fourier transform operator
t time, d
tg the appearance moment of inflection point, h
T temperature of calculation point, ◦C
T image function for Fourier transform
∆T0 instantaneous change of boundary temperature, ◦C
x distance from the boundary of the calculation point, m
β boundary temperature variation rate, ◦C/d
ϕ temperature variation rate of the calculation point, ◦C/h
ω Fourier operator
* convolution operator
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