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1. Introduction

Polynomial operators for the approximation of a function have been researched ex-
tensively due to the important Weierstrass Approximation Theorem. This theorem states
that every continuous function defined on a closed interval can be approximated by a
polynomial function. For the approximation of functions, linear positive operators are
used because they are computationally simpler. A fundamental operator is the Bernstein
operator, defined as follows.

The Bernstein operator of order n, defined on C[0,1], is given by

Bn( f ; x) =
n

∑
k=0

f
(

k
n

)
bn,k(x), (1)

where f is any real function defined on [0, 1], and bn,k(x) is the binomial probability mass
function (pmf).

bn,k(x) = (
n
k
)xk(1− x)n−k, k = 0, 1, 2, . . . ., n. (2)

The quantity bn,k(x) is also known as the Bernstein basis function.
By starting with the identity (see [1,2])

(1− x)α+1e(
tx

1−x )
∞

∑
k=0

L(α)
k (t)xk = 1, α > −1, (3)
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Cheney and Sharma [3] defined the operator Pn by

Pn( f ; x) = (1− x)n+1e(
tx

1−x )
∞

∑
k=0

f
(

k
k + n

)
L(n)

k (t)xk, (4)

where t ≤ 0, 0 ≤ x ≤ 1 and n > −1, and L(n)
k (t) is the Laguerre polynomial of degree k.

The operator Pn of Cheney and Sharma corresponds to the pmf

pn,k(x; t) = (1− x)n+1e(
tx

1−x )L(n)
k (t)xk, k = 0, 1, 2, . . . , (5)

which is nonnegative since t ≤ 0 and normalized by virtue of (3). When t = 0, Equation (5)
reduces to the negative binomial pmf

mα,k(x) =
(

α + k− 1
k

)
(1− x)αxk, α = n + 1 > 0, k = 0, 1, 2, . . . , (6)

Then, (4) becomes the Meyer–Konig–Zeller operator:

Mn( f ; x) = (1− x)n+1
∞

∑
k=0

f
(

k
k + n

)(
n + k

k

)
xk. (7)

The probabilistic approach to studying approximation operators, in particular, the
Cheney–Sharma operator, has been considered, among others, by [4,5]. Cismasiu [6]
considered a probabilistic representation of the Szász-Inverse Beta operators. The gen-
eralization and construction of approximation operators are still of continuing interest.
The main reason for this is that the modified or generalized operators give an improved
approximation compared to the original operator. The classic Bernstein operator has been
modified and studied by many researchers; see [7–10]. Some examples of exotic operators
are the parametric generalization of Schurer–Kantorovich operators and their bivariate
form [11], Baskakov–Schurer–Szász–Stancu operators [12], and Szász–Mirakjan Beta-type
operators [13]. In this paper, the probabilistic approach is employed to obtain generaliza-
tions of Bernstein and other approximation operators. The motivation for considering this
approach is that it provides a systematic method to construct and generalize approximation
operators, and the probabilistic setting ensures the positivity of the operators.

In Section 2, we give a probabilistic representation and derivation of the Cheney–
Sharma operator. By applying this probabilistic representation to the Bernstein operator
(1), we define in Section 3 a generalization of the Bernstein operator (1). The convergence
property of this generalization is examined. Further generalizations are also given. Section 4
presents another probabilistic representation of the Cheney–Sharma operator. The Cheney–
Sharma operator could also be obtained by averaging the Szász–Mirakyan operator, and
this is given in Section 5. Graphical analysis for the generalization of the Bernstein operator
is given in Section 6. Section 7 concludes with some remarks.

2. A Probabilistic Representation and Derivation of the Cheney–Sharma Operator

Let N = {N(λ); λ ≥ 0} be a Poisson process, where N(λ) has the pmf given by

pi(λ) =
e−λλi

i!
, λ > 0, i = 0, 1, 2, . . . .

Let M = {M(x; β + i); β ≥ 0, 0 < x < 1} be a negative binomial process, with pmf (6)
written as a pmf conditional on i:

mβ,k(x|i) =
(

β + i + k− 1
k

)
(1− x)β+ixk.
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Consider the process P(x; β) = {M(x; β + N(λ)); λ ≥ 0}, where i varies as a ran-
dom variable N(λ).This process has pmf given by (5). To see this, consider the uncondi-
tional pmf:

mβ,k(x, λ) =
∞
∑

i=0
mβ,k(x|i) e−λλi

i!

= e−λ(1− x)βxk Γ(β+k)
k! Γ(β)

[
Γ(β)

Γ(β+k)

∞
∑

i=0

Γ(k+β+i)
Γ(i+1) Γ(β+i) (λ(1− x))i

]
= e−λ(1− x)βxk (β)k

k! 1F1[β + k; β; λ(1− x)]

= e−λx(1− x)βxkL(β−1)
k (−λ(1− x))

(8)

where (β)k =
Γ(β+k)

Γ(β)
. Equation (8) is seen as the pmf corresponding to the Cheney–Sharma

operator given by (5) with t = −λ(1− x). To arrive at Equation (8), we have made use of
Kummer’s transformation:

1F1[α; β; y] = ey
1F1[β− α; β;−y]. (9)

and the hypergeometric definition of the generalized Laguerre polynomials:

L(α)
n (y) =

(α + 1)n
n! 1F1[−n; α + 1; y]. (10)

By applying the above stochastic formulation to the Meyer–Konig–Zeller operator (7),
the Cheney–Sharma operator is obtained.

Remark 1. It is obvious that various generalizations of (6) (and (5)) could be obtained by different
choices of the random variable for i. This will then lead to more generalized definitions of the
Meyer–Konig–Zeller operator.

3. A Generalization of the Bernstein Operator

Motivated by the probabilistic representation of the Cheney–Sharma operator, we
consider a generalization of the Bernstein operator. Let B = {B(x; n); n > 0, 0 < x < 1} be
a binomial process with pmf (2). As in Section 2, let B = {B(x; n + i); n > 0, 0 < x < 1} be
a binomial process with pmf:

bn,k(x|i) =
(

n + i
k

)
xk(1− x)n+i−k, k = 0, 1, 2, . . . , n.

Let i vary as a Poisson random variable N(λ). By using (10), we obtain the pmf
as follows:

qN,k(x, λ) =
∞
∑

i=0
bn,k(x|i) e−λλi

i!

= (1− x)N−ke−λxL(N−k)
k (−λ(1− x))xk, k = 0, 1, 2, . . . ,

(11)

where 0 < x < 1, λ > 0. We note that, for λ = 0, (11) reduces to (2), since

L(α)
k (0) =

(
k + α

k

)
.

Rewriting (11) as follows:

qn,k(y, λ) =

(
1− y

γ

)n−k
e−λy/γ L(n−k)

k

(
−λ

(
1− y

γ

))(
y
γ

)k
, (12)
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where y = γx and γ = 1 + λ
n , we define the operator given by

Qn,λ( f ; y) =
∞

∑
k=0

f
(

k
n

)
qn,k(y, λ), (13)

which generalizes the Bernstein operator (1). Operator (13) will be known as the generalized
Bernstein operator.

The following theorem considers the convergence property of the operator Qn,λ.

Theorem 1. If f εC[0, ∞) and λ
n → 0 as n→ ∞ , then the sequence of operators {Qn,λ( f ; y)}

converges uniformly to f(y) on [a, b] where 0 ≤ a < b < ∞.

Proof. Since Qn,λ is a positive linear operator, we need only to show, using a result of [14]
(p. 14), that convergence occurs if f is a quadratic function. We have

∞

∑
k=0

qn,k(y, λ) = 1, (14)

∞

∑
k=0

kqn,k(y, λ) = ny, (15)

∞

∑
k=0

k2qn,k(y, λ) =
ny
γ

(
1− y

γ

)
+ λ

y
γ
+ n2y2. (16)

To derive (14), (15), and (16), consider the moment-generating function of (11):

M(z) =
∞

∑
k=0

ezkqn,k(x, λ) = [(1− x) + xez]ne(λ[(1−x)+xez−1]),

which is easily derived with the help of the following formula ([2] (pp. 84); [15] (p. 189)):

∞

∑
k=0

L(α−k)
k (x)zk = e−xz(1 + z)α.

Then, Equations (14)–(16) correspond to M(0), M′(0), and M′′ (0), respectively, with
x = y

γ . The uniform convergence of Qn,λ( f ; y) follows from the following observations:

Qn,λ(1; y) = 1,
Qn,λ(s; y) = y,

Qn,λ
(
s2; y

)
= y2 + λy

γn2 +
1
n

y
γ

(
1− y

γ

)
→ y2.

�

Next, we consider the order of approximation of a function f by the operator Qn,λ.

Theorem 2. If f εC[0, a], then

| f (y)−Qn,λ( f ; y)| ≤ 3
2

ω

(
1 + λ

n√
n

)
,

where ω(δ) = ω( f ; δ) = sup| f (x2)− f (x1)|; x2, x1ε[0, a], such that

|x2 − x1|< δ, δ >0.
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Proof. Following [5] (pp. 1185–1186), we obtain

| f (y)−Qn,λ( f ; y)| ≤
(

1 + 1
δ

∞
∑

k=0
qn,k(y, λ)

∣∣∣y− k
n

∣∣∣)ω(δ)

≤
{

1 + 1
δ

[
∞
∑

k=0
qn,k(y, λ)

(
y− k

n

)2
]1/2
}

ω(δ).
(17)

By using (14), (15), and (16), we obtain

∞
∑

k=0

(
y− k

n

)2
qn,k(y, λ) = y2Qn,λ(1; y)− 2yQn,λ(s; y) + Qn,λ

(
s2; y

)
= 1

n2

{
n y

γ

(
1− y

γ

)
+ λ

y
γ

}
≤ γ2

4n .
(18)

The inequalities (17) and (18) lead to

| f (y)−Qn,λ( f ; y)| ≤
{

1 +
1
δ

γ

2
√

n

}
ω(δ),

and the result follows from choosing δ = γ√
n . We can observe that, for λ = 0, the inequality

reduces to the inequality of [16] for the Bernstein operator (1):

| f (x)− Bn( f ; x)| ≤ 3
2

ω

(
1√
n

)
.

�

We next consider immediate generalizations of operators (4) and (13), which are
achieved by taking α = β + rI and n = N + rI in (8) and (11), respectively, where r is an
integer constant. The generalization of (8) is given by

m∗β,k(x, λ, r) =
(β)k
k!

e−λxk(1− x)β
rFr
[
∆(r, β + k); ∆(r, β); λ(1− x)r], (19)

where ∆(r, α) stands for the set of r parameters:

α

r
,
(α + 1)

r
, . . . ,

(α + r− 1)
r

and rFr is the generalized hypergeometric function (see [17]). The following formulas have
been employed in evaluating (19) (see [17]):

(a + n)N =
(a)N(a+N)n

(a)n
,

(a)kn =
( a

k
)

n

(
(a+1)

k

)
n

(
(a+2)

k

)
n

. . .
(
(a+k−1)

k

)
n
(k)kn

The generalization of (11) is given by

q∗N,k(x, λ, r) =
(

N
k

)
xk(1− x)N−ke−λ

rFr
[
∆(r, N + 1); ∆(r, N + 1− k); λ(1− x)r]. (20)

Let y = x
(

1 + λr
n

)
in (20) and define q∗n,k(y, λ, r) as in (12). The generalized operators of (4)

and (13) are given, respectively, by

P∗n ( f ; x) =
∞
∑

k=0
f
(

k
k+n

)
m∗β,k(x, λ, r),

Q∗n,λ( f ; y) =
∞
∑

k=0
f
(

k
n

)
q∗n,k(y, λ, r).
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4. Another Probabilistic Representation of the Cheney–Sharma Operator

Let the logarithmic-series (log-series) distribution [18] with a parameter θ be defined by

p(k) =
αθk

k
, k = 1, 2, 3, . . . ,

where 0 < θ < 1 and α = −[ln(1− θ)]−1. We wish to consider a weighted version of the
log-series distribution.

Definition. Let Xbe a random variable with pmf p(k). Suppose that the probability of ascertaining
the event {X = k} has a weighting factor w(k). Then, the weighted distribution [19] with the
weight w(x) has pmf given by

P(k) = P(X = k) =
w(k)p(k)

∑ w(x)p(x)
.

Let w(x) = k + τ, τ ≥ 0 be the weight for log-series distribution. The weighted
log-series distribution has pmf given by

`k (τ, θ) =
(k + τ)(1− θ)θk

k(θ − τ(1− θ)ln(1− θ))
. (21)

Suppose that Ln(τ; θ) = X1 + X2 + X3 + . . . + Xn, where Xi, i = 1, 2, . . . ., n have
pmf (21), that is, Ln(τ; θ) is the convolution of n weighted log-series random variables.

Theorem 3. Let L = {Ln(τ; θ)} be the n-convolution weighted log-series process with pmf
`k (τ, θ; n) conditional on n as a Poisson random variable N(λ). Then, the unconditional distribu-
tion has pmf given by

`β,k(x, λ) = e−λx(1− x)βxkL(β−1)
k (−λ(1− x)) (22)

where x = θ, τ = β/λ(1− θ).

Proof. It is simpler to prove the result by using a probability-generating function (pgf). The
pgf of the log-series distribution is given by

g(t; θ) =
ln(1− θt)
ln(1− θ)

, in btc ≤ 1.

It follows that the pgf of the weighted log-series distribution is given by

g(t; θ, τ) =
1− θ

θ − τ(1− θ)ln(1− θ)

{
θt

1− θt
− τln(1− θt)

}
.

The pgf of the n-convolution is g(t; θ, τ)n. The unconditional pgf with n as a Poisson
random variable N(λ) is given by

g(t; θ, τ, λ) =
∞

∑
n=0

g(t; θ, τ)n e−λλn

n!
= exp{λ(g(t; θ, τ)− 1)}.

Let x = θ, τ = β/λ(1− θ) in g(t; θ, τ, λ). Then,

g(t; θ, τ, λ) = g(t; x, β, λ) = exp
{
λ

(
1− x
1− xt

− 1
)}(

1− x
1− xt

)β

.
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By applying the generating function (see [2] (pp. 84) and [15]):

∞

∑
k=0

L(α)
k (x)zk = e−xz/(1−z)(1− z)−(α+1),

the pmf (22) is obtained. This is the pmf corresponding to the Cheney–Sharma operator. �

5. Cheney–Sharma Operator as Average of Szász–Mirakyan Operator

Consider the operator given by

Rn( f ; x) =
∫ ∞

0
Sn( f ; u)g(u; x)du (23)

where g(u; x) is a probability density function (pdf), and Sn( f ; u) is the Szász–Mirakyan
operator (see [20] (p. 553))

Sn( f ; u) = e−nu
∞

∑
k=0

(nu)k

k!
f
(

k
n

)
.

By rewriting (23) as follows:

Rn( f ; x) =
∞

∑
k=0

f
(

k
n

){∫ ∞

0
e−nu (nu)k

k!
g(u; x)du

}
, (24)

the integral in braces may be thought of as the counting distribution Pk(t) of a mixed
Poisson process with the mixing distribution g(u; x):

Pk(t) =
∫ ∞

0
e−tu (tu)

k

k!
g(u; x)du

(see [21] (pp. 35–36)).
Clearly, various generalizations of the Szász–Mirakyan operator could be obtained by

appropriate choices of g(u; x). In particular, if

g(u; a) = (na)
n+2

2
( u

λ

) n
2 e−(λ+nau) In

[
2
√

λnau
]
, a, λ, n, u > 0 (25)

is the pdf of the Bessel function distribution of Laha [22], then Rn is the Cheney–Sharma
operator (4).

Theorem 4. If g(u; a) is given by (25), then the operator Rn( f ; a) is given by

Rn( f ; a) =
∞

∑
k=0

f
(

k
n

)
e−

λ
1+a

(
1

1 + a

)k( a
1 + a

)n+1
L(n)

k

(
−λa
1 + a

)
. (26)

Proof. To prove (26), we note from (24) that we only need to evaluate the following integral:

I =
∫ ∞

0
e−nu (nu)k

k!
g(u; a)du.

We thus obtain

I =
∫ ∞

0 e−nu (nu)k

k! g(u; a)du

= e−λ
( a

1+a
)n+1

(
1

1+a

)k (n+1)k
k! 1F1

[
n + 1 + k; n + 1; λ a

1+a
]
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by using the following result [23]:

∫ ∞

0
e−b2y2

yα−1 Iv(cy)dy =
cνΓ
(

α
2 + ν

2
)

2ν+1bα+νΓ(ν + 1) 1F1

[
α

2
+

ν

2
; ν + 1;

c2

4b2

]
,

where Re
(

α
2 + ν

2
)
> 0, with the following substitution:

y =
√

u, b =
√

n(1 + a) , α = 2
(

k +
n
2
+ 1
)

, c = 2
√

λna , ν = n.

By applying Kummer’s transformation, Equation (9), and the definition of the general-
ized Laguerre polynomial (10), we obtain

I = e−
λ

1+a

(
1

1 + a

)k( a
1 + a

)n+1
L(n)

k

(
−λa
1 + a

)
This is the Cheney–Sharma operator Pn given by (4), if in Equation (26) we set

x = 1
1+a , t = − aλ

1+a , and replace k
n by k

k+n . �

Remark 2. (i) The sequence of operators Rn( f ; x) converges uniformly to f (x) on [a, b], where
0 ≤ a < b < ∞, f ∈ C[0, ∞) when λ

n → 0 as n→ ∞ . This follows from Korovkin’s theorem and

Rn(1; x) = 1,
Rn(s; x) = x

n (n + 1 + λ),
Rn
(
s2; x

)
= 1

n2

[
x(n + 1 + λ) + x2(n + 1 + 2λ) + x2(n + 1 + λ)2

]
.

(ii) Adell et al. [24] gave a probabilistic representation of the Cheney–Sharma operator in terms of a
suitable multi-indexed stochastic process. This is to facilitate proof of convergence and to show that
it preserves monotonicity and global smoothness.

(iii) The pmf in the Cheney–Sharma operator arises from a photon and neural counting model;
see [25] and references therein.

6. Graphical Analysis

The convergence of the generalized Bernstein operator Qn,λ( f ; y) given in Equation
(13) is demonstrated in this section using the same functions examined in [26]. Taking
f (y) =

(
y− 1

2

)(
y− 2

3
)(

y− 3
4
)(

y− 4
5

)
, 0 ≤ y ≤ 0.9, the approximation by Qn,λ( f ; y) for

the first k = 0 to 125 terms is visualized in Figure 1a for different values of λ, where n = 15
and λ = 0.1, 0.5, 0.8, 1, 2, 5, 10, and in Figure 1b for different values of n, where λ = 1
and n = 15, 30, 45, 60.

The maximum error of approximation for Qn,λ( f ; y) to the function f (y) over the
interval [0, 0.9] for different values of λ and n are tabulated in Table 1. It is apparent from
these results that the convergence of the operator Qn,λ( f ; y) is better when λ/n is smaller.

Next, we examined the approximation to the function f (y) =
(

y− 1
2

)(
y− 2

3
)(

y− 4
5

)
e−3y

over the interval [0, 0.99]. Similarly, the approximation by Qn,λ( f ; y) is obtained by taking
the sum of the first 125 terms. Figure 2a shows the convergence of Qn,λ( f ; y) to the

function f (y) =
(

y− 1
2

)(
y− 2

3
)(

y− 4
5

)
e−3y for different values of λ, where n = 30 and

λ = 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, while Figure 2b shows the convergence for different
values of n, where λ = 1 and n = 15, 30, 45, 60. Table 2 gives the maximum error of
approximation for Qn,λ( f ; y) to the function f (y) over the interval [0, 0.99] for different
values of λ and n. The smallest maximum error of approximation is obtained by taking
λ = 0.25 and n = 60. This combination yields the smallest ratio of λ/n shown in Table 2.
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n
λ

0.1 0.5 0.8 1 2 5 10

15 0.01399 0.01414 0.01424 0.01431 0.01461 0.01527 0.01716
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Table 2. Maximum error of approximation by Qn,λ( f ; y) for different values of λ and n over the
interval [0, 0.99].

n
λ

0.25 0.5 0.75 1 2.5 5 7.5

15 0.00028 0.00030 0.00032 0.00034 0.00043 0.00052 0.00057
30 0.00016 0.00016 0.00017 0.00018 0.00022 0.00027 0.00031
45 0.00011 0.00011 0.00012 0.00012 0.00014 0.00017 0.00019
60 0.00008 0.00009 0.00009 0.00009 0.00010 0.00012 0.00013

7. Concluding Remarks

In this paper, we have given probabilistic representations of some well-known ap-
proximation operators. By extending these probabilistic formulations, generalizations of
these approximation operators have been obtained. This probabilistic approach will ensure
the positivity of the approximation operators and facilitate the derivation of the moments
to prove uniform convergence based on the Korovkin Theorem [14]. This approach also
establishes the probabilistic connection between different approximation operators; for
instance, the Cheney–Sharma operator as a probabilistic average of the Szász–Mirakyan
operator. Further extension of the Cheney–Sharma operator using this averaging process
can be constructed by using the results in [27].
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