
Citation: Di Martino, F.; Sessa, S. A

Multilevel Fuzzy Transform Method

for High Resolution Image

Compression. Axioms 2022, 11, 551.

https://doi.org/10.3390/

axioms11100551

Academic Editor: Hari

Mohan Srivastava

Received: 22 September 2022

Accepted: 11 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A Multilevel Fuzzy Transform Method for High Resolution
Image Compression
Ferdinando Di Martino 1,2,* and Salvatore Sessa 1,2

1 Dipartimento di Architettura, Università degli Studi di Napoli Federico II, Via Toledo 402, 80134 Napoli, Italy
2 Centro Interdipartimentale Alberto CalzaBini, Università degli Studi di Napoli Federico II, Via Toledo 402,

80134 Napoli, Italy
* Correspondence: fdimarti@unina.it; Tel.: +39-0812538908; Fax: +39-081238905; Mobile: +39-3334529362

Abstract: The Multilevel Fuzzy Transform technique (MF-tr) is a hierarchical image compression
method based on Fuzzy Transform, which is successfully used to compress images and manage
the information loss of the reconstructed image. Unlike other lossy image compression methods, it
ensures that the quality of the reconstructed image is not lower than a prefixed threshold. However,
this method is not suitable for compressing massive images due to the high processing times and
memory usage. In this paper, we propose a variation of MF-tr for the compression of massive images.
The image is divided into tiles, each of which is individually compressed using MF-tr; thereafter, the
image is reconstructed by merging the decompressed tiles. Comparative tests performed on remote
sensing images show that the proposed method provides better performance than MF-tr in terms of
compression rate and CPU time. Moreover, comparison tests show that our method reconstructs the
image with CPU times that are at least two times less than those obtained using the MF-tr algorithm.

Keywords: F-transform; MF-tr; MIMMF-tr; compression rate; PSNR; PSNR threshold

MSC: 03E72; 15B15; 26E50; 62H35; 94A08

1. Introduction

The bi-dimensional Fuzzy Transform (F-transform) has been initially proposed in [1]
as a lossy image compression technique. The direct F-transform is applied to construct the
compressed image and the image is reconstructed by computing the inverse F-transform.
In [2,3], the image is partitioned in blocks and the F-transform technique is applied to
compress each block. In [2], the authors show that the F-transform image compression
technique applied to blocks of the image achieves the best performance with respect to
the images in which fuzzy relation equations are applied. In [3,4], the authors compare
the F-transform and JPEG image compression technique, showing that the two methods
provide similar results in terms of decompressed image quality, but F-transform has shorter
execution times than JPEG.

In the last decade, the bi-dimensional F-transform has been applied in various image pro-
cessing problems, such as image fusion [5–7], image autofocus [8,9], edge detection [10,11], im-
age segmentation [12,13], image watermarking [14], and noise reduction [15]. An overview
of the main image processing techniques that use the two-dimensional F-transform is
provided in [16].

To control the loss of information due to the compression, the authors of [17] proposed
a variation of the F-transform method called Multilevel F-transform (MF-tr), in which the
image is compressed hierarchically in a multilevel structure similar to the ones used in
Laplace Pyramid [18] and Wavelet-based [19,20] image compression. Initially, the image is
compressed using the two-dimensional block-based F-transform method. It is subsequently
decompressed, and the quality of the decompressed image compared to the original image
is measured, computing the Peak Signal to Noise Ratio index (PSNR). If the quality of

Axioms 2022, 11, 551. https://doi.org/10.3390/axioms11100551 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11100551
https://doi.org/10.3390/axioms11100551
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-5690-5384
https://orcid.org/0000-0002-4303-2884
https://doi.org/10.3390/axioms11100551
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11100551?type=check_update&version=2

Axioms 2022, 11, 551 2 of 13

the decompressed image is lower than a predetermined threshold, the “Error” image
is constructed, which is provided by the difference between the original image and the
decompressed one, and the two-dimensional F-Transform is applied to compress the Error
image. The reconstruction image will consist of the previously decompressed image in
addition to the decompressed image of the Error. The PSNR of the reconstructed image is
computed with respect to the original image; if the PSNR is below the threshold, the new
Error image is built and the process is iterated into the next level. The process ends when
the PSNR of the reconstructed image with respect to the original image is greater than or
equal to the threshold.

The final reconstructed image is given by the sum of all reconstructed images com-
puted in each level. This method represents a trade-off between the reconstructed image
quality and the compression rate. If it is necessary to obtain a high quality of the recon-
structed image, with a minimum loss of information compared to the original image, then
a high value of the PSNR threshold is set and the execution times will be longer.

In [21], a variation of MF-tr, called Fast Multilevel Fuzzy Transform (Fast M-ftr), is
proposed to accelerate execution times. In Fast M-ftr, a preprocessing phase is performed to
find the optimal value of the compression rate, which guarantees to minimize the number
of iterations.

The bi-dimensional F-transform can be applied to compress high resolution images.
The authors of [22] compared four satellite lossy image compression methods using the
wavelet domain, which are the image compression algorithm proposed by the Consultative
Committee for Space Data Systems (CCSDS) [23], Wavelet lossy image compression [24],
Bandelet [25], and JPEG 2000 [26]. The authors show that the CCSDS has the highest
resolution image compression.

In [27], the authors use pseudo-exponential functions as basic functions. They compare
the results with the ones obtained by applying the F-transform with cosinusoidal basic
functions and wavelet image compression methods, showing that the decompressed images
obtained with their method have high quality, but also high time consumption.

A hybrid massive image compression method is proposed in [28]. The bi-dimensional
F-transform is used to compress the original image. Then, adjoint pixels in the compressed
image with the same gray level are binned by merging them in a bin.

This method is very effective in the lossy compression of massive images, where it is
not necessary to limit or reduce the information loss. In addition, the binning of images
compressed via the bi-dimensional F-transform is a good trade-off between the level of
compression and the quality of the reconstructed image.

In some cases, as in high level medical and remote sensing images, it is necessary to
check that the quality of the decompressed image remains above a prefixed threshold. The
F-transform massive image compression [28] is unsuitable for checking that the quality of
the decompressed image is always greater than the threshold, unlike the algorithms based
on the bi-dimensional MF-tr [17,21].

In this paper, we present a new approach based on the MF-tr to massive images. We
call this method Massive Image Multilevel F-transform compression method (MIMF-tr).
Our idea is to split the image into tiles of equal size. Splitting the image in tiles is necessary
to compress massive images; each tile is compressed separately by executing the MF-tr
compression algorithm. Then, all of the compressed tiles are merged to compose the
compressed image. The decompressed image is obtained by executing the MF-tr image
reconstruction method to each compressed tile and, finally, merging the reconstructed tiles.

MIMF-tr, similar to MF-tr, allows for controlling the quality of the compressed image.
Furthermore, unlike MF-tr, MIMF-tr is suitable for compressing massive images, adopting
a technique of partitioning the image in tiles and compressing the tiles separately.

In Figure 1, the MIMF-tr image compression and reconstruction methods are schematized.

Axioms 2022, 11, 551 3 of 13

Axioms 2022, 11, x FOR PEER REVIEW 3 of 13

In Figure 1, the MIMF-tr image compression and reconstruction methods are sche-

matized.

Figure 1. Schema of the MIMF-tr compression and reconstruction algorithms.

The Peak Signal to Noise Ratio (PSNR) measure is used to measure the quality of the

compression. Each tile is partitioned in blocks and each block is compressed using the MF-

tr compression method, in which the iteration process with the execution of the subse-

quent level continues until the PSNR of the decompressed block is greater than or equal

to a fixed threshold.

In Section 2, we briefly describe the base concepts of direct and inverse F-transform

and discuss the MF-tr image compression and reconstruction algorithms. In Section 3, we

present the MIMF-tr image compression and reconstruction algorithms. The results of

comparison tests executed on massive images are shown in Section 4. Conclusions are

included in Section 5.

2. Preliminaries

2.1. Discrete Direct and Inverse F-Transform for Coding/Decoding Images

The bi-dimensional discrete F-transform was applied in [1–3] for coding/decoding a

gray level image by approximating a continuous function f: X → Y in a closed interval

[a,b] based on the knowledge of the value of f in a discrete set of points.

In [1], the concept of basic functions is introduced, which is given by the fuzzy set of

a fuzzy partition of a closed interval real domain [a,b], as described below.

Let {x1, x2, …, xn} be a set of n ≥ 2 points of [a,b], called nodes, in order that x1 = a < x2

<…< xn = b. A fuzzy partition of [a,b] is given by a family of fuzzy sets A1,…,An: [a,b] →

[0,1], where Ai(x), i = 1,2,…,n, are continuous functions on [a,b] if the following conditions

hold:

• Ai(xi) = 1, ∀ i ∈ {1,2,…,n};

• Ai(x) = 0 ∀ x ∉ (xi−1, xi+1), where we assume x0 = x1 = a and xn+1 = xn = b;

• Ai(x) strictly increases on [xi−1, xi], ∀ x ∈ [a,b], and ∀ i ∈ {1,2,…,n};

• Ai(x) strictly decreases on [xi, xi+1], ∀ x ∈ [a,b], and ∀ i ∈ {1,2,…,n−1};

• ∑ Ai�x�n
i=1 =1, x ∈ [a,b].

Let f be a continuous function defined in [a,b]. Furthermore, let P = { p1,...,pN } be a set

of N points in [a,b], where the values assumed by the function f are known. The set P is

called a set of points, which is sufficiently dense with respect to the fuzzy partition {A1,

Figure 1. Schema of the MIMF-tr compression and reconstruction algorithms.

The Peak Signal to Noise Ratio (PSNR) measure is used to measure the quality of
the compression. Each tile is partitioned in blocks and each block is compressed using
the MF-tr compression method, in which the iteration process with the execution of the
subsequent level continues until the PSNR of the decompressed block is greater than or
equal to a fixed threshold.

In Section 2, we briefly describe the base concepts of direct and inverse F-transform
and discuss the MF-tr image compression and reconstruction algorithms. In Section 3,
we present the MIMF-tr image compression and reconstruction algorithms. The results
of comparison tests executed on massive images are shown in Section 4. Conclusions are
included in Section 5.

2. Preliminaries
2.1. Discrete Direct and Inverse F-Transform for Coding/Decoding Images

The bi-dimensional discrete F-transform was applied in [1–3] for coding/decoding
a gray level image by approximating a continuous function f : X→ Y in a closed interval
[a,b] based on the knowledge of the value of f in a discrete set of points.

In [1], the concept of basic functions is introduced, which is given by the fuzzy set of a
fuzzy partition of a closed interval real domain [a,b], as described below.

Let {x1, x2, . . . , xn} be a set of n ≥ 2 points of [a,b], called nodes, in order that
x1 = a < x2 < . . . < xn = b. A fuzzy partition of [a,b] is given by a family of fuzzy sets
A1, . . . ,An: [a,b]→ [0,1], where Ai(x), i = 1,2, . . . ,n, are continuous functions on [a,b] if the
following conditions hold:

• Ai(xi) = 1, ∀ i ∈ {1,2, . . . ,n};
• Ai(x) = 0 ∀ x /∈ (xi−1, xi+1), where we assume x0 = x1 = a and xn+1 = xn = b;
• Ai(x) strictly increases on [xi−1, xi], ∀ x ∈ [a,b], and ∀ i ∈ {1,2, . . . ,n};
• Ai(x) strictly decreases on [xi, xi+1], ∀ x ∈ [a,b], and ∀ i ∈ {1,2, . . . ,n−1};
• ∑n

i=1 Ai(x)= 1, x ∈ [a, b].

Let f be a continuous function defined in [a,b]. Furthermore, let P = { p1,...,pN } be a set of
N points in [a,b], where the values assumed by the function f are known. The set P is called
a set of points, which is sufficiently dense with respect to the fuzzy partition {A1, A2, . . . , An}
if for each basic function Ai, i = 1, . . . ,n, exists in at least a point pj, j = 1, . . . ,m, in order that
Ai(pj) > 0.

Axioms 2022, 11, 551 4 of 13

If P is sufficiently dense with respect to the fuzzy partition {A1, A2, . . . , An}, we can
define the n-dimensional vector F = [F1, . . . ,Fn] with components:

Fi =
∑N

j=1 f
(

pj

)
Ai

(
pj

)
∑N

j=1 Ai

(
pj

) i = 1, 2, . . . , N (1)

called discrete direct F-transform of f with respect to the fuzzy partition {A1, A2, . . . , An}.
The value of f in a point x ∈ [a,b] can be approximated using the discrete inverse

F-transform of f with respect to {A1, A2, . . . , An}, given by the formula:

fF,n(x) =
n

∑
i=1

Fi Ai(x) (2)

Now, let I be an N×M image. The previous concept of direct and inverse F-transform of
a function defined on a real closed interval [a,b], can be extended to two-variable functions
defined in the closed interval [a,b] × [c,d]. In this case, we can consider the image I as
a bi-dimensional function defined on the closed interval [1,N] × [1,M], known in all the
points with coordinates (i,j) of the pixels, where i ∈ [1,N] and j ∈ [1,M].

Furthermore, let A1, . . . , An: [1,N]→ [0,1] be a fuzzy partition of [1,N] and B1, . . . ,
Bm: [1,M]→ [0,1] be a fuzzy partition of [1,M]. Clearly, the sets of points P={1,2, . . . , N}
and Q={1,2, . . . , M} are sufficiently dense with respect to the partitions {A1, A2, . . . , An}
and {B1, . . . , Bm}, respectively. Therefore, we can define the bi-dimensional discrete direct
F-transform of f given by the matrix F with components:

Fkl =
∑M

j=1 ∑N
i=1 f

(
pi, qj

)
Ak(pi)Bl

(
qj

)
∑M

j=1 ∑N
i=1 Ak(pi)Bl

(
qj

) , i = 1, 2, . . . , N, j = 1, 2, . . . , M (3)

The compressed n ×m image is given by the direct F-transform F. The compression
rate (the inverse of the compression ratio parameter) is ρ = n×m

N×M .
The original image is reconstructed by computing the bi-dimensional discrete inverse

F-transform with respect to {A1, A2, . . . , An} and {B1, B2, . . . , Bm} given by:

IF
nm(i, j) =

n

∑
k=1

m

∑
l=1

FklAk(i)Bl(j) (4)

In [2–4], the bi-dimensional discrete direct F-transform is applied to the compressed images.

2.2. Multilevel F-Transform for Massive Image Compression

The MF-transform image compression method is an F-transform based method that
allows you to control the loss of information in compression phase.

Initially (Level 1), the source image is compressed using the bi-dimensional F-transform.
Then, it is decompressed and the PSNR is measured and compared with the original image.

Formally, let I0 be the N × M source image. It is compressed using the direct bi-
dimensional F-transform in an n ×m image IC

1 and it is decompressed using the inverse
bi-dimensional F-transform in an N × M image IF

1 . Call IR
1 the image reconstructed at

Level 1. At this level, we have IR
1 = IF

1 , namely, the reconstructed image at the first level
corresponds to the decompressed image.

The PSNR index is computed to measure the quality of the reconstructed image at each
level. If the PSNR is greater than or equal to a prefixed threshold PSNRth the algorithm
ends. Otherwise, a further image is calculated, called Error, whose pixels are given by the
difference in absolute value between the corresponding pixels of the original image and
those of the decompressed image.

Axioms 2022, 11, 551 5 of 13

The error image constitutes the input image to the next level (Level 2) I2. The previous
process is repeated, obtaining the compressed image IC

2 and decompressed image IF
2 . The

reconstructed image at this level is given by IR
2 = IF

2 + IR
1 . If the PSNR of the reconstructed

image IR
2 measured with respect to the source image I0 is greater than or equal to PSNRth,

then the process ends. Otherwise, the Level 2 error is calculated, which is given by the
formula I2 =

∣∣∣IF
2 − I1

∣∣∣, which represents the absolute difference between the source image
at Level 2 and its decompressed image. The image I2 is the source image in the input to the
next level, Level 3.

This process continues iteratively until the PSNR of the reconstructed image at the
level L, such as IR

L , measured with respect to the source image I0 is greater than or equal
to PSNRth.

The PSNR of the image reconstructed at Level k is obtained by calculating the Mean
Square Error (MSE) with respect to the source image I0, given by:

MSE =
∑N

i=1 ∑M
j=1 (I

R
k (i, j)− I0(i, j))

2

N×M
(5)

The PSNR index is given by the formula:

PSNR = 20 log10
GrLev− 1

MSE
(6)

where the parameter GrLev is the number of gray levels of the source image.
The final reconstructed image is given by:

IR
L = IR

L−1 + IF
L =

L

∑
k=1

IF
k (7)

The pseudocode of the MF-tr image compression algorithm is shown below (Algorithm 1).
It is executed by assigning the N ×M source image I0 as an input parameter, which is the
compression rate ρ and the PSNR threshold PSNRth.

Algorithm 1 MF-tr image compression

Input:
N ×M source image I0
Compression rate ρ

Threshold similarity PSNRth
Output: Compressed n ×m images obtained at each level
1 I:=I0,
2 k:=1
3 IR:=0 // IR is initialized to the Null N ×M image
4 stopIter:=FALSE
5 PSNRold:=PSNRth
6 While (stopIter=FALSE)
7 IC[k]:=DirectFTR(I,ρ) // Compression via direct F-transform
8 IF:=InversetFTR(IC[k], ρ) // Decompression via inverse F-transform
9 IR:=IR + IF // Decompression via inverse F-transform
10 Calculate the PSNR index (6)
11 If (PSNR ≥ PSNRth) Then
12 stopIter:=TRUE
13 Else
14 k:=k+1
15 I :=

∣∣∣IF − I
∣∣∣

16 End If
17 End While
18 Return IC[1], IC[2], . . . , IC[k]

Axioms 2022, 11, 551 6 of 13

The reconstructed image is obtained by (7). In Algorithm 2, the image reconstruction
algorithm is shown.

Algorithm 2 MF-tr image reconstruction

Input:
n ×m compressed images IC[1], IC[2], . . . , IC[L]
Compression rate ρ

Output: Reconstructed N ×M image IR

1 IR: =0 // IR is initialized to the Null N ×M image
2 For k = 1 to L
3 IF: =InversetFTR(IC[k], ρ) // Decompression via inverse F-transform
4 IR: =IR + IF

5 Next k
6 Return IR

The compressed image will be constituted by L matrices with dimension n ×m. The
final compression rate will be given by:

ρR =
L× n×m

N×M
= Lρ (8)

3. The Massive Images Multilevel F-Transform Image Compression Method

The MF-tr technique is not suitable for handling massive images as it would require
high CPU times and memory capacity. On the other hand, techniques for reducing the
complexity of the image, such as the one proposed in [28], are inapplicable if it is necessary
to guarantee a minimum loss of information in the reconstructed image.

We propose a variation of the MF-tr technique in which the image is split in T tiles
with an identical size. Each tile is separately compressed using the MF-tr method, with the
constraint that the PSNR index of the reconstructed tile with respect to the original tile is
not less than a prefixed threshold PSNRth.

Let I0 be a N0 × M0 massive image (for example, a remote sensing high resolution
image in a band). The image I0 is split in T tiles with size N ×M, where N = N0/T and
M = M0/T. Each tile is separately compressed by executing the MF-tr compression method.

If I0t is the tth N ×M tile, it will be compressed in a set of Lt n ×m matrices where Lt
is the number of levels needed to compress the tile I0t.

If ρ = n×m
N×M is the compression rate used to compress the N ×M matrix at each level,

the final compression rate is given by:

ρt
R =

Lt × n×m
N×M

= Ltρ (9)

The mean final compression rate is

ρR =
1
T

T

∑
t=1

ρt
R =

ρ

T

T

∑
t=1

Lt (10)

The MF-tr image compression algorithm (Algorithm 1) is used to reconstruct the
original image. The correspondent function MF-trCompression() is called the MIMF-tr
image reconstruction algorithm (Algorithm 3).

Axioms 2022, 11, 551 7 of 13

Algorithm 3 MIMF-tr image compression

Input:
N0 ×M0 source image I0
Compression rate ρ

Threshold similarity PSNRth
Output: Compressed n ×m images obtained at each level
1 Split the image I0 in T tiles I01, I02, . . . , I0T
2 For t = 1 to T
3 // Execute MF-trCompression() to compress the tth tile
4 It

C[1], It
C[2], . . . , It

C[Lt]: =MF-trCompression (I0t, ρ, PSNRth)
5 Next t
6 Return I1

C[1], I1
C[2], . . . , I1

C[L1], I2
C[1], I2

C[2], . . . , I2
C[L2], . . . , IT

C[1], IT
C[2], . . . , IT

C[Lt]

In Figure 2, the flow diagram of the MIMF-tr image compression algorithm is schematized.

Axioms 2022, 11, x FOR PEER REVIEW 7 of 13

Algorithm 3 MIMF-tr image compression.

Input:
N0 × M0 source image I0

Compression rate ρ

Threshold similarity PSNRth

Output: Compressed n × m images obtained at each level

1 Split the image <O in T tiles <O", <O:, … , <Og

2 For t = 1 to T

3 // Execute MF-trCompression() to compress the tth tile

4 Ib8[1], Ib8[2], … , Ib8[Lb]: =MF-trhijklmnnoip (IOb, ρ, PSNRbq)

5 Next t

6
Return I"8[1], I"8[2], … , I"8[L"], I:8[1], I:8[2], … , I:8[L:],…,
If8[1], If8[2], … , If8[Lb]

In Figure 2, the flow diagram of the MIMF-tr image compression algorithm is sche-

matized.

Figure 2. Flow diagram of the MIMF-tr image compression algorithm.

The MF-tr image reconstruction algorithm (Algorithm 2) is used to reconstruct the

original image. The correspondent function MF-trReconstruction() is called in the MIMF-

tr image reconstruction algorithm (Algorithm 4).

Figure 2. Flow diagram of the MIMF-tr image compression algorithm.

The MF-tr image reconstruction algorithm (Algorithm 2) is used to reconstruct the
original image. The correspondent function MF-trReconstruction() is called in the MIMF-tr
image reconstruction algorithm (Algorithm 4).

Algorithm 4 MIMF-tr image reconstruction

Input:
n ×m compressed images IC[1], IC[2], . . . , IC[L]
Compression rate ρ

Output: Reconstructed N ×M image IR

1 For t = 1 to T
2 // Execute MF-trReconstruction() to reconstruct the tth tile
3 IR

t =MF-trReconstruction(It
C[1], It

C[2], . . . , It
C[Lt], ρ)

4 Next t
5 IR: =merge (IR

1, IR
2, . . . , IR

T)
6 Return IR

In Figure 3, the flow diagram of the MIMF-tr image reconstruction algorithm is
schematized.

Axioms 2022, 11, 551 8 of 13

Axioms 2022, 11, x FOR PEER REVIEW 8 of 13

Algorithm 4 MIMF-tr image reconstruction

Input:
n × m compressed images \][^], \][_], … , \][`]
Compression rate ρ

Output: Reconstructed N × M image I9

1 For t = 1 to T

2 //Execute MF-trReconstruction() to reconstruct the tth tile

3 I9b = MF-trReconstruction(Ib8[1], Ib8[2], … , Ib8[Lb], ρ)

4 Next t

5 I9: = merge (I9", I9:, … , I9f�

6 Return I9

In Figure 3, the flow diagram of the MIMF-tr image reconstruction algorithm is sche-

matized.

Figure 3. Flow diagram of the MIMF-tr image reconstruction algorithm.

The final PSNR index of the reconstructed image with respect to the original one is

given by formula (6). The final compression rate, calculated by formula (10), varies ac-

cording to the PSNR threshold and the complexity of the image; the higher the quality of

the reconstructed image (i.e., intended to be guaranteed), the higher the average number

of levels necessary in the compression, and the higher the final compression rate +=, the

lower the compression of the image.

Since each tile is treated separately, the number of levels necessary in the compres-

sion can be different from tile to tile. If a tile contains more uniform or homogeneous im-

age areas, the compression process will require the generation of fewer layers, compared

to other tiles. A good choice of the number of tiles can be made in a way that some tiles

can cover uniform image areas.

We test the MIMF-tr algorithm on a sample of remote sensing massive images by

varying the number of tiles. To evaluate the best number of tiles in which we can split the

image, we measure the mean number of levels necessary to compress the tiles given by:

Figure 3. Flow diagram of the MIMF-tr image reconstruction algorithm.

The final PSNR index of the reconstructed image with respect to the original one
is given by formula (6). The final compression rate, calculated by formula (10), varies
according to the PSNR threshold and the complexity of the image; the higher the quality of
the reconstructed image (i.e., intended to be guaranteed), the higher the average number
of levels necessary in the compression, and the higher the final compression rate ρR, the
lower the compression of the image.

Since each tile is treated separately, the number of levels necessary in the compression
can be different from tile to tile. If a tile contains more uniform or homogeneous image
areas, the compression process will require the generation of fewer layers, compared to
other tiles. A good choice of the number of tiles can be made in a way that some tiles can
cover uniform image areas.

We test the MIMF-tr algorithm on a sample of remote sensing massive images by
varying the number of tiles. To evaluate the best number of tiles in which we can split the
image, we measure the mean number of levels necessary to compress the tiles given by:

L =
1
τ

T

∑
t=1

Lt (11)

We perform comparisons of our method with the MF-tr method measuring the final
PSNR, the final compression rate, and the number of levels obtained by executing the two
methods. In next section, we show and discuss the results of our tests.

4. Test Results

We test our method on a set of 200 HLS Landsat surface remote sensing images
extracted from the NASA Earth Data website 3660 × 3660 pixels [29]. The MIMF-tr
algorithm was implemented in a Python platform; the tests were executed on an Intel Core
i7-59360X processor with a clock frequency of 3 GHz. All the images are compressed with
a compression rate ρ = 0.067. The threshold PSNRth is set to 36.

We compare the performances of MIMF-tr with the ones of M-FTR in terms of number
of levels necessary to compress the source images, final compression rate, and CPU time,

Axioms 2022, 11, 551 9 of 13

using different values for the number of tiles in MIMF-tr. Briefly, we show in detail the
results obtained for three images in the dataset.

In Figure 4a, the original image is shown, while in Figure 4b, the reconstructed image
obtained by executing MF-tr is shown. Figure 4c–f shows the reconstructed images by
splitting the original image in 6, 10, 20, and 30 tiles, respectively.

Axioms 2022, 11, x FOR PEER REVIEW 9 of 13

x = 1
y � xz

g

z!"
 (91)

We perform comparisons of our method with the MF-tr method measuring the final

PSNR, the final compression rate, and the number of levels obtained by executing the two

methods. In next section, we show and discuss the results of our tests.

4. Test Results

We test our method on a set of 200 HLS Landsat surface remote sensing images ex-

tracted from the NASA Earth Data website 3660 × 3660 pixels [29]. The MIMF-tr algorithm

was implemented in a Python platform; the tests were executed on an Intel Core i7-59360X

processor with a clock frequency of 3 GHz. All the images are compressed with a com-

pression rate ρ = 0.067. The threshold PSNRth is set to 36.

We compare the performances of MIMF-tr with the ones of M-FTR in terms of num-

ber of levels necessary to compress the source images, final compression rate, and CPU

time, using different values for the number of tiles in MIMF-tr. Briefly, we show in detail

the results obtained for three images in the dataset.

In Figure 4a, the original image is shown, while in Figure 4b, the reconstructed image

obtained by executing MF-tr is shown. Figure 4c–f shows the reconstructed images by

splitting the original image in 6, 10, 20, and 30 tiles, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 4. Source image and reconstructed images. (a) Source image; (b) reconstructed using MFTR;

(c) reconstructed image (T = 6); (d) reconstructed image (T = 6); (e) reconstructed image (T = 20); (f)

reconstructed image (T = 30).

In Table 1, the results obtained by compressing the satellite source image with MF-tr

and MIMF-tr are shown in Figure 4a. The mean level, PSNR, final compression rate, and

CPU time are averaged on the three bands: Red, Green, and Blue.

Table 1. Mean levels, PSNR, mean compression rate, and CPU times for the source image in Figure

2a.

Algorithm Tile Mean Level PSNR {| CPU Time (s)

MF-tr - 5.00 36.44 0.33 94.65

MIMF-tr 6 4.00 36.40 0.27 78.28

MIMF-tr 10 3.40 36.38 0.23 77.49

Figure 4. Source image and reconstructed images. (a) Source image; (b) reconstructed using MFTR;
(c) reconstructed image (T = 6); (d) reconstructed image (T = 6); (e) reconstructed image (T = 20);
(f) reconstructed image (T = 30).

In Table 1, the results obtained by compressing the satellite source image with MF-tr
and MIMF-tr are shown in Figure 4a. The mean level, PSNR, final compression rate, and
CPU time are averaged on the three bands: Red, Green, and Blue.

Table 1. Mean levels, PSNR, mean compression rate, and CPU times for the source image in Figure 2a.

Algorithm Tile Mean Level PSNR ρR CPU Time (s)

MF-tr - 5.00 36.44 0.33 94.65
MIMF-tr 6 4.00 36.40 0.27 78.28
MIMF-tr 10 3.40 36.38 0.23 77.49
MIMF-tr 20 3.35 36.22 0.22 77.28
MIMF-tr 30 3.40 36.18 0.23 77.54

The best results are obtained by MIMF-tr using 20 tiles. Furthermore, independently
from the number of tiles set, the performances of MIMF-tr in terms of mean level, final
compression rate, and CPU times obtained using MIMF-tr are better than the ones obtained
using MF-tr. The final CPU time taken by MIMF-tr to compress the image is reduced
by more than 23% compared to the CPU time taken by MF-tr. In addition, the mean
number of levels achieved using MIMF-tr to obtain a reconstructed image with PSNR
greater than 36 is always less than the one achieved using MF-tr. The final compression
rate obtained executing MIMF-tr is always less than the final compression rate obtained by
running MF-tr.

Figure 5a shows another HLS Landsat surface remote sensing image. Figure 5b shows
the reconstructed image obtained by executing MF-tr. Figure 5c–f shows the reconstructed
images by splitting the original image in 6, 10, 20, and 30 tiles, respectively.

Axioms 2022, 11, 551 10 of 13

Axioms 2022, 11, x FOR PEER REVIEW 10 of 13

MIMF-tr 20 3.35 36.22 0.22 77.28

MIMF-tr 30 3.40 36.18 0.23 77.54

The best results are obtained by MIMF-tr using 20 tiles. Furthermore, independently

from the number of tiles set, the performances of MIMF-tr in terms of mean level, final

compression rate, and CPU times obtained using MIMF-tr are better than the ones ob-

tained using MF-tr. The final CPU time taken by MIMF-tr to compress the image is re-

duced by more than 23% compared to the CPU time taken by MF-tr. In addition, the mean

number of levels achieved using MIMF-tr to obtain a reconstructed image with PSNR

greater than 36 is always less than the one achieved using MF-tr. The final compression

rate obtained executing MIMF-tr is always less than the final compression rate obtained

by running MF-tr.

Figure 5a shows another HLS Landsat surface remote sensing image. Figure 5b

shows the reconstructed image obtained by executing MF-tr. Figure 5c–f shows the recon-

structed images by splitting the original image in 6, 10, 20, and 30 tiles, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 5. Source image and reconstructed images. (a) Source image; (b) reconstructed using MFTR;

(c) reconstructed image (T = 6); (d) reconstructed image (T = 6); (e) reconstructed image (T = 20); (f)

reconstructed image (T = 30).

In Table 2, the results obtained by compressing the satellite source image in Figure

5a with MF-tr and MIMF-tr are shown. The mean level, PSNR, and CPU time are averaged

on the three bands: Red, Green, and Blue.

Table 2. Mean levels, PSNR, mean compression rate, and CPU times for the source image in Figure

5a.

Algorithm Tiles Mean Level PSNR {| CPU Time (s)

MF-tr - 5.67 36.44 0.38 98.12

MIMF-tr 6 4.28 36.40 0.27 78.23

MIMF-tr 10 4.20 36.38 0.25 77.78

MIMF-tr 20 4.23 36.22 0.26 77.91

MIMF-tr 30 4.26 36.18 0.27 78.05

The best results are obtained by MIMF-tr using 10 tiles. As in the case of the previous

image, the performances of MIMF-tr are better than the ones of MF-tr, independently from

Figure 5. Source image and reconstructed images. (a) Source image; (b) reconstructed using MFTR;
(c) reconstructed image (T = 6); (d) reconstructed image (T = 6); (e) reconstructed image (T = 20);
(f) reconstructed image (T = 30).

In Table 2, the results obtained by compressing the satellite source image in Figure 5a
with MF-tr and MIMF-tr are shown. The mean level, PSNR, and CPU time are averaged on
the three bands: Red, Green, and Blue.

Table 2. Mean levels, PSNR, mean compression rate, and CPU times for the source image in Figure 5a.

Algorithm Tiles Mean Level PSNR ρR CPU Time (s)

MF-tr - 5.67 36.44 0.38 98.12
MIMF-tr 6 4.28 36.40 0.27 78.23
MIMF-tr 10 4.20 36.38 0.25 77.78
MIMF-tr 20 4.23 36.22 0.26 77.91
MIMF-tr 30 4.26 36.18 0.27 78.05

The best results are obtained by MIMF-tr using 10 tiles. As in the case of the previous
image, the performances of MIMF-tr are better than the ones of MF-tr, independently from
the number of tiles set. The CPU time taken by MIMF-tr to compress the image is reduced
by more than 22% compared to the CPU time taken by MF-tr and the final compression
rate and the mean number of levels are always less than the one measured using MF-tr.

Figure 6 shows another HLS Landsat surface remote sensing image. Figure 5b shows
the reconstructed image obtained by executing MF-tr. Figure 5c–f shows the reconstructed
images by splitting the original image in 6, 10, 20, and 30 tiles, respectively.

In Table 3, the results obtained compressing the satellite source image in Figure 4a
with MF-tr and MIMF-tr are shown. The mean levels, PSNR, and CPU time are averaged
on the three bands: Red, Green, and Blue.

Table 3. Mean levels, PSNR, mean compression rate, and CPU times for the source image in Figure 4a.

Algorithm Tiles Mean Level PSNR ρR CPU Time (s)

MF-tr - 4.67 36.44 0.36 94.21
MIMF-tr 6 3.23 36.40 0.22 76.34
MIMF-tr 10 3.17 36.38 0.21 76.09
MIMF-tr 20 3.09 36.22 0.20 75.94
MIMF-tr 30 3.16 36.18 0.21 76.02

Axioms 2022, 11, 551 11 of 13

Axioms 2022, 11, x FOR PEER REVIEW 11 of 13

the number of tiles set. The CPU time taken by MIMF-tr to compress the image is reduced

by more than 22% compared to the CPU time taken by MF-tr and the final compression

rate and the mean number of levels are always less than the one measured using MF-tr.

Figure 6 shows another HLS Landsat surface remote sensing image. Figure 5b shows

the reconstructed image obtained by executing MF-tr. Figure 5c–f shows the reconstructed

images by splitting the original image in 6, 10, 20, and 30 tiles, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 6. Source image and reconstructed images. (a) Source image; (b) reconstructed using MFTR;

(c) reconstructed image (T = 6); (d) reconstructed image (T = 6); (e) reconstructed image (T = 20); (f)

reconstructed image (T = 30).

In Table 3, the results obtained compressing the satellite source image in Figure 4a

with MF-tr and MIMF-tr are shown. The mean levels, PSNR, and CPU time are averaged

on the three bands: Red, Green, and Blue.

Table 3. Mean levels, PSNR, mean compression rate, and CPU times for the source image in Figure

4a.

Algorithm Tiles Mean Level PSNR {| CPU Time (s)

MF-tr - 4.67 36.44 0.36 94.21

MIMF-tr 6 3.23 36.40 0.22 76.34

MIMF-tr 10 3.17 36.38 0.21 76.09

MIMF-tr 20 3.09 36.22 0.20 75.94

MIMF-tr 30 3.16 36.18 0.21 76.02

The best results are obtained by MIMF-tr using 20 tiles. As in the previous examples,

the performances of MIMF-tr are better than the ones of MF-tr, independently from the

number of tiles set. The CPU time taken by MIMF-tr to compress the image is reduced by

more than 25% compared to the CPU time taken by MF-tr. Moreover, in this case, the

mean level and final compression rate measured executing MIMF-tr are less than the one

obtained executing MF-tr.

The graphs in Figure 7a–c show the trend of the mean level, final compression rate,

and CPU time obtained, respectively, by executing MIMF-tr with respect to MF-tr for all

the satellite images in the dataset. The measurements of the three parameters obtained by

executing MIMF-tr are averages obtained by executing MIMF-tr and decomposing the

source image into 6, 10, 20, and 30 tiles, respectively.

Figure 6. Source image and reconstructed images. (a) Source image; (b) reconstructed using MFTR;
(c) reconstructed image (T = 6); (d) reconstructed image (T = 6); (e) reconstructed image (T = 20);
(f) reconstructed image (T = 30).

The best results are obtained by MIMF-tr using 20 tiles. As in the previous examples,
the performances of MIMF-tr are better than the ones of MF-tr, independently from the
number of tiles set. The CPU time taken by MIMF-tr to compress the image is reduced
by more than 25% compared to the CPU time taken by MF-tr. Moreover, in this case, the
mean level and final compression rate measured executing MIMF-tr are less than the one
obtained executing MF-tr.

The graphs in Figure 7a–c show the trend of the mean level, final compression rate,
and CPU time obtained, respectively, by executing MIMF-tr with respect to MF-tr for all
the satellite images in the dataset. The measurements of the three parameters obtained
by executing MIMF-tr are averages obtained by executing MIMF-tr and decomposing the
source image into 6, 10, 20, and 30 tiles, respectively.

Axioms 2022, 11, 551 12 of 13

(a) (b) (c)

Figure 7. Trend of: (a) Mean level; (b) final compressed rate; (c) CPU time.

These results show that for all images, MIMF-tr has better performance than MF-tr,
both in terms of the number of levels required for compression and final compression rate
and CPU time, regardless of the number of tiles used in MIMF-tr.

Furthermore, the three trends in Figure 7a–c show that these performances increase
as the complexity of the image increases, i.e., the higher the number of levels required for
compression, the higher the increase in the final compression rate and CPU time.

5. Conclusions
In this research, a variation of the Multilevel Fuzzy Transform image compression

algorithm is proposed to optimize the compression of massive images. The image is de-
composed into tiles; each tile is compressed separately by running MF-tr and the com-
pressed tiles are subsequently merged to reconstruct the compressed image.

Our algorithm was tested on an extended sample of large satellite color images. The
comparative results showed that, regardless of the number of tiles used, our method per-
formed better than MF-tr both in terms of the number of levels required for compression,
as well as the final compression rate and CPU time. Performance is better the more com-
plex the image is, i.e., the greater the number of layers necessary to compress it.

These results highlight, in particular, two significant aspects:
- MIMF-tr is better suited than MF-tr for the compression of massive images; the strat-

egy employed by the algorithm of partitioning the image into tiles and separating the
compression of single tiles allow for the optimization of processing times and
memory consumption;

- MIMF-tr provides better performance than MF-tr, reducing the CPU time by more
than 20% and providing higher image compression than MF-tr, while ensuring the
same reconstructed image quality.
In the future, we intend to carry out further comparative tests on a larger sample of

massive images, to verify the performance and robustness of M-ftr in the presence of var-
ious types of noise in the image.

Author Contributions: Conceptualization, Ferdinando Di Martino (F.D.M.) and (Salvatore Sessa)
S.S.; methodology, F.D.M. and S.S.; software, F.D.M. and S.S.; validation, F.D.M. and S.S.; formal
analysis, F.D.M. and S.S.; investigation, F.D.M. and S.S.; resources, F.D.M. and S.S; data curation,
F.D.M. and S.S.; writing—original draft preparation, F.D.M. and S.S.; writing—review and editing,
F.D.M. and S.S.; visualization, F.D.M. and S.S.; supervision, F.D.M. and S.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 7. Trend of: (a) Mean level; (b) final compressed rate; (c) CPU time.

These results show that for all images, MIMF-tr has better performance than MF-tr,
both in terms of the number of levels required for compression and final compression rate
and CPU time, regardless of the number of tiles used in MIMF-tr.

Furthermore, the three trends in Figure 7a–c show that these performances increase
as the complexity of the image increases, i.e., the higher the number of levels required for
compression, the higher the increase in the final compression rate and CPU time.

Axioms 2022, 11, 551 12 of 13

5. Conclusions

In this research, a variation of the Multilevel Fuzzy Transform image compression
algorithm is proposed to optimize the compression of massive images. The image is decom-
posed into tiles; each tile is compressed separately by running MF-tr and the compressed
tiles are subsequently merged to reconstruct the compressed image.

Our algorithm was tested on an extended sample of large satellite color images.
The comparative results showed that, regardless of the number of tiles used, our method
performed better than MF-tr both in terms of the number of levels required for compression,
as well as the final compression rate and CPU time. Performance is better the more complex
the image is, i.e., the greater the number of layers necessary to compress it.

These results highlight, in particular, two significant aspects:

- MIMF-tr is better suited than MF-tr for the compression of massive images; the strategy
employed by the algorithm of partitioning the image into tiles and separating the
compression of single tiles allow for the optimization of processing times and memory
consumption;

- MIMF-tr provides better performance than MF-tr, reducing the CPU time by more
than 20% and providing higher image compression than MF-tr, while ensuring the
same reconstructed image quality.

In the future, we intend to carry out further comparative tests on a larger sample
of massive images, to verify the performance and robustness of M-ftr in the presence of
various types of noise in the image.

Author Contributions: Conceptualization, Ferdinando Di Martino (F.D.M.) and (Salvatore Sessa)
S.S.; methodology, F.D.M. and S.S.; software, F.D.M. and S.S.; validation, F.D.M. and S.S.; formal
analysis, F.D.M. and S.S.; investigation, F.D.M. and S.S.; resources, F.D.M. and S.S; data curation,
F.D.M. and S.S.; writing—original draft preparation, F.D.M. and S.S.; writing—review and editing,
F.D.M. and S.S.; visualization, F.D.M. and S.S.; supervision, F.D.M. and S.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Perfilieva, I. Fuzzy transforms. Fuzzy Sets Syst. 2006, 157, 993–1023. [CrossRef]
2. Di Martino, F.; Sessa, S. Compression and decompression of images with discrete fuzzy transforms. Inf. Sci. 2007, 17, 2349–2362.

[CrossRef]
3. Di Martino, F.; Loia, V.; Perfilieva, I.; Sessa, S. An image coding/decoding method based on direct and inverse fuzzy transforms.

Int. J. Approx. Reason. 2008, 48, 110–131. [CrossRef]
4. Di Martino, F.; Loia, V.; Sessa, S. Fuzzy transforms for compression and decompression of colour videos. Inf. Sci. 2010, 180,

3914–3931. [CrossRef]
5. Hodakova, P.; Perfilieva, I.; Dankova, M.; Vajgl, M. F-transform based image fusion. In Image Fusion; Ukimura, O., Ed.; IntechOpen:

London, UK, 2011; 440p, pp. 3–22. [CrossRef]
6. Manchanda, M.; Sharma, R. An improved multimodal medical image fusion algorithm based on fuzzy transform. J. Vis. Commun.

Image Represent. 2018, 51, 76–94. [CrossRef]
7. Di Martino, F.; Sessa, S. Complete image fusion method based on fuzzy transforms. Soft Comput. 2019, 23, 2113–2123.
8. Roh, S.B.; Oh, S.K.; Pedrycz, W.; Seo, K. Development of autofocusing algorithm based on fuzzy transform. Fuzzy Sets Syst. 2019,

288, 129–144.
9. Di Martino, F.; Sessa, S. Passive image autofocus by using direct fuzzy transform. Int. J. Comput. Sci. Eng. 2019, 20, 240–254.
10. Daňková, M.; Hodáková, P.; Perfilieva, I.; Vajgl, M. Edge detection using F-transform. In Proceedings of the 11th International

Conference on Intelligent Systems Design and Applications, Córdoba, Spain, 22–24 November 2011; pp. 672–677. [CrossRef]
11. Perfilieva, I.; Hodáková, P.; Hurtik, P. Differentiation by the F-transform and application for edge detection. Fuzzy Sets Syst. 2016,

288, 96–114. [CrossRef]
12. Di Martino, F.; Loia, V.; Sessa, S. A segmentation method for images compressed by fuzzy transforms. Fuzzy Sets Syst. 2010, 161,

56–74.

http://doi.org/10.1016/j.fss.2005.11.012
http://doi.org/10.1016/j.ins.2006.12.027
http://doi.org/10.1016/j.ijar.2007.06.008
http://doi.org/10.1016/j.ins.2010.06.030
http://doi.org/10.5772/602
http://doi.org/10.1016/j.jvcir.2017.12.011
http://doi.org/10.1109/ISDA.2011.6121733
http://doi.org/10.1016/j.fss.2014.12.013

Axioms 2022, 11, 551 13 of 13

13. Di Martino, F.; Sessa, S. PSO image thresholding on images compressed via fuzzy transforms. Inf. Sci. 2019, 506, 308–324.
[CrossRef]

14. Di Martino, F.; Sessa, S. Fragile watermarking tamper detection with images compressed by fuzzy transform. Inf. Sci. 2012, 195,
62–90. [CrossRef]

15. Alibabaie, N.; Latif, A. Adaptive periodic noise reduction in digital images using fuzzy transform. J. Math. Imaging Vis. 2021, 63,
503–527. [CrossRef]

16. Di Martino, F.; Sessa, S. Fuzzy transforms for image processing and data analysis. In Fuzzy Transforms for Image Processing and
Data Analysis: Core Concepts, Processes and Applications; Springer: Cham, Germany, 2020; Volume 250. [CrossRef]

17. Di Martino, F.; Sessa, S. A Multi-level image compression method based on fuzzy transforms. J. Ambient Intell. Humaniz. Comput.
2019, 10, 2745–2756. [CrossRef]

18. Boiangiu, C.A.; Cotofana, M.V.; Naiman, A.; Lambru, C. A generalized Laplacian Pyramid aimed at image compression. J. Inf.
Syst. Oper. Manag. 2016, 10, 327–335.

19. K Khan, U.R.; Ahmed, S.; Nazeer, T. Wavelet based image compression techniques: Comparative analysis and performance
evaluation. Int. J. Emerg. Technol. Eng. Res. 2017, 5, 9–13.

20. Karthikeyan, C.; Palanisamy, C. An efficient image compression method by using optimized discrete wavelet transform and
Huffman encoder. J. Comput. Theor. Nanosci. 2018, 15, 289–298. [CrossRef]

21. Di Martino, F.; Perfilieva, I.; Sessa, S. A fast multilevel fuzzy transform image compression method. Axioms 2019, 8, 135. [CrossRef]
22. Indradjad, A.; Nasution, A.S.; Gunawan, H.; Widipaminto, A. A comparison of satellite image compression methods in the

wavelet domain. In Proceedings of the IOP Conference Series Earth and Environmental Science, The 4th International Conference
of Indonesian Society for Remote Sensing 30 October 2018, Makassar, Indonesia, 14–16 June 2019; Volume 280, p. 012031.

23. Hernández-Cabronero, M. The CCSDS 123.0-B-2 low-complexity lossless and near-lossless multispectral and hyperspectral image
compression standard: A comprehensive review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 102–119. [CrossRef]

24. DeVore, R.A.; Jawerth, B.; Lucier, B.J. Image compression through wavelet transform coding. IEEE Trans. Inf. Theory 1992, 38,
719–746. [CrossRef]

25. Mallat, S.; Peyré, G. Surface compression with geometric bandelet. ACM Transactions on Graphics. Proc. SIGGRAPH’05 2005, 24,
601–608.

26. Acharya, T.; Tsai, P.-S. JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI architectures; John Wiley & Sons,
Inc.: Hoboken, NJ, USA, 2004; 292p, ISBN 0-471-48422-9.

27. Monica, D.; Widipaminto, A. Fuzzy transform for high-resolution satellite images compression. TELKOMNIKA Telecommun.
Comput. Electron. Control 2020, 18, 1130–1136. [CrossRef]

28. Cardone, B.; Di Martino, F. Bit reduced FCM with block fuzzy transforms for massive image segmentation. Information 2020, 11, 351.
[CrossRef]

29. Earth Science Data Systems. NASA’s Earth Science Data Systems (ESDS) Program Oversees the Life Cycle of NASA’s Earth
Science Data—From Acquisition through Processing and Distribution. Available online: https://search.earthdata.nasa.gov
(accessed on 1 July 2022).

http://doi.org/10.1016/j.ins.2019.07.088
http://doi.org/10.1016/j.ins.2012.01.014
http://doi.org/10.1007/s10851-020-01004-0
http://doi.org/10.1007/978-3-030-44613-0
http://doi.org/10.1007/s12652-018-0971-4
http://doi.org/10.1166/jctn.2018.7087
http://doi.org/10.3390/axioms8040135
http://doi.org/10.1109/MGRS.2020.3048443
http://doi.org/10.1109/18.119733
http://doi.org/10.12928/telkomnika.v18i2.14903
http://doi.org/10.3390/info11070351
https://search.earthdata.nasa.gov

	Introduction
	Preliminaries
	Discrete Direct and Inverse F-Transform for Coding/Decoding Images
	Multilevel F-Transform for Massive Image Compression

	The Massive Images Multilevel F-Transform Image Compression Method
	Test Results
	Conclusions
	References

