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Abstract: In this paper we consider a fractional nonlinearity for the wave equation with friction and
viscoelastic damping. Using Fixed point theorem a global in time existence of small data solutions to
the Cauchy problem is investigated in this research. Our main interest is to show the influence of
the fractional nonlinearity parameter to the admissible range of exponent ς comparing with power
nonlinearity and also the generating of loss of decay.
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1. Introduction and Tools

The left and right Riemann-Liouville fractional derivatives of order a > 0 for a function
u are defined as:

Definition 1. Let u ∈ H1(0, $2), $2 > $1, a > 0 then, the definition of the left and right
Riemann-Liouville fractional derivatives are:

RLDa
$1

u(z) =
1

Γ(n− a)
dn

dzn

∫ z

$1

(z− λ)u(λ)dλ (1)

and
RLDa

$2
u(z) =

(−1)n

Γ(n− a)
dn

dzn

∫ $2

z
(λ− z)u(λ)dλ, (2)

where n is an integer which satisfies n− 1 ≤ a < n and Γ(·) is the Euler’s gamma function.

The left and right Riemann-Liouville fractional integrals of order a > 0 for a function
u are defined as:

Definition 2. Let u ∈ H1(0, $2), $2 > $1, a > 0 then, the definition of the left and right
Riemann-Liouville fractional integrals are:

RLT a
$1

u(z) =
1

Γ(a)

∫ z

$1

(z− λ)u(λ)dλ (3)

and
RLI a

$2
u(z) =

1
Γ(a)

∫ $2

z
(λ− z)u(λ)dλ, (4)

where Γ(·) is the Euler’s gamma function.

An important concept, not long ago, that has emerged is the Caputo-Fabrizio integral
operator, which has been established in the last few years. This is how it is defined:
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Definition 3 ([1]). Let u ∈ H1(0, $2), $2 > $1, a ∈ [0, 1] then, the definition of the new Caputo
fractional derivative is:

CFDau(z) =
M(a)
1− a

∫ z

$1

u
′
(λ) exp

[
− a(z− λ)

1− a

]
dλ, (5)

whereM(a) is normalization function.

The integral formula for the Caputo-Fabrizio fractional derivative is as follows.

Definition 4 ([2]). Let u ∈ H1(0, $2), $2 > $1, a ∈ [0, 1] then, the definition of the left and right
side of Caputo-Fabrizio fractional integrals are:(

CF
$1
I a
)

u(z) =
1− a
B(a)

u(z) +
a
B(a)

∫ z

$1

u(λ)dλ (6)

and (
CFI a

$2

)
u(z) =

1− a
B(a)

u(z) +
a
B(a)

∫ $2

z
u(λ)dλ, (7)

where B(a) is normalization function.

Atangana-Baleanu [3] has found a solution to the problem of the Caputo-Fabrizio
operator not being reduced to the original function in a special case, despite the fact that
the operator is an effective tool in the solution of many systems of differential equations.
The features of the Caputo-Fabrizio operator are present in the normalization function.

Some fractional order derivative and integral operators include the power law in their
kernel. Nature does not usually exhibit power law behavior. This novel derivative and
integral operator incorporates the Mittag-Leffler function [3]. The Mittag-Leffler function
is required to model nature. This improved the Atangana-Baleanu operator and piqued
researchers’ interest. That the work uses the Atangana-Baleanu operator for Hermite-
Hadamard inequalities is unusual. When the parameter is set to zero, the Atangana-Baleanu
original function can be derived and compared to the Caputo-Fabrizio results.

Definition 5 ([3]). Let u ∈ H1(0, $2), $2 > $1, a ∈ [0, 1] then, the definition of the new fractional
derivative is given below

ABC
$1
Da

z [u(z)] =
B(a)
1− a

∫ z

$1

u
′
(λ)Ea

[
− a(z− λ)a

1− a

]
dλ. (8)

Definition 6 ([3]). Let u ∈ H1(0, $2), $2 > $1, a ∈ [0, 1] then, the definition of the new fractional
derivative is given below:

ABC
$1
Da

z [u(z)] =
B(a)
1− a

d
dz

∫ z

$1

u(λ)Ea

[
− a(z− λ)a

1− a

]
dλ. (9)

Equations (8) and (9) have a non-local kernel. Also in (9) when the function is constant
we get zero. Associated integral operator for Atangana-Baleanu fractional derivative has
been defined as follows.

Definition 7 ([3]). The fractional integral associate to the new fractional derivative with non-local
kernel of a function u ∈ H1(0, $2) as defined:(

AB
$1
I a
)
{u(z)} = 1− a

B(a)
u(z) +

a
B(a)Γ(a)

∫ z

$1

u(λ)(z− λ)a−1dλ, (10)

where $2 > $1, a ∈ [0, 1].
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The authors of [4] described the integral operator’s right hand side as follows:

ABI a
$2
{u(z)} = 1− a

B(a)
u(z) +

a
B(a)Γ(a)

∫ $2

z
u(λ)(λ− z)a−1dλ, (11)

where $2 > $1, a ∈ [0, 1]. Differential equations of arbitrary real order γ > 0 are used
to model various physical models arising in many branches of science and engineering.
Applications of such mathematical models can be seen from statistical mechanics and
Brownian motion, via visco-elasticity problems, to continuum and quantum mechanics,
biosciences, chemical engineering, and control theory, see for instance [5]. Nonlinearity
is very important in studying wave equations, evolution equations, damped equations
etc. and in some problems fractional nonlinearity is considered as the Riemann-Liouville
fractional operator to get a nonlinear memory term also know as nonlinearity. In this paper,
we study the global (in time) existence of small data solutions to{

ζλλ − ∆ζ + ζλ − ∆ζλ = Iγ(|ζ|ς) for (λ, z) ∈ (0, ∞)×Rr,
ζ(0, z) = ζ0(z), ζλ(0, z) = ζ1(z) for z ∈ Rr,

(12)

where

Iγ(ζ) ≈
∫ λ

0
(λ− s)−γζ(s)ds

denote the fractional Riemann-Liouville integral operator of order γ for some γ ∈ (0, 1). We
also derive decay estimates for solutions to (12) and show the influence of fractional integral
parameter γ. This problem important to the researchers working in field of differential
equations and mathematical modeling. Over the last decade several papers have been
devoted to the study of semilinear evolution model with the nonlinear term of memory
type as in (13). In the pioneering paper [6] the authors determine the critical exponent for
the semilinear heat equation with nonlinear memory term. Afterwards, this kind of result
has been generalized for fractional (either in space or in time) heat equations [7–9] and
for weakly coupled system of heat equations [8,10,11]. Mezadek et al. [12] considered
the Cauchy problem for the semilinear wave equation with friction damping, visco-elastic
damping and power nonlinearity{

ζλλ − ∆ζ + ζλ − ∆ζλ = |ζ|ς for (λ, z) ∈ (0, ∞)×Rr,
ζ(0, z) = ζ0(z), ζλ(0, z) = ζ1(z) for z ∈ Rr,

(13)

where the data ζ0 and ζ1 are known as Cauchy data. Mezadek et al. [12] defined a general-
ized diffusion phenomena and demonstrated that the long time asymptotic of solutions
is a mixture of diffusion and wave equation solutions. A more general case also treated
recently in [13].

For the semilinear classical damped wave equation with friction damping and no viscoelas-
tic damping, many mathematicians have attempted to solve the following Cauchy problem:{

ζλλ − ∆ζ + ζλ = |ζ|ς for (λ, z) ∈ (0, ∞)×Rr,
ζ(0, z) = ζ0(z), ζλ(0, z) = ζ1(z) for z ∈ Rr.

(14)

Energy solutions for compactly supported data (ζ0, ζ1) ∈ H1 × L2 and ς > 1 (and
ς ≤ 1 + 2

r−2 if r ≥ 3) were found to exist locally (in time) by Nakao and Ono [14]. Todor-
ova and Yordanov [15] established the global (in time) existence for ς > 1 + 2

r , where
the data (ζ0, ζ1) ∈ H1 × L2 and that in terms of nonlinearities, the Fujita exponent is
the vital exponent.

{
|ζ|ς
}

ς>1 as can be seen from the results of Ikeda et al. [16] and

Ikeda et al. [16]. In this case a blow-up result is proved for ς ∈ (1, 1 + 2
r ] , even for small

data from (H1 ∩ L1)× (L2 ∩ L1), (resp. (Hσ,0 ∩H0,ρ)× (Hσ−1,0 ∩H0,ρ), where ρ satisfies
r
(

1
a −

1
2

)
< ρ < 2

ς−1 −
r
2 and a ∈ [1, 2]. Ikehata and Ohta [17] studied (14) under the

assumption (ζ0, ζ1) ∈ (H1 ∩ Lk)× (L2 ∩ Lk) for additional regularity Lk , k ∈ [1, 2) for
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the data. Ikehata and Ohta obtained a new critical exponent ςcriλ = 1 + 2k
r for small data

Sobolev solutions from both the global (in time) and blow-up perspectives.
Semilinear viscoelastic damped wave equations with viscoelastic damping and with-

out friction have a large body of literature

ζλλ − ∆ζ − ∆ζλ = |ζ|ς, ζ(0, z) = ζ0(z), ζλ(0, z) = ζ1(z). (15)

Ikehata et al. [18] addressed the related linear Cauchy problem with vanishing right-hand
side and demonstrated global well posedness. Shibata [19] provided Lς −Lβ estimations
for Sobolev solutions and examined the diffusion phenomenon. Ikehata [20] investigated
the asymptotic characteristic of Sobolev solutions as λ → ∞, assuming that (ζ0, ζ1) ∈
(H1 ∩ L1,1) × (L2 ∩ L1,1), where L1,1 represents a weighted L1 space. D’Abbicco and
Reissig [21] devoted their findings to determining the crucial exponent ς∗. The critical
exponent denotes the existence of global (in time) Sobolev solutions for little data for ς > ς∗

and simply the existence of local (in time) Sobolev solutions for large data for 1 < ς ≤ ς∗.
Thus, a blow-up behavior can be expected in general. Since D’Abbicco and Reissig were
unable to verify such a critical exponent so the critical exponent remains an open problem.
It should be noted that the results of Theorem 2 in D’Abbicco and Reissig [21] are based on
the usage of higher order regularity for the data, specifically, second order in space, and
on the blending of multiple regularities for the data. The data, in particular, belong to the
classical energy space.

Thus, it is feasible to investigate (13) using both friction and viscoelastic damping
terms. The subject of the qualitative features of solutions to (13) emerges. It is an inter-
esting point to understand the relationship between friction and viscoelastic damping.
As a result, Ikehata and Sawada [22] demonstrated that the frictional damping effect is
more prominent than the viscoelastic damping effect for the asymptotic profile as λ→ ∞.
D’Abbicco [23] recently addressed the Cauchy problem (13), in which the data (ζ0, ζ1)
are assumed to belong to the energy space with an additional L1 regularity, namely to
(H1 ∩ L1) × (L2 ∩ L1). The author established that small data energy solutions exist
globally (in time) for admissible exponents ς ∈

(
1 + 2

r , 1 + 2
r−2
]

for r > 1. Ikehata and
Takeda [24] investigated the identical Cauchy problem (13) with the following data assump-
tions (ζ0, ζ1) ∈ (W

r
2+ε,1 ∩W

r
2+ε,∞)× (L1 ∩ L∞), where ε > 0. The authors established a

result regarding the global (in time) existence of small data Sobolev solutions exclusively
for r = 1, 2, 3. They obtained this result for the range of permissible exponents ς meeting
the condition ς > 1 + 2

r . Mezadek et al. [12] examined the Cauchy problem (13) under
particular data and dimension r assumptions and investigated the effect of the regularity
parameters σ1, σ2 ∈ R+, and the additional regularity parameter k ∈ [1, 2) on the data
(ζ0, ζ1) ∈ (Hσ1 ∩ Lk)× (Hσ2 ∩ Lk) on the acceptable ranges of exponents ς, which enables
the global (in time) existence of small data Sobolev or energy solutions with a sufficient
degree of regularity. Additionally, the authors investigated the effect of σ1, σ2 and k on
solution regularity. Mezadek et al. [12] demonstrated the global (in time) existence of small
data solutions to the semilinear Cauchy problem (13) in any space dimension r ≥ 1 by
applying estimates of linear Cauchy problem solutions to the semilinear Cauchy problem
with power nonlinearity |ζ|ς.

Small data solutions to the Cauchy problem for a semilinear wave equation with
friction, viscoelastic damping and a fractional nonlinearity are the main goal of this paper.
We want to find out if these solutions are globally available in time for small data. The
main objectives of this paper is to show that fractional nonlinearity has an effect on the
range of exponent ς that can be used and it also causes the decay rate to slow down with
respect to the solution to the corresponding linear problem.

2. Main Results
2.1. Strategies

For the Cauchy problem (12), we will prove several results here. Our primary goal
is to demonstrate the worldwide viability of small data solutions in the near future. As a
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result, we can assume that the zero solution is stable right away.
We introduce for σ1 ≥ σ2 ≥ 0 and k ∈ [1, 2) the function space

Aσ1,σ2
k := (Hσ1 ∩ Lk)× (Hσ2 ∩ Lk), Aσ1,σ2 = Aσ1,σ2

1

with the norm
‖(ζ, υ)‖Aσ1,σ2

k
:= ‖ζ‖Hσ1 + ‖ζ‖Lk + ‖υ‖Hσ2 + ‖υ‖Lk .

In the first instance, we suppose that the low regular data come from Aσ1,0. We will
demonstrate that Sobolev solutions exist globally in time.

C([0, ∞),Hσ1) ∩ C1([0, ∞),L2)

where for large dimensions, an upper bound on the power nonlinearity exponent ς is
necessary because it is larger than the modified Fujita exponent.

Case two outcomes are related to the highly regular data, which implies they belong
to Aσ1,σ2

k and have a σ2 > 0. We use tools from harmonic analysis from [25] to prove the
existence of a global (in time) solution (see Appendix A). All these results require the
condition ς > dσ2e+ 1 if σ2 ∈ (0, r

2 ]. Here, we denote by dσ2e := min{a ∈ Z : σ2 ≤ a} the
ceiling function in σ2.

Finally, if σ2 > r
2 , then using fractional powers the last condition ς > dσ2e will be

weakened to ς > σ2.

2.2. Low Regular Data
2.2.1. Low Dimension

Theorem 1. Let r < 2(2− σ1) and σ1 ∈ (0, 2) be a real number and the data (ζ0, ζ1) are in Aσ1,0.
Suppose that the exponent ς satisfies

ς >
2 + r

r + 2(γ− 1)
(16)

and {
2 ≤ ς if σ1 ≥ r

2 ,
2 ≤ ς ≤ ςGN,σ1(r) := r

r−2σ1
if σ1 < r

2 , (17)

thus, there exists a small ε such that if

‖(ζ0, ζ1)‖Aσ1,0 ≤ ε,

then there exists a uniquely determined globally (in time) energy solution to (12) in

C([0, ∞),Hσ1) ∩ C1([0, ∞),L2).

According to estimates, the solution satisfies

‖ζ(λ, ·)‖L2 . (1 + λ)−
r
4+(1−γ)‖(ζ0, ζ1)‖Aσ1,0 ,

‖|D|σ1 ζ(λ, ·)‖L2 . (1 + λ)−
r
4−

σ1
2 +(1−γ)‖(ζ0, ζ1)‖Aσ1,0 ,

‖ζλ(λ, ·)‖L2 . (1 + λ)−
r
4−1+(2−γ)‖(ζ0, ζ1)‖Aσ1,0 .
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Example 1. In order to determine the permissible range for the fractional integral parameter γ,
we look at the conditions (16) and (17) in some particular situations of low dimension that are
dependent on the parameters r, k, σ and γ.

r Regularity σ1 Admissible range for ς

r = 1 σ1 ∈
[

1
2 , 3

2

)
3

2γ−1 < ς < ∞.

σ1 ∈
(

2−γ
3 , 1

2

)
3

2γ−1 < ς ≤ 1
1−2σ1

.

r = 2 σ1 ∈ [1, 2) 2
γ < ς < ∞

σ1 ∈
(
1− γ

2 , 1
) 2

γ < ς ≤ 1
1−σ1

.

Example 2. In this example we treat the case of third dimension r = 3 for fixed γ = 1
2 . The model

that we have is given by

ζλλ − ∆ζ + ζλ − ∆ζλ = I
1
2 (|ζ|ς) for (λ, z) ∈ (0, ∞)×R3,

ζ(0, z) = ζ0(z), ζλ(0, z) = ζ1(z) for z ∈ (0, ∞)×R3.

Then, the admissible range for ς can be described as follows:

5
2
< ς if σ1 ∈

[
3
2

, 2
)

,

5
2
< ς ≤ 3

3− 2σ1
if σ1 ∈

(
9
10

,
3
2

)
.

2.2.2. Higher Dimension

Theorem 2. Let r > 4 and σ1 ≥ 2 be a real number and the data (ζ0, ζ1) are in Aσ1,0, where
k ∈ [1, 2). Suppose that the exponent ς satisfies

ς >
1
γ

(18)

and {
2 ≤ ς if σ1 ≥ r

2 ,
2 ≤ ς ≤ ςGN,σ1(r) if σ1 < r

2 ,
(19)

thus, there exists a small ε such that if

‖(ζ0, ζ1)‖Aσ1,0 ≤ ε,

then there exists a uniquely determined globally (in time) energy solution to (12) in

C([0, ∞),Hσ1) ∩ C1([0, ∞),L2).

According to estimates, the solution satisfies

‖ζ(λ, ·)‖L2 . (1 + λ)−
r
4+Aζ‖(ζ0, ζ1)‖Aσ1,0 ,

‖|D|σ1 ζ(λ, ·)‖L2 . (1 + λ)
− r

4−
σ1
2 +A|D|σ1 v‖(ζ0, ζ1)‖Aσ1,0 ,

‖ζλ(λ, ·)‖L2 . (1 + λ)−
r
4−1+Aζλ ‖(ζ0, ζ1)‖Aσ1,0 ,

where Aζ ≥ r
4 − γ, A|D|σ1 ζ = Aζ +

σ1
2 and Aζλ

= Aζ + 1 define the loss of decay in comparison
with the corresponding decay estimates for the solution ζ to the linear Cauchy problem with
vanishing right-hand side.
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In the following theorems we will take the additional regularity Lk since the goal is
the global existence where there is no blow-up results exist in the literature and also use
the last case of estimates (22) in Proposition 1.

2.3. Data from Sobolev Spaces with Suitable Regularity

Theorem 3. Let r < 2k
2−k (2− σ1) and the data (ζ0, ζ1) are supposed to belong to Aσ1,σ2

k , where
k ∈ [1, 2), σ2 ≤ r

2 . Suppose that for the exponent ς :

ς > max
{

1 + r
2k

r
2k − 1 + γ

; dσ2e+ 1
}

, (20)

and {
1 + 2(σ1−σ2)

r ≤ ς if σ1 ∈
[ r

2 , r
2 + σ2

)
,

1 + 2(σ1−σ2)
r ≤ ς ≤ 1 + min

{
2

r−2σ1
; 2(σ1−σ2)

r−2σ1

}
if σ1 ∈

(
0, r

2
)
.

(21)

there exists a small ε such that, if
‖(ζ0, ζ1)‖Aσ1,σ2

k
≤ ε,

and there exists a uniquely determined globally (in time) energy solution to (12) in

C([0, ∞),Hσ1) ∩ C1([0, ∞),Hσ2).

Furthermore, the solution satisfies:

‖ζ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )+1−γ‖(ζ0, ζ1)‖Aσ1,0

k
,

‖|D|σ1 ζ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )−

σ1
2 +1−γ‖(ζ0, ζ1)‖Aσ1,0

k
,

‖ζλ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )+1−γ‖(ζ0, ζ1)‖Aσ1,0

k
,

‖|Dσ2 ζλ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )−

σ2
2 +1−γ‖(ζ0, ζ1)‖Aσ1,0

k
.

2.4. Large Regular Data

Theorem 4. Let r < 2k
2−k (2− σ1) and the data (ζ0, ζ1) are supposed to belong to Aσ1,σ2

k , where
k ∈ [1, 2), σ2 > r

2 . Suppose that for the exponent ς :, we have

ς > max
{

1 + r
2k

r
2k − 1 + γ

; σ2; 2
}

.

Then for small ε, we have
‖(ζ0, ζ1)‖Aσ1,σ2

k
≤ ε,

and there exists a uniquely determined globally (in time) energy solution to (12) in

C([0, ∞),Hσ1) ∩ C1([0, ∞),Hσ2).

Moreover, the solution meets the estimates:

‖ζ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )+1−γ‖(ζ0, ζ1)‖Aσ1,0

k
,

‖|D|σ1 ζ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )−

σ1
2 +1−γ‖(ζ0, ζ1)‖Aσ1,0

k
,

‖ζλ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )+1−γ‖(ζ0, ζ1)‖Aσ1,0

k
,

‖|D|σ2 ζλ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )−

σ2
2 +1−γ‖(ζ0, ζ1)‖Aσ1,0

k
.
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Remark 1. If we take in Theorems 3 and 4 the data belongs to Aσ1,σ2 , then we have to take
r > 2(2− σ1) and the decay of the solution and their derivative will be define by −γ as power
similarly to Theorem 2.

3. Philosophy of Our Approach and Proofs

In order to proceed to our proofs, we first introduce some tools and previous results.

Proposition 1. Let a ∈ R, b > 1 and γ ∈ (0, 1). Then,

∫ λ

0
(1 + λ− τ)−a

∫ τ

0
(τ − s)−γ(1 + s)−bdsdτ .


(1 + λ)−γ if a > 1,

(1 + λ)−γ log(2 + λ) if a = 1,
(1 + λ)−γ+1−a if a < 1.

(22)

Proposition 2. Let a ∈ R and b, γ ∈ (0, 1). Then,

∫ λ

0
(1 + λ− τ)−a

∫ τ

0
(τ − s)−γ(1 + s)−bdsdτ .


(1 + λ)−γ+1−b if a > 1,

(1 + λ)−γ+1−b log(2 + λ) if a = 1,
(1 + λ)−γ+2−a−b if a < 1.

(23)

Reference [26] contains the evidence supporting Propositions 1 and 2.

Proposition 3. Let (ζ0, ζ1) ∈ (Hσ1 ∩L1)× (Hσ2 ∩L1) with σ2 + 2 ≥ σ1 ≥ σ2 ≥ 0, k ∈ [1, 2).
Then the solution to the Cauchy problem

ζλλ − ∆ζ − ζλ − ∆ζλ = o, ζ(0, z) = ζ0(z), ζλ(0, z) = ζ1(z)

satisfies the decay estimates

‖ζ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )‖(ζ0, ζ1)‖Aσ1,0 , (24)

‖|D|σ2 ζλ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )−

σ2
2 −1‖(ζ0, ζ1)‖Aσ1,0 , (25)

‖ζλ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )−1‖(ζ0, ζ1)‖Aσ1,0 , (26)

‖|D|σ1 ζ(λ, ·)‖L2 . (1 + λ)−
r
2 (

1
k−

1
2 )−

σ1
2 ‖(ζ0, ζ1)‖Aσ1,0 . (27)

Proof of Proposition 3 can be found in [12].

We define the space of solutions χ(λ) by

χ(λ) = C([0, λ],Hσ1) ∩ C1([0, λ],Hσ2),

where the norm of χ(λ) will be proposed separately for each theorem. We introduce the
operator N by

N : ζ ∈ χ(λ)→ Nζ = Nζ(λ, z) := ζ ln(λ, z) + ζnl(λ, z). (28)

We denote by E0(λ, 0, z) and E1(λ, 0, z) the fundamental solutions to the linear equa-
tion, namely

ζ ln(λ, z) := E0(λ, 0, z) ∗(z) ζ0(z) + E1(λ, 0, z) ∗(z) ζ1(z)

is a solution to the Cauchy problem

ζλλ − ∆ζ − ζλ − ∆ζλ = 0, ζ(0, z) = ζ0(z), ζλ(0, z) = ζ1(z),

and

ζnl(λ, z) :=
∫ λ

0
E1(λ, τ, z) ∗(z)

∫ τ

0
(τ − s)−γ|ζ(s, χ)|ςdsdτ



Axioms 2022, 11, 524 9 of 20

is a solution to the Cauchy problem

ζλλ − ∆ζ − ζλ − ∆ζλ = Iγ(|ζ|ς), ζ(0, z) = 0, ζλ(0, z) = 0.

As a result of Proposition A4, we may prove the following inequalities:

‖Nζ‖χ(λ) ≤ C0(λ)‖(ζ0, ζ1)‖Aσ1,σ2 + C1(λ)‖ζ‖ς
χ(λ)

, (29)

‖Nζ −Nζ‖χ(λ) ≤ C2(λ)‖ζ − ζ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ζ‖ς−1

χ(λ)

)
, (30)

where C1(λ), C2(λ) −→ 0 for λ −→ 0 and C1(λ), C2(λ) ≤ C for all λ ∈ [0, ∞).

3.1. Proof of Theorem 1

Let

‖ζ‖χ(λ) = sup
τ∈[0,λ]

 ∑
|η|+J≤1

(1 + τ)
r
4+
|η|
2 σ1+J−(1+J−γ)‖∂η

z ∂Jλ ζ(τ, ·)‖L2

,

where J + |η| = 0, 1. We remark that if ζ ∈ χ(λ), then ‖ζ‖χ(τ) ≤ ‖ζ‖χ(λ) for any 0 ≤ τ ≤ λ.
We begin the proof of (29). From the estimates (24) to (27) of Theorem 3 and the

definition of the norm of solutions space χ(λ) we have∥∥ζ ln∥∥
χ(λ)

= sup
τ∈[0,λ]

{
(1 + τ)

r
4−1+γ

∥∥ζ ln(τ, ·)
∥∥
L2

+ (1 + τ)
r
4+

σ1
2 −1+γ

∥∥|D|σ1 ζ ln(τ, ·)
∥∥
L2(Rr)

+ (1 + τ)
r
4−1+γ

∥∥ζ ln
λ (τ, ·)

∥∥
L2(Rr)

}
. sup

τ∈[0,λ]

{
(1 + τ)

r
4−1+γ(1 + τ)−

r
4
∥∥(ζ0, ζ1)

∥∥
Aσ1,0

+ (1 + τ)
r
4+

σ1
2 −1+γ(1 + τ)−

r
4−

σ1
2
∥∥(ζ0, ζ1)

∥∥
Aσ1,0

+ (1 + τ)
r
4−1+γ(1 + τ)−

r
4−1∥∥(ζ0, ζ1)

∥∥
Aσ1,0

}
.
∥∥(ζ0, ζ1)

∥∥
Aσ1,0 .

Consequently, ∥∥ζ ln∥∥
χ(λ)

. ‖(ζ0, ζ1)‖Aσ1,0 . (31)

Simply proving (29), it suffices to prove:∥∥ζnl∥∥
χ(λ)

. ‖ζ‖ς
χ(λ)

. (32)

For the term
∥∥ζnl

∥∥
L2 we have

‖ζnl‖L2 .
∫ λ

0
(1 + λ− τ)−

r
4

∫ τ

0
(τ − s)−γ‖|ζ(τ, ·)|ς]‖L1∩L2 dsdτ.

Thus, we have

‖|ζ(τ, ·)|ς‖L1(Rr)∩L2(Rr) . ‖|ζ(τ, z)|ς‖L1 + ‖|ζ(τ, z)|ς‖L2 .

Proposition A1 and Gagliardo-Nirenberg inequality can be used to estimate both of the
right-hand side terms. For the first term, we are able to get
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∥∥|ζ(τ, ·)|ς
∥∥
L1 =

( ∫
Rr
|ζ(τ, z)|ςdχ

) 1
ς ς

= ‖ζ(τ, ·)‖ς
Lς(Rr)

. ‖ζ(τ, ·)‖(1−θ)ς
L2(Rr)

‖|D|σζ(τ, ·)‖θς

L2 ,

where
θ =

r
s

(1
2
− 1

ς

)
∈ [0, 1]

which is due to the condition (17) for ς.
By using the norm of solutions space χ(λ) for 0 ≤ τ ≤ λ, we get

‖ζ(τ, ·)‖ς

Lkς(Rr)
. (1 + τ)(1−θ)ς(− r

4+1−γ)+θς(− r
4−

s
2+1−γ)‖ζ‖ς

χ(λ)
.

Then
‖ζ(τ, ·)‖ς

Lkς(Rr)
. (1 + τ)−

r
2 ς+ r

2+(1−γ)ς‖ζ‖ς
χ(λ)

. (33)

Estimating ‖|ζ(τ, ·)|ς‖L2 follows the same principles. This is done by employing the
Gagliardo-Nirenberg inequalities and the definition of the norm of the solution space χ(λ).

‖|ζ(τ, ·)|ς‖L2 =
( ∫

Rr
|ζ(τ, z)|2ςdχ

) 1
2ς ς

= ‖ζ(τ, ·)‖ς

L2ς(Rr)

. ‖ζ(τ, ·)‖ς(1−θ̃)
L2(Rr)

∥∥|D|σζ(τ, ·)
∥∥ςθ̃

L2

. (1 + τ)(1−θ̃)ς(− r
4+1−γ)+θ̃ς(− r

4−
σ
2 +1−γ)‖ζ‖ς

χ(λ)

. (1 + τ)−
r
2 ς+ r

4+(1−γ)ς‖ζ‖ς
χ(λ)

,

where
θ̃ =

r
σ

(1
2
− 1

2ς

)
∈ [0, 1]

this is from condition (17) for ς. Hence, we may conclude for 0 ≤ τ ≤ λ the following estimate:

‖u(τ, ·)‖ς

L2ς . (1 + τ)−
r
2 ς+ r

4+(1−γ)ς‖ζ‖ς
χ(λ)

. (34)

All together leads to

‖ζnl‖L2 .
∫ λ

0
(1 + λ− τ)−

r
4

∫ τ

0
(τ − s)−γ(1 + τ)−

r
2 ς+ r

2+(1−γ)ς‖ζ‖ς
χ(λ)

dsdτ

. ‖ζ‖ς
χ(λ)

(1 + λ)−
r
4+1−γ,

Moreover, we have to assume the condition − r
2 ς + r

2 + (1− γ)ς < −1 which generate a
Fujita-like upper bound (16). So, it follows the desired estimate∥∥ζnl∥∥

L2 . ‖ζ‖ς
χ(λ)

(1 + λ)−
r
4+1−γ. (35)

In the same way one can get∥∥|D|σ1 ζnl∥∥
L2 . ‖ζ‖ς

χ(λ)
(1 + λ)−

r
4+

σ1
2 +1−γ, (36)

and ∥∥ζnl
λ

∥∥
L2 . ‖ζ‖ς

χ(λ)
(1 + λ)−

r
4+1−γ. (37)

Taking into consideration (31) and (35) to (37) the estimate (29) is proved.
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To prove (30) we assume that ζ and ξ belong to χ(λ). Then

Nζ −Nξ =
∫ λ

0
E1(λ, τ, z) ∗(z)

∫ τ

0
(τ − s)−γ

(
|ζ(τ, z)|ς − |ξ(τ, z)|ς

)
dsdτ.

We control all norms appearing in ‖Nζ −Nξ‖χ(λ). We have

‖Nζ −Nξ‖L2 .
∫ λ

0
(1 + λ− τ)−

r
4

∫ τ

0
(τ − s)−γ‖|ζ(τ, z)|ς − |ξ(τ, z)|ς‖L1∩L2 dsdτ. (38)

Hölder’s inequality implies∥∥|ζ(τ, ·)|ς − |ξ(τ, ·)|ς
∥∥
L2

.
∥∥ζ(τ, ·)− ξ(τ·)

∥∥
L2ς

(
‖ζ(τ, ·)‖ς−1

L2ς + ‖ξ(τ, ·)‖ς−1
L2ς

)
, (39)

and ∥∥|ζ(τ, ·)|ς − |ξ(τ, z)|ς
∥∥
L1

.
∥∥ζ(τ, ·)− ξ(τ·)

∥∥
Lς

(
‖ζ(τ, ·)‖ς−1

Lς + ‖ξ(τ, ·)‖ς−1
Lς

)
. (40)

By using the norm of solution space χ(λ) and after applying the classical Gagliardo-
Nirenberg inequality as we did for (33) and (34) we obtain the following estimates for
0 ≤ τ ≤ λ:

‖ζ(τ, ·)− ξ(τ·)‖L2ς . (1 + τ)−
r
2+

r
4ς ‖ζ − ζ‖χ(λ),

‖ζ(τ, ·)‖ς−1
L2ς . (1 + τ)

(
− r

2+
r

4ς

)
(ς−1)‖ζ‖ς−1

χ(λ)
,

‖ξ(τ, ·)‖ς−1
L2ς . (1 + τ)

(
− r

2+
r

4ς

)
(ς−1)‖ξ‖ς−1

χ(λ)
,

‖ζ(τ, ·)− ξ(τ, ·)‖Lς . (1 + τ)−
r
2+

r
2ς ‖ζ − ξ‖χ(λ),

‖ζ(τ, ·)‖ς−1
Lς . (1 + τ)

(
− r

2+
r

2ς

)
(ς−1)‖u‖ς−1

χ(λ)
,

∥∥ξ(τ, ·)
∥∥ς−1
Lς . (1 + τ)

(
− r

2+
r

2ς

)
(ς−1)‖ξ‖ς−1

χ(λ)
.

Then we get ∥∥|ζ(τ, ·)|ς − |ξ(τ, z)|ς
∥∥
L2

. (1 + τ)−
r
2 ς+ r

4 ‖ζ − ξ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ξ‖ς−1

χ(λ)

)
, (41)

and ∥∥|ζ(τ, ·)|ς − |ξ(τ, z)|ς
∥∥
L1

. (1 + τ)−
r
2 ς+ r

2 ‖ζ − ξ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ξ‖ς−1

χ(λ)

)
. (42)
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Applying the same ideas as we did to estimate
∥∥|D|σζnl(λ, ·)

∥∥
L2 , this means, after plug-

ging (41) and (42) into (38) one can get after using (16) the following estimates:∥∥|D|σ(Nζ −Nξ)(λ, ·)
∥∥
L2

. (1 + λ)−
r
4−

σ
2 ‖ζ − ξ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ξ‖ς−1

χ(λ)

)
, (43)

and ∥∥(Nζ −Nξ)(λ, ·)
∥∥
L2

. (1 + λ)−
r
4 ‖ζ − ξ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ξ‖ς−1

χ(λ)

)
. (44)

Then from the definition of χ(λ), the proof of (30) is completed.

3.2. Proof of Theorem 2

χ(λ) = C([0, λ],Hσ1) ∩ C1([0, λ],L2),

with the norm

‖ζ‖χ(λ) = sup
τ∈[0,λ]

 ∑
|η|+J≤1

(1 + τ)
r
4−Aζ+

|η|
2 σ1+J ‖∂η

z ∂Jλ ζ(τ, ·)‖L2

,

where J + |η| = 0, 1. As a result of the introduced norm for the solution space’s elements
χ(λ) and the estimates of solutions to the homogeneous damped wave equation, we can
derive (31). By demonstrating the inequality, we complete the prior theorem’s proofs.∥∥ζnl∥∥

χ(λ)
. ‖ζ‖ς

χ(λ)
(45)

• For
∥∥ζnl

∥∥
L2 we have

‖ζnl‖L2 .
∫ λ

0
(1 + λ− τ)−

r
′
∫ τ

0
(τ − s)−γ‖|ζ(τ, ·)|ς‖L1∩L2 dsdτ.

Similarly to (33) and under the same conditions described in the theorem we get

‖|ζ(τ, ·)|ς‖L1∩L2 . ‖ζ‖ς
χ(λ)

(1 + τ)−
r
2 ς+r+Aζ ς− r

4 ς. (46)

Using the last estimate we obtain

‖ζnl‖L2 . ‖ζ‖ς
χ(λ)

∫ λ

0
(1 + λ− τ)−

r
4

∫ τ

0
(τ − s)−γ(1 + τ)−

r
2 ς+r+Aζ ς− r

4 ςdsdτ

. ‖ζ‖ς
χ(λ)

(1 + λ)−γ

. ‖ζ‖ς
χ(λ)

(1 + λ)−
r
4+Aζ .

Hence
‖ζnl‖L2 . ‖ζ‖ς

χ(λ)
(1 + λ)−

r
4+Aζ . (47)

• For
∥∥|D|σ1 ζnl

∥∥
L2 we have

‖|D|σ1 ζnl‖L2 .
∫ λ

0
(1 + λ− τ)−

r
4−

σ1
2

∫ τ

0
(τ − s)−γ‖|ζ(τ, ·)|ς‖L1∩L2 dsdτ.
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Using (46) we get

‖|D|σ1 ζnl‖L2 . ‖ζ‖ς
χ(λ)

∫ λ

0
(1 + λ− τ)−

r
4−

σ1
2

∫ τ

0
(τ − s)−

r
2 ς+r+Aζ ς− r

4 ςdsdτ

. ‖ζ‖ς
χ(λ)

(1 + λ)−γ

. ‖ζ‖ς
χ(λ)

(1 + λ)−
r
4+Aζ

. ‖ζ‖ς
χ(λ)

(1 + λ)
− r

4−
σ1
2 +A|D|σ1 ζ .

Hence
‖|D|σ1 ζnl‖L2 . ‖ζ‖ς

χ(λ)
(1 + λ)

− r
4−

σ1
2 +A|D|σ1 ζ . (48)

• For
∥∥ζnl

λ

∥∥
L2 analogously to (47) and (48) we get

‖ζnl
λ ‖L2 . ‖ζ‖ς

χ(λ)
(1 + λ)−

r
4−1+Aζλ . (49)

From (47)–(49) the prove of (45) is completed.
To control all norms appearing in ‖Nζ −Nξ‖χ(λ) we follow exactly the same steps used in
the proof of previous theorem.

3.3. Proof of Theorem 3

We define the space of solutions χ(λ) by

χ(λ) = C([0, ∞),Hσ1) ∩ C1([0, ∞),Hσ2).

Our goal is to prove (29) and (30). Let

‖ζ‖χ(λ) = sup
τ∈[0,λ]

{
(1 + τ)

r
2 (

1
k−

1
2 )−(1−γ)‖u(τ, ·)‖L2 + (1 + τ)

r
2 (

1
k−

1
2 )+1−(2−γ)‖ζλ(τ, ·)‖L2

+(1 + τ)
r
2 (

1
k−

1
2 )+1+ σ2

2 −(2−γ)‖ζλ(τ, ·)‖Hσ2 + (1 + τ)
r
2 (

1
k−

1
2 )+

σ1
2 −(1−γ)‖ζ(τ, ·)‖Hσ1

}
.

From the defined norm and the estimates (24) to (27) we get∥∥ζLn∥∥
χ(λ)

. ‖(ζ0, ζ1)‖Aσ1,σ2
k

.

Then, its remains to prove (32) to get (29).
For

∥∥ζnL∥∥
L2 we have

‖ζnL‖L2 .
∫ λ

0
(1 + λ− τ)−

r
2 (

1
k−

1
2 )
∫ τ

0
(τ − s)−γ‖|ζ(τ, ·)|ς‖Lk∩Hσ2 dsdτ. (50)

Similarly to (33) and (34) we obtain

‖ζ(τ, ·)‖ς

Lkς . (1 + τ)−
r

2k ς+ r
2k +(1−γ)ς‖ζ‖ς

χ(λ)
(51)

and
‖ζ(τ, ·)‖ς

L2ς . (1 + τ)−
r

2k ς+ r
4+(1−γ)ς‖ζ‖ς

χ(λ)
, (52)

provided that
2
k ≤ ς if σ1 ≥ r

2 ,
2
k ≤ ς ≤ r

r−2σ1
if σ1 < r

2 .

Still it remains to estimate the norm

‖|ζ(τ, ·)|ς‖Hσ2 .
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The fractional chain rule, which the reader can find in citation [25] or Appendix A, is
therefore used as a harmonic analysis tool in this paper. We can estimate ς > dσ2e and
0 ≤ τ ≤ λ by considering the Propositions A1 and A3, in particular Formula (A2).

‖|ζ(τ, ·)|ς‖Hσ2 .
∥∥ζ(τ, ·)

∥∥ς−1
Lq1

∥∥|D|σ2 ζ(τ, ·)
∥∥
Lq2

.
∥∥ζ(τ, ·)

∥∥(ς−1)(1−θ1)

L2

∥∥|D|σ1 ζ(τ, ·)
∥∥(ς−1)θ1
L2

∥∥ζ(τ, ·)
∥∥1−θ2
L2

∥∥|D|σ1 ζ(τ, ·)
∥∥θ2
L2

. (1 + τ)−
r

2k ς+ r
4−

σ2
2 +(1−γ)ς‖ζ‖ς

χ(λ)
.

Then
‖|ζ(τ, ·)|ς‖Hσ2 . (1 + τ)−

r
2k ς+ r

4−
σ2
2 +(1−γ)ς‖ζ‖ς

χ(λ)
, (53)

where

ς− 1
q1

+
1
q2

=
1
2

, θ1 =
r

σ1

(1
2
− 1

q1

)
∈ [0, 1], θ2 =

r
σ1

(1
2
− 1

q2

)
+

σ2

σ1
∈
[σ2

σ1
, 1
]
.

Last conditions implies

2 ≤ q1 and 2 ≤ q2 if σ1 ∈
[ r

2 + σ2, ∞
)
,

2 ≤ q1 and 2 ≤ q2 ≤ 2r
r−2(σ1−σ2)

if σ1 ∈
[ r

2 , r
2 + σ2

)
,

2 ≤ q1 ≤ 2r
r−2σ1

and 2 ≤ q2 ≤ 2r
r−2(σ1−σ2)

if σ1 ∈
(
0, r

2
)
.

Then we get the following bounds:

1 + 2(σ1−σ2)
r ≤ ς if σ1 ∈

[ r
2 , r

2 + σ2
)
,

1 + 2(σ1−σ2)
r ≤ ς ≤ 1 + 2

r−2σ1
if σ1 ∈

(
0, r

2
)
.

Using (51)–(53) with the last estimates of (22) in (50), we get

‖ζnL‖L2 .
∫ λ

0
(1 + λ− τ)−

r
2 (

1
k−

1
2 )
∫ τ

0
(τ − s)−γ(1 + τ)−

r
2k ς+ r

2k +(1−γ)ς‖ζ‖ς
χ(λ)

dsdτ

. ‖ζ‖ς
χ(λ)

(1 + λ)−
r
2 (

1
k−

1
2 )+1−γ,

where r
2

(
1
k −

1
2

)
< 1 from the restriction of dimension described in the theorem and using

the conditions − r
2k ς + r

2k + (1− γ)ς > 1 which generate a Fujita-like upper bound (16).
Finally, we get

‖ζnL‖L2 . ‖ζ‖ς
χ(λ)

(1 + λ)−
r
2 (

1
k−

1
2 )+1−γ. (54)

Similarly, we can get

‖ζnL
λ ‖L2 . ‖ζ‖ς

χ(λ)
(1 + λ)−

n
2 (

1
k−

1
2 )+1−γ. (55)

∥∥|D|σ2 ζnL
λ

∥∥
L2 . ‖ζ‖ς

χ(λ)
(1 + λ)−

r
2 (

1
k−

1
2 )+

σ2
2 +1−γ. (56)∥∥|D|σ1 ζnL∥∥

L2 . ‖ζ‖ς
χ(λ)

(1 + λ)−
r
2 (

1
k−

1
2 )+

σ1
2 +1−γ. (57)

Last estimates complete the proof of (32). Now we prove the second inequality (30). Let ζ
and ξ belong to χ(λ). Then

‖Nζ −Nξ‖L2 .
∫ λ

0
(1 + λ− τ)−

r
2 (

1
k−

1
2 )
∫ τ

0
(τ − s)−γ‖|ζ(τ, z)|ς − |ξ(τ, z)|ς‖Lk∩Hσ2 dsdτ.
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Similar to (41) and (42), we get∥∥|ζ(τ, ·)|ς − |ξ(τ, z)|ς
∥∥
L2

. (1 + τ)−
r

2k ς+ r
4 ‖ζ − ξ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ξ‖ς−1

χ(λ)

)
, (58)

∥∥|ζ(τ, ·)|ς − |ξ(τ, z)|ς
∥∥
Lk

. (1 + τ)−
r

2k ς+ r
2k ‖ζ − ξ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ξ‖ς−1

χ(λ)

)
. (59)

In the next step we may control
∥∥|ζ(τ, ·)|ς − |ξ(τ, z)|ς

∥∥
Hσ2 (Rr)

. Indeed, using the fractional
Leibniz rule from Proposition A2 we get

∥∥|ζ(τ, ·)|ς − |ξ(τ, ·)|ς
∥∥
Hσ2 .

∫ 1

0

∥∥|D|σ2
{
(ζ − ξ)(ζ − ι(ζ − ξ))|ζ − ι(ζ − ξ)|ς−2

}∥∥
L2 dr

.
∫ 1

0

∥∥|D|σ2(ζ − ξ)
∥∥
Lq1

∥∥(ζ − ι(ζ − ξ))|ζ − ι(ζ − ξ)|ς−2∥∥
Lq2 dr

+
∫ 1

0

∥∥ζ − ξ
∥∥
Lq3

∥∥|D|σ2
[
(ζ − ι(ζ − ξ))|ζ − ι(ζ − ξ)|ς−2]∥∥

Lq4 dr,

where
1
2
=

1
q1

+
1
q2

=
1
q3

+
1
q4

.

For the first integral we use the classical Gagliardo-Nirenberg inequality and obtain for
0 ≤ τ ≤ λ∥∥|D|σ2(ζ − ξ)

∥∥
Lq1 .

∥∥ζ − ξ
∥∥1−θ1
L2

∥∥|D|σ1(ζ − ξ)
∥∥θ1
L2 . (1 + τ)

− r
2k−

σ2
2 + r

2q1
+(1−γ)∥∥ζ − ξ

∥∥
χ(λ)

,

and∥∥(ζ − ι(ζ − ξ))|ζ − ι(ζ − ξ)|ς−2∥∥
Lq2 .

∥∥ζ − ι(ζ − ξ)
∥∥(1−θ2)(ς−1)
L2

∥∥|D|σ1(ζ − ι(ζ − ξ))
∥∥θ2(ς−1)
L2

. (1 + τ)
− r

2k (ς−1)+ r
2q2
∥∥ζ − ι(ζ − ξ)

∥∥ς−1
χ(λ)

for
θ1 =

r
σ1

(1
2
− 1

q1

)
+

σ2

σ1
∈
[σ2

σ1
, 1
]
, θ2 =

r
σ1

(1
2
− 1

q2(ς− 1)

)
∈ [0, 1].

The last conditions implies that

2 ≤ q1 and 2
ς−1 ≤ q2 if σ1 ∈

[ r
2 + σ2, ∞

)
,

2 ≤ q1 and 2
ς−1 ≤ q2 ≤ 2r

r−2(σ1−σ2)
if σ1 ∈

[ r
2 , r

2 + σ2
)
,

2 ≤ q1 ≤ 2r
r−2(σ1−σ2)

and 2
ς−1 ≤ q2 ≤ 2r

r−2(σ1−σ2)
if σ1 ∈

(
0, r

2
)
.

Thus we get the following bounds:
To estimate the first term in the second integral we use again the Gagliardo-Nirenberg

inequality.
In this way we, obtain∥∥ζ − ξ

∥∥
Lq3 .

∥∥ζ − ξ
∥∥1−θ3
L2

∥∥|D|σ1(ζ − ξ)
∥∥θ3
L2 . (1 + τ)

− r
2k +

r
2q3

+1−γ∥∥ζ − ξ
∥∥

χ(λ)
,

where
θ3 =

r
σ1

(1
2
− 1

q3

)
∈ [0, 1].

To estimate the second term we use the fractional chain rule from Proposition A3.
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Hence, we get∥∥|D|σ2
[
(ζ − ι(ζ − ξ))|ζ − ι(ζ − ξ)|ς−2]∥∥

Lq4 . ‖ζ − ι(ζ − ξ)‖ς−2
Lq5 ‖|D|

σ2(ζ − ι(ζ − ξ))‖Lq6 ,

where
1
q4

=
ς− 2

q5
+

1
q6

.

Using Gagliardo-Nirenberg inequality to estimate the last two norms, we get

‖ζ − ι(ζ − ξ)‖ς−2
Lq5 . ‖ζ − ι(ζ − ξ)‖(p−2)(1−θ5)

L2 ‖|D|σ1(ζ − ι(ζ − ξ))‖(p−2)θ5
L2

. (1 + τ)

(
− r

2k +
r

2q5
+1−γ

)
(p−2)∥∥ζ − ι(ζ − ξ)

∥∥ς−2
χ(λ)

,

and

‖|D|σ2(ζ − ι(ζ − ξ))‖Lq6 . ‖ζ − ι(ζ − ξ)‖1−θ6
L2 ‖|D|σ1(ζ − ι(ζ − ξ))‖θ6

L2

. (1 + τ)
− r

2k +
r

2q6
− σ2

2 +1−γ∥∥ζ − ι(ζ − v)
∥∥

χ(λ)

for
θ5 =

r
σ1

(1
2
− 1

q5

)
∈ [0, 1], θ6 =

r
σ1

(1
2
− 1

q6

)
+

σ2

σ1
∈
[σ2

σ1
, 1
]
.

The last conditions imply that

2 ≤ q3, q5 and 2 ≤ q6 if σ1 ∈
[ r

2 + σ2, ∞
)
,

2 ≤ q3, q5 and 2 ≤ q6 ≤ 2r
r−2(σ1−σ2)

if σ1 ∈
[ r

2 , r
2 + σ2

)
,

2 ≤ q3, q5 ≤ 2r
r−2σ1

and 2 ≤ q6 ≤ 2r
r−2(σ1−σ2)

if σ1 ∈
(
0, r

2
)
.

One possibility to choose the parameters q3, q4, q5 and q6 satisfying the last conditions is

q3 =
r(ς− 1)
σ1 − σ2

, q4 =
2n(ς− 1)

r(ς− 1)− 2(σ1 − σ2)
, q5 =

r(ς− 1)
σ1 − σ2

, q6 =
2r

r− 2(σ1 − σ2)
.

These choices imply the condition

1 + 2(σ1−σ2)
r ≤ ς if σ1 ∈

[ r
2 , r

2 + σ2
)
,

1 + 2(σ1−σ2)
r ≤ ς ≤ 1 + 2(σ1−σ2)

r−2σ1
if σ1 ∈

(
0, r

2
)
.

Consequently, we obtain for 0 ≤ τ ≤ λ the estimate∥∥|ζ(τ, ·)|ς − |ξ(τ, z)|ς
∥∥
Hσ2 (Rr)

.
∫ 1

0
(1 + τ)−

r
2k ς+ r

4−
σ2
2 +(1−γ)ς

∥∥ζ − ξ
∥∥

χ(λ)

∥∥ζ − ι(ζ − ξ)
∥∥ς−1

χ(λ)
dr

.
∫ 1

0
(1 + τ)−

r
2k ς+ r

4−
σ2
2 (1−γ)ς

∥∥ζ − ξ
∥∥

χ(λ)

(∥∥u
∥∥ς−1

χ(λ)
+
∥∥v
∥∥ς−1

χ(λ)

)
dr

. (1 + τ)−
r

2k ς+ r
4−

σ2
2 (1−γ)ς

∥∥ζ − ξ
∥∥

χ(λ)

(∥∥u
∥∥ς−1

χ(λ)
+
∥∥v
∥∥ς−1

χ(λ)

)
.

All together similar to the control of ‖Nζ −Nζ‖χ(λ) in Theorem 1 leads to∥∥|D|σ(Nζ −Nξ)(λ, ·)
∥∥
L2

. (1 + λ)−
r
2 (

1
k−

1
2 )−

σ
2 ‖ζ − ξ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ξ‖ς−1

χ(λ)

)
, (60)
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∥∥(Nζ −Nζ)(λ, ·)
∥∥
L2(Rr)

. (1 + λ)−
r
2 (

1
k−

1
2 )‖ζ − ξ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ξ‖ς−1

χ(λ)

)
. (61)

The proof is completed.

3.4. Proof of Theorem 4

As we did in the proof to Theorem 3 we need just to modify the estimate of the norm
‖|D|σ2 ζnL

λ (λ, ·)‖L2 by using the Lemma A1 introduced by D’Abbicco in [27]. Then we get
for σ∗ < r

2 the following estimate:

‖|ζ(τ, ·)|ς‖Hσ2 (Rr) . ‖ζ(τ, ·)‖Hσ2 (Rr)‖ζ(τ, ·)‖ς−1
L∞(Rr)

. ‖ζ(τ, ·)‖Hσ2 (Rr)

(
‖ζ(τ, ·)‖Hσ∗ (Rr) + ‖ζ(τ, ·)‖Hσ2 (Rr)

)ς−1

. ‖ζ(τ, ·)‖ς
Hσ2 (Rr)

+ ‖ζ(τ, ·)‖Hσ2 (Rr)‖ζ(τ, ·)‖ς−1
Hσ∗ (Rr)

.

Gagliardo-Nirenberg inequality and the definition of the solution space χ(λ) lead us
to conclusion

‖|ζ(τ, ·)|ς‖Hσ2 . (1 + B(τ, 0))−
r
2 (

1
k−

1
2 )p− σ2

2 −
σ∗
2 (ς−1)+(1−γ)ς‖ζ‖ς

χ(λ)
. (62)

If we choose σ∗ = r
2 − ε, then we get

− r
2

(1
k
− 1

2

)
ς− σ2

2
− σ∗

2
(ς− 1) ≤ − r

2k
ς +

r
2k

.

Thus, we obtain

‖|ζ(τ, ·)|ς‖Lk∩Hσ2 . (1 + τ)−
r

2k ς+ r
2k +(1−γ)ς‖ζ‖ς

χ(λ)
.

Using the most recent estimate, the same steps as in the proof of Theorem 3 can be used to
conclude the proof.

4. Concluding Remarks

There are a number of Semiliear Cauchy problems in the literature which have the
same decay estimates for the homogeneous problem as that of the Cauchy problem (12)
with friction, viscoelastic damping. The results that we have acquired also hold for the
semilinear Cauchy problems that already exist in mathematical literature. In this study,
we have discussed the global existence in time of small data solutions to the Cauchy
problem (12) with friction, viscoelastic damping and a fractional nonlinearity, where the
data are supposed to belong to different classes of regularity and Iγ denote the Caputo
fractional integral of order γ defined by Iγ(ζ) ≈

∫ λ
0 (λ− s)−γζ(s)ds for some γ ∈ (0, 1).

We have also shown the influence of the fractional nonlinearity to the admissible range
of exponent ς comparing with power nonlinearity and also the generating of loss of
decay. Indeed the Cauchy problem studied in this paper is more general than the Cauchy
problems (13)–(15) since it contains the global existence in time of small data solutions
when the data are supposed to belong to different classes of regularity.
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Appendix A

Here we state some inequalities which come into play in our proofs.

Proposition A1. Let 1 < ς, ς0, ς1 < ∞, $ > 0 and s ∈ [0, $). Then the following fractional
Gagliardo-Nirenberg inequality holds for all ζ ∈ Lς0 ∩H$

ς1 :

‖ζ‖H$
ς
. ‖ζ‖1−θ

Lς0 ‖ζ‖
θ
H$

ς1
, (A1)

where

θ = θs,$ :=
1
ς0
− 1

ς +
$
r

1
ς0
− 1

ς1
+ $

r
and

$

$
≤ θ ≤ 1.

For the proof see [28–34].

Proposition A2. Let us assume σ > 0 and 1 ≤ m ≤ ∞, 1 < ς1, ς2, q1, q2 ≤ ∞ satisfying
the relation

1
m

=
1
ς1

+
1
ς2

=
1
q1

+
1
q2

.

Then the following fractional Leibniz rule holds:

‖|D|σ( f g)‖Lm . ‖|D|σ f ‖Lς1 ‖g‖Lς2 + ‖ f ‖Lq1 ‖|D|σg‖Lq2 ,

for all f ∈ Hσ
ς1
∩ Lq1 and g ∈ Hσ

q2
∩ Lς2 .

For more details concerning fractional Leibniz rule see [29].

Proposition A3. Let us choose σ > 0, ς > dσe and 1 < m, m1, m2 < ∞ satisfying

1
m

=
ς− 1
m1

+
1

m2
.

Let us denote by F(u) one of the functions |ζ|ς, ±|ζ|ς−1ζ. Then the following fractional chain
rule holds:

‖|D|σF(u)‖Lm . ‖ζ‖ς−1
Lm1 ‖|D|

σζ‖Lm2 , (A2)

For the proof see [25].

Lemma A1. Let 0 < 2σ∗ < r < 2σ. Then for any function f ∈ Hσ∗ ∩Hσ one has the estimate

‖ f ‖L∞ ≤ ‖ f ‖Hσ∗ + ‖ f ‖Hσ .

For the proof see [6].

Proposition A4. The operator N maps χ(λ) into itself and has one and only one fixed point
ζ ∈ χ(λ) if the following inequalities hold:

‖Nζ‖χ(λ) ≤ C0(λ)‖(ζ0, ζ1)‖Am,s + C1(λ)‖ζ‖ς
χ(λ)

, (A3)

‖Nζ −Nζ‖χ(λ) ≤ C2(λ)‖ζ − ζ‖χ(λ)

(
‖ζ‖ς−1

χ(λ)
+ ‖ζ‖ς−1

χ(λ)

)
, (A4)

where C1(λ), C2(λ) −→ 0 for λ −→ +0 and C0(λ), C1(λ), C2(λ) ≤ C for all λ ∈ [0, ∞).

For the proof see [35].
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