
Citation: Thirugnanasambandam, K.;

Ramalingam, R.; Mohan, D.; Rashid,

M.; Juneja, K.; Alshamrani, S.S.

Patron–Prophet Artificial Bee Colony

Approach for Solving Numerical

Continuous Optimization Problems.

Axioms 2022, 11, 523. https://

doi.org/10.3390/axioms11100523

Academic Editor: Juan Gabriel

Avina-Cervantes

Received: 6 August 2022

Accepted: 26 September 2022

Published: 1 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Patron–Prophet Artificial Bee Colony Approach for Solving
Numerical Continuous Optimization Problems
Kalaipriyan Thirugnanasambandam 1, Rajakumar Ramalingam 2 , Divya Mohan 3, Mamoon Rashid 4,* ,
Kapil Juneja 5 and Sultan S. Alshamrani 6

1 Centre for Smart Grid Technologies, School of Computer Science and Engineering,
Vellore Institute of Technology, Chennai 600127, Tamilnadu, India

2 Department of Computer Science and Technology, Madanapalle Institute of Technology & Science,
Madanapalle 517325, Andhra Pradesh, India

3 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation,
Vaddeswaram 522302, Andhra Pradesh, India

4 Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University,
Pune 411048, Maharashtra, India

5 Department of Computer Science Engineering, Bennett University, Greater Noida 201310,
Uttar Pradesh, India

6 Department of Information Technology, College of Computers and Information Technology, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia

* Correspondence: mamoon.rashid@vupune.ac.in; Tel.: +91-7814346505

Abstract: The swarm-based Artificial Bee Colony (ABC) algorithm has a significant range of appli-
cations and is competent, compared to other algorithms, regarding many optimization problems.
However, the ABC’s performance in higher-dimension situations towards global optima is not on
par with other models due to its deficiency in balancing intensification and diversification. In this
research, two different strategies are applied for the improvement of the search capability of the ABC
in a multimodal search space. In the ABC, the first strategy, Patron–Prophet, is assessed in the scout
bee phase to incorporate a cooperative nature. This strategy works based on the donor–acceptor
concept. In addition, a self-adaptability approach is included to balance intensification and diversifi-
cation. This balancing helps the ABC to search for optimal solutions without premature convergence.
The first strategy explores unexplored regions with better insight, and more profound intensification
occurs in the discovered areas. The second strategy controls the trap of being in local optima and
diversification without the pulse of intensification. The proposed model, named the PP-ABC, was
evaluated with mathematical benchmark functions to prove its efficiency in comparison with other
existing models. Additionally, the standard and statistical analyses show a better outcome of the
proposed algorithm over the compared techniques. The proposed model was applied to a three-bar
truss engineering design problem to validate the model’s efficacy, and the results were recorded.

Keywords: Patron–Prophet; self-adaptability; artificial bee colony; mathematical benchmark functions;
swarm intelligence

MSC: 68U01; 68U35; 90C26; 90C27

1. Introduction

In recent years, numerical optimization has received a tremendous response among
researchers in science and engineering fields. Numerical problems also achieve greater
complexity due to their non-convex, non-linearity, discontinuous, and non-differentiable
natures [1]. In traditional optimization models such as Gradient Descent, Golden Search
cannot address these complex problems due to its stringent conditions and convergence
towards local optima. On the other hand, the optimization domain has reached yet another
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milestone in solving problems more effectively with the help of nature-inspired meta-
heuristic optimization algorithms. Mathematical models of natural evolution include
biological and physical development. Researchers from various domains have developed
and utilized methods to address domain optimization issues. The Genetic Algorithm
(GA) [2,3], Ant Colony Optimization (ACO) [4], Particle Swarm Optimization (PSO) [5–7],
and Artificial Bee Colony (ABC) [8] are a few of the widely utilized methods. These
models are significant in achieving globally optimum solutions for numerical optimization
problems [9–11].

The ABC algorithm is inspired by the food foraging behaviour of honeybees [12].
Honeybees find their food source (i.e., honey) using three types of bees: employer, onlooker,
and scout bees. By comparing the searching model of the ABC algorithm with other
bio-inspired algorithms, it can be seen that the ABC possesses an effective searching
model for optimal solutions with fewer computational expenses due to its fewer parameter
considerations and strong searchability. This advantage boosted the usage of the ABC in
solving a wide range of applications, such as mathematical benchmark functions [13–15],
engineering design problems [16–18], and nurse scheduling problems [19,20]. In recent
decades, it has been shown that ABC provides better outcomes than GA and PSO in
several complex problems. However, its weak intensification capability diminishes ABC’s
searching capability when applied to various issues [21]. A cooperative searching and
balancing model toward diversification and intensification in the existing methods will
effectively enrich ABC’s pursuit strategy.

The contributions of this research are described below:

• The concept of donor–acceptor, termed Patron–Prophet, is introduced to the ABC
using the scout bee strategy.

• A self-adaptive model is proposed to adapt the coefficient values based on the balance
between intensification and diversification.

• The introduced model is evaluated with different mathematical benchmark problems
and associated with other techniques to prove its significance.

• Along with standard performance metrics and statistical performance indicators, the
Wilcoxon Signed Rank test is utilized to evaluate the significance.

In this research, the ABC algorithm was equipped with the Patron–Prophet concept
to solve continuous optimization problems. The motivational factor in proposing our
algorithm to solve persistent optimization problems was that a wide range of applications
exists under this category. In addition, a no-free lunch theorem exists [22], stating that one
single algorithm that solves all existing problems does not exist. Continuous optimization
problems tend to access parameter values (i.e., the variables to be optimized) within
bounds that are restricted by constraints [23]. The choice of parameter values that are to be
optimized has a high impact on objective functions. Additionally, the process of parameter
optimization in continuous optimization problems can be easily adapted to the evolution
of nature towards “survival of the fittest”, as both are ongoing processes, except for a few
algorithms, such as Ant Colony Optimization and the Intelligent Water Drops algorithm.

The rest of the paper is structured as follows. Related works that enhance ABC
and other approaches to improve the efficiency of optimization models are presented in
Section 2. Section 3 discusses the proposed Patron–Prophet ABC and the standard ABC
algorithm and its drawbacks. Section 4 presents the detailed evaluation process of the
formulated technique with existing techniques. Finally, Section 5 discusses the proposed
model’s outcome in the conclusion and future directions of work.

2. Related Works

Recently, many enhanced ABC techniques have been proposed to improve perfor-
mance. These techniques can be classified into three types: (a) Finding newly emerged
search equivalences. These equations are used in the ABC to determine adequate searching
directions. They also produce new and appropriate solutions. The origin of these search
equations improves the searching capability of ABCs. Based on a genetic algorithm, Zhu
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et al. (2010) presented a suitable directed system based on the ABC, coined the GABC [21].
The global guided search algorithm familiarizes the complete, most acceptable result into
a search calculation of the bee algorithm. The novel search equation incorporates the
exclusive data of the individual with the best fit. It progresses the intensification capability
of ABCs, inspired by the transmutation operator. This operator was built with the help
of DE, and the authors planned for three revised equations proposed by Gao et al. (2011)
with the ABC [24]. The authors merged the benefits of the equations, which are wholly
based on the adaptation of the mechanism, and they were retained to create the perfect
equation. The proposed algorithm aims to represent an appropriate solution developed by
Banharnsakun et al. (2011) [25]. This algorithm epitomized a best-so-far selection strategy
and was deployed effectively by regulating the search radius. The method is constructed
on the fair function values derived from PSO.

Xiang et al. (2014) planned a practical approach inspired by particle swarm and
merged the core concept of multi-elitists [26]. It also includes ABC to improve effectiveness
and is denoted as PS-MEABC. The goal of this algorithm is to extemporize the search
equation. This searching feature helps to detect the best global solution (Gbest). Gao et al.
(2014) anticipated an algorithm that can implement novel equations for searching purposes
and is defined as EABC [27]. It provides perfect stability for intensification. The EABC
algorithm helps to handle the stability problem by having proper diversification. Gao et al.
(2013) designed an improved diversification equation comparable to the operator, and
the operator belongs to GA, which emits crossover operations [28]. The direction search
incorporates unbiased orthogonal Learning, which is referred to as CABC Karaboga (2014)
and sets a platform for the onlooker bee phase by enhancing their searching abilities, which
are denoted as a quick ABC (QABC) algorithm [29].

Wang et al. (2014) presented numerous equations into ABC for an effective solu-
tion [30]. It is mainly achieved to have a perfect steadiness for diversification, and the
proposed strategy helps to achieve a stable intensification. The equations stage a com-
parative statement with other equations to obtain good candidate results with the help
of the directional information; Kiran et al. (2015) planned an effective searching strategy
with a bee algorithm referred to as dABC algorithm [31]. It produces offspring constructed
on the preceding guiding information. Kiran et al. (2015) also projected an algorithm
known as ABCVSS that comprises five search equations [32]. These equations show a
diverse character yielded to form a flawless candidate result. Cui et al. (2017) anticipated a
standing-based AABC algorithm in this algorithm [1]. The food sources of the parent are
kept in the diversification calculation, and it is used for identifying the positions to carry
the harvest process offspring.

Chu et al. (2020) proposed a variant on ABC, namely ABC, with various flexible
competition for global optimization issues [33]. Complementary behaviour is implemented
to improve the search capability of ABC. A practical technique is imposed to balance the
intensification and diversification. In addition, it performs the search using competition
among the individuals and migrant models. Yavuz et al. (2019) [34] proposed a self-
adaptive search using the ABC algorithm model. This equation improves the intensification
capability of ABC. Three different strategies, namely self-adaptive, local search improvisa-
tion, and total population, are imposed to improve the concept of ABC on mathematical
benchmark procedures. The model is evaluated with competitor datasets, namely CEC’14
and 17. Song et al. (2019) [35] proposed an optimal model to study diversification and
intensification in ABC. Based on the search capability, the selection model handpicks the
results for the subsequent iterations based on the success rate. The algorithm’s results are
successful in terms of accuracy and success rate while associating the acquired outcome
with other models. Rong et al. [36] (2019) improved the execution time of ABC using an
improved onlooker bee selection strategy. An operator called the Cauchy operator is used
for balancing diversification and intensification. Different aspects of benchmark procedures
are utilized to prove the significance of the introduced model.
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In 2016, Gao et al. [37] introduced a hybrid ABC (DGABC) with DE to enhance the ABC
technique’s search strategy. This model incorporated an oppositional-based population
initialization to impose a diversified search capability. An effective learning strategy is also
charged with learning from previous experiences. In examining the results of the proposed
model, it performs on par with most of the existing algorithms. Cui et al. [38] proposed
another variant of ABC with an adaptive population size (APABC) for improving the
balance between diversification and intensification. This model presents a novel solution
search calculation for the scout bee phase when the population space is about to reduce the
solution count. The proposed model is more operative than the existing models in terms of
convergence speed. Li et al. (2017) [39] proposed an effective foraging model in ABC. The
proposed model is intended for the employee bees to search for high-quality solutions. A
new Gene Recombination operator was presented to generate a better key from the highly
qualified solution genes. A wide range of evaluations is carried over among different
variants of ABC.

In 2018, Xue et al. [40] introduced a Self-Adaptive Artificial Bee Colony technique with
Global Best (SABC-SG). An effective population initialization strategy and k-means clus-
tering algorithm for maintaining the diversity in the population are imposed in SABC-SG.
Different versions of the proposed model are evaluated, and the resultant convergence was
better than the other existing models. Cui et al. (2018) [41] presented the Dual Population
Framework (DPF) to enrich the convergence speed of ABC. In DPF, the population is
divided into convergence and diverse population. The convergence population is respon-
sible for intensification, and a diverse population will look after the diversification. For
evaluation, the proposed DPF is embedded with different variants of ABC.

In 2019, Gao et al. [42] proposed a modified ABC that includes three different search
strategies incorporated and evaluated using the Parzen window method. This Parzen
window method reduces the computational cost of evaluating the solutions. In this model,
two other techniques are used to maintain the diversity in the population. In 2020, Wang
et al. [43] projected an improved version of ABC using a neighbourhood selection mecha-
nism. In this model, solutions are selected after the neighbourhood similarity computation.
It will reduce the selection of similar solutions for the next generation, improving the
diversity in the population. In the same year, the authors [44] proposed a knowledge-based
ABC algorithm (KFABC) for addressing different modal problems. This research defines
three search strategies for managing two other models (Unimodal and Multimodal). An
effective learning technique is also projected to find the appropriate search strategy for the
respective modal problems. The results show significant results when compared with the
existing models.

In 2021, Yang et al. [45] proposed ABC with Covariance Matrix (ACoM-ABC) to
enhance the intensification of search. Eigen and natural coordinates are used over standard
ABC to balance diversification and intensification. However, based on the computational
cost in terms of time, the proposed model takes more time to converge towards optimal
solutions. In the same year, Xu et al. [46] proposed a Multi-population ABC (MPABC),
which comprises two different search strategies applied to the employee bee phase. A
novel probability-based selection strategy is involved with these search strategies using the
SoftMax function. These strategies improved the intensification capability of the standard
ABC. In the same year, an effective ABC algorithm is used for scheduling digital microfluidic
biochip operations [47]. Along with ABC, many algorithms in bio-inspired models solve
various problems in many domains [48–54].

The recent applications of ABC in the engineering and non-engineering disciplines
are listed as follows: In 2021, Xui et al. [55] used a discrete version of ABC for call centre
scheduling and weekend-off fairness. In 2022, Yibing Cui et al. proposed a reinforced ABC
for robot path planning that intelligently tunes the perturbation frequency [56]. In 2022,
Xin et al. [57] proposed a self-adaptive ABC for decoding the resource-constrained and
attains effective perturbation solutions. Yavuz et al. [58] proposed an enhanced ABC for
constrained optimization. In this research work, the authors imposed the distance savant
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on employees and onlooker bees for better intensification. In 2022, Rafal et al. [59] utilized
ABC for scheduling the palletizing task with the help of a robotic arm and ABC algorithm.
This research used a multi-objective version of ABC to identify an optimal solution that
satisfies four different objective functions.

The state-of-the-art algorithms discussed hold an effective search capability. How-
ever, the extraction of knowledge from the discarded solutions and an inbuilt balancing
between diversification and intensification is missing in these models. To address the
aforementioned issues, the authors of this paper propose a Patron–Prophet-based ABC.

3. Patron–Prophet Artificial Bee Colony Algorithm

This section presents the standard working model of ABC, its drawbacks in searching
and the proposed Patron–Prophet Artificial Bee Colony algorithm (PP-ABC).

3.1. Standard ABC

ABC mimics the behaviour of food foraging of honeybees. This population-based
model consists of three search bees: employee bees, onlooker bees, and scout bees. The
total number of employees and onlooker bees are equal in each colony. Each solution in the
population is mapped to an employee bee. The employee bees waggle and dance to tell
onlooker bees where to obtain food. Onlooker bees hunt for higher-quality food sources
based on probability calculations. Food sources with low superiority are excluded, and
employee bees become scouts if the food source runs out. The modified scout bee must find
nourishment. The in-depth details of the standard ABC algorithm can be found in [60].

3.1.1. Initialization

Food sources (F ) for n-dimensional vectors are generated in the initialized population.
Xi = {xi,1, xi,2, . . . , xi,n} denotes the solution population. Equation (1) creates population
solutions as below

xi,j = xmin,j + rand (0, 1) ∗
(

xmax,j − xmin,j
)

(1)

where x represents a solution, xi,j denotes the jth dimension of ith solution. xmax and xmin
denotes Upper and Lower bound values in dimension j. The food sources are provided
to the employee bees at random. Accordingly, the fitness calculation for the solution
is assessed.

3.1.2. Employee Bee Phase

In this phase, candidate solutions are generated, and food source positions will be
scrutinized. The mathematical model of the candidate individual is formulated and shown
in Equation (2)

vi,j = xi,j +∅i,j

(
xi,j − xk,j

)
(2)

where j = 1 : S and k = 1 : F , and ∅ is the constriction factor that controls the influence
of the difference between the current and neighbourhood solutions, and its value varies
between [−1, 1]. A greedy method is used to choose between vi and xi based on the fitness
estimate. The individual xi is changed to vi if vi has a better fitness value than xi.

3.1.3. Probability Calculation

After calculating their fitness, employee bees communicate the location of the food
supply with onlooker bees. In addition, the evaluation of the employee search individual
will be made with the aid of the likelihood value Pi. The likelihood and appropriateness of
an individual are calculated and presented in Algorithm 1. In Algorithm 1, fi represents
the fitness value computed using the objective function of the problem.
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Algorithm 1: Computation of Probability Values for Every Solution.

Begin
for i = 1: F perform

f iti =

{
1

1+ fi
, fi ≥ 0

1 + abs( fi), fi < 0

Pi =
f iti

∑Fj=1 f itj

end for
End

3.1.4. Onlooker Bee Phase

Each onlooker search individual picks the food source xi contingent on the likelihood
value Pi. Using Equation (2), it modifies xi throughout this bee phase. To choose the optimal
solution from xi and vi a greedy strategy resembling the employee bee phase is used.

3.1.5. Scout Bee Phase

After the employee and onlooker search individual, the solution disappears when the
evolved solution cannot achieve a new best and if the evolution period is exhausted for
the predefined trial. Additionally, the corresponding employee bee acts as a scout search
individual for searching for novel food bases using Equation (1).

3.2. Drawbacks of Standard ABC

There are two significant drawbacks to the existing standard ABC: non-cooperative
behaviour and non-balanced diversification and intensification.

3.2.1. Non-Cooperative Behaviour in Scout Bee Phase

The cooperative behaviour of honeybees can be visible while sharing information on
food sources between employees and onlookers. However, the solution is not improvised
in a limited period, the individual is eliminated from the population, and the new solution
will be replaced. At this level, the cooperative behaviour of bees while generating new
solutions is not present.

3.2.2. Non-Balanced Diversification and Intensification

Balancing diversification and intensification is an essential part of any optimization
algorithm. This balancing leads the algorithm to search towards global optima throughout
the entire run in meta-heuristic optimization models. The diversification and intensification
phases in ABC perform better when the problem dimensions are few. However, when the
sizes increase in a problem, the effect of intensification is highly affected due to its less
neighbourhood search strategy [21].

3.3. Proposed Patron–Prophet ABC

The proposed Patron–Prophet ABC consists of two incorporations to enhance standard
ABC’s working model: the Patron–Prophet and Self-Adaptive strategies to improve the
balance between diversification and intensification.

3.3.1. Patron–Prophet Strategy

The Patron–Prophet strategy follows the donor–acceptor concept. The Patron is
responsible for donating the information regarding the deviation from the best solutions.
The Prophet is the receiver, the newly generated individual who is groomed efficiently
based on the Patron’s information. In ABC, the unimproved individual is eradicated at
the scout bee phase, and a novel individual is generated and replaced. In this model, if
the individual about to be discarded has provided the information of how it was deleted,
it might be helpful for the newly generated solution to carry on the searching process in
further iterations.
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Thus, the solution is identified as unimproved throughout iterations and discarded.
The information on how much it has deviated from the suitable solution can be derived
using the proposed model in [61]. In addition, the systematic process of the Patron–Prophet
strategy is presented in Figure 1. This extracted information can be supplementary to the
newly generated solution to enrich the pursuit capability. The Patron–Prophet strategy can
be mathematically formulated as

∆Xi =

∥∥∥∥
√

∑m
j=1
(
xj − xi

)2

m

∥∥∥∥ (3)

where j ∈ Q, i ∈
.
D and m = |Q|.
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The new solution is generated using the extracted information from abandoned solu-
tions, as follows:

xi
t+1 = xnew + ∆Xi (4)

where t represents the generation number.

3.3.2. Self-Adaptability

The Self-Adaptability strategy is proposed for ABC for balancing diversification and
intensification. Throughout the pursuit process of the onlooker individual strategy, a set
of solutions undergo intensification to find an effective solution in the neighbourhood.
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However, when the dimension of the problem increases, the individual may not be capable
of exploiting more dimensions when the tuning factor affects only one of the chosen dimen-
sions. Hence, when self-adaptability is deployed in the onlooker bee phase, controlling the
search space would be much more effective for balancing diversification and intensification.
The self-adaptable strategy can be mathematically represented as

α =

∣∣∣∣∣∣
f
(

xbest
t

)
σt ×ω

∣∣∣∣∣∣
ϕ

(5)

where f
(

xbest
t

)
specifies the best solution suitability value concerning the objective function

f (), t denotes the iteration, and σt denotes the average in the fitness values of all solutions
at iteration t. ϕ and ω are the shrinking features that influence the value of α.

The proposed PP-ABC is shown in Algorithm 2.

Algorithm 2: PP-ABC.

Input: Lower xmin and upper xmax bound of every dimension, # of the individual in a population
(F ), the total number of dimensions (S), Population Initialization
For i = 1: F , do

For j = 1: S, do
Create xi,j individual

xi,j = xmin,j ± rand (0, 1) ∗
(

xmax,j − xmin,j

)
End for

End for
// Population fitness evaluation using Algorithm 1
t = 1
Repeat
{
// Employee individual strategy
For each F , i do

vi,j = xi,j +∅i,j

(
xi,j − xk,j

)
Select between vi and xi

End For
// Onlooker individual strategy
Set r = 0
While (r <= F )

If rand(0,1) <Pi with Algorithm 1, then

vi,j = xi,j + α
(

xi,j − xk,j

)
Select between vi and xi
r = r + 1

End if
End while
// Scout individual strategy
for i = 1 tosize

( .
Dt,K

)
∆X =

∥∥∥∥
√

∑m
j=1(xj−xi)

2

m

∥∥∥∥ where m ∈ Qt,K

xi = xnew + ∆Xi
end
Remember the best individual position obtained so far
t = t + 1
}
Until (t ≤ MaxIteration )
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3.4. The Working Process of PP-ABC

In Algorithm 2, the initial phase starts with the population initialization as in Equation (1),
and every solution is generated as feasible solutions within the lower and upper bound.
After the population initialization phase, every individual is evaluated based on the fitness
function. This fitness function is dependent on the problem’s nature. This fitness value of
every solution quantifies individual superiority.

After the fitness evaluation, the generation evolution of solutions start in the first
iteration. This generation is evaluated until the termination criteria are satisfied. The
termination criteria can be any epoch value or the best fitness value. The first phase of the
ABC algorithm comes with the employee bee phase. The employee bee phase generates
a neighbourhood candidate solution for every individual solution in the population as
its base. In the employee bee phase, the individual undergoes a slight change among the
selected genes of the original candidate solution in the population. If the newly generated
solution’s fitness value is better when compared to the base individual, then that solution
is replaced by the newly developed solution; otherwise, the old one is retained.

After the employee bee phase, based on Algorithm 1, every solution has a probability
value before it undergoes the evolution of the onlooker bee phase. If the probability value
P is greater than the arbitrary value, the current individual experiences the transition
using onlooker bees. The random number imposes the uncertainty principle in ABC. In
the onlooker bee phase, the surpassed solutions use the Self-Adaptive parameter (α) to
generate new solutions. This self-adaptive parameter develops new solutions concerning
the current scenario of the swarm. If most of the individuals in the hive work towards
the best solution, the α value will be high in the range with the intensity to generate new
individuals with more diversity. If the number of solutions near to best solution is lower, the
next solution generation in the onlooker bee phase creates better solutions in intensification.
After the solution generation, a greedy method will be pragmatic to retain the best solutions
for the next generation population, similar to the employee bee phase.

Throughout the entire procedure, every individual solution keeps track of its better-
ment over iterations. If any individual is undeveloped after a certain number of trials,
it will be eliminated by the scout bees, and new solutions will be obtained in place of
abandoned solutions. During the scout bee phase, our proposed Patron–Prophet concept
makes the abandoned solutions impose a procedure called cooperative behaviour. The
qualified and abandoned solutions are identified and separated. Then, the amount of
deviation from the suitable individuals for every abandoned solution is determined and
kept as ∆X using Equation (4). This information is incorporated into the newly generated
key using Equation (5). The entire process of PP-ABC is carried out until it reaches the
maximum number of iterations (MaxIteration).

4. Experimental Procedure and Result Analysis

This section presents the experimental setup of the formulated system and other
techniques. In addition, we compare the proposed outcome with other methods, and
statistical measures are conducted to ensure the efficacy of the proposed work.

4.1. Experimental Setup

The PP-ABC algorithm’s evaluation purpose was applied to 15 benchmark func-
tions [29,30]. These mathematical benchmark functions were chosen because these are
widely used for the performance evaluations of metaheuristic algorithms in the literature.
The classification of chosen benchmark functions is shown below:
Function F1–F4: Unimodal functions
Function F5–F11: Multimodal functions
Function F12, F13: Multimodal functions with penalized
Function F14, F15: Composite functions

Out of these 15 benchmark functions, function f3 holds the multimodality property
if its dimensions are more than 3 (i.e., D > 3). Other existing algorithms are compared
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with our proposed algorithm by the minimum global optimum value attained (min), the
mean of the population that achieved the minimum global optimum solution (mean), and
the standard deviation of the entire population (std.dev). The performance of PP-ABC was
measured and compared with the performance of other existing algorithms. In addition,
we also included the standard ABC and six different recently proposed approaches, namely
DGABC [37], KFABC [44] for testing the learning mechanism, SABC-SG [40] to test the self-
adaptability, APABC [38], ACoM-ABC [45], and MPABC [46], for comparing the balanced
diversification and intensification. The parameter backgrounds of the proposed system are
presented in Table 1. In addition, the range of each function is shown in Table 2.

Table 1. Parameter settings.

Type Method

Individuals in a population 30
Dimension (D) 10 & 30

Termination Criteria (MaxIteration) 1000 × D
Runs 25

C 1
ϕ 2
α 0.1 (initially)
ω 2

Table 2. Range of each dimension for the benchmark functions.

Function Mathematical Formulation Global Optimum Range

F1 D
∑

i=1
z2

i , z = X−O, O = [O1, O2, . . . , OD ]
0 [−100, 100]D

F2 D
∑

i=1

(
∑i

j=1 zi

)2
, z = X−O, O = [O1, O2, . . . , OD ]

0 [−100, 100]D

F3 D−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]
, (1, 1 . . . , 1) [−100, 100]D

F4 D
∑

i=1

(
∑i

j=1 zi

)2
(1 + 0.4|N(0, 1)|) , z = X−O 0 [−100, 100]D

F5 −20 exp

(
−0.2

√
1
D

D
∑

i=1
zD

i

)
− exp

(
1
D

D
∑

i=1
cos 2πzi

)
+ 20 + e, z = X−O 0 [−32, 32]D

F6 −20 exp

(
−0.2

√
1
D

D
∑

i=1
zD

i

)
− exp

(
1
D

D
∑

i=1
cos 2πzi

)
+ 20 + e, z =

M(X−O), cond(M) = 1

0 [−32, 32]D

F7 1
400

D
∑

i=1
z2

i −
D
∏
i=1

cos
(

zi√
i

)
+ 1z = X−O 0 [0, 600]D

F8 1
400

D
∑

i=1
z2

i −
D
∏
i=1

cos
(

zi√
i

)
+ 1, z = M(X−O), cond(M) = 3 0 [0, 600]D

F9 D
∑

i=1

[
z2

i − 10 cos(2πzi) + 10
]
, z = X−O 0 [−5, 5]D

F10 D
∑

i=1

[
z2

i − 10 cos(2πzi) + 10
]
, z = M(X−O), cond(M) = 2 0 [−5, 5]D

F11 418.9828 ∗ D−
D
∑

i=1
xi sin

(
|xi |

1
2
)

(420.96, . . . , 420.96) [−500, 500]D

F12

π
D

{
10 sin2(πyi) +

D−1
∑

i=1
(yi − 1)2[1 + sin2(πyi + 1)

]
+ (yD− 1)2+

D
∑

i=1
u(xi , 10, 100, 4)

}
y = 1 + xi+1

4 u(xia, k, m) =

{
k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi > −a

0 [−50, 50]D

F13
0.1
{

10 sin2(πyi) +
D−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi + 1)

]
+

(yD− 1)2 +
D
∑

i=1
u(xi , 10, 100, 4)

} 0 [−50, 50]D

F14 Ten sphere functions 0 [−5, 5]D

F15
Ten different benchmark functions (i.e., 2 rotated Rastrigin’s procedures,

2 rotated Weier stress functions, 2 rotated Griewank’s procedures, 2 rotated
Ackley’s procedures, and two turned Sphere functions)

0 [−5, 5]D
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The proposed technique was performed on MATLAB 12.0, and the processor used was
an Intel core i7-2620M processor with 4 GB of RAM. Two different versions were prepared
to examine the performance of the Self-Adaptability and Patron–Prophet strategies of ABC,
one only with Patron–Prophet in ABC and another only with Self-Adaptability in ABC. The
obtained results are presented in Table 3.

Table 3. Comparison of the Patron–Prophet and Self-Adaptability modes.

Patron–Prophet Self-Adaptability

Min Mean Std.dev. Min Mean Std.dev.

F1 0 0 0 0 0 0
F2 0 0 0 1.26 × 100 3.45 × 100 3.56 × 100

F3 1.13 × 10−6 3.11 × 10−6 1.34 × 10−8 5.22 × 10−5 3.26 × 10−1 7.27 × 10−1

F4 4.76 × 10−10 7.90 × 10−4 3.24 × 10−6 5.87 × 10−8 8.01 × 10−6 4.36 × 10−2

F5 0 8.65 × 10−14 4.62 × 10−16 0 1.14 × 10−14 9.62 × 10−12

F6 6.83 × 10−6 3.76 × 10−5 4.60 × 10−6 7.94 × 10−6 4.87 × 10−6 5.60 × 10−5

F7 0 6.47 × 10−8 3.70 × 10−10 0 7.58 × 10−9 4.71 × 10−9

F8 3.72 × 10−5 9.26 × 10−1 2.53 × 10−2 4.83 × 10−4 6.37 × 10−3 3.64 × 10−1

F9 0 0 0 0 0 0
F10 4.86 × 100 6.45 × 100 3.76 × 100 5.12 × 100 6.21 × 100 4.12 × 100

F11 0 0 0 0 0 0
F12 0 2.09 × 10−32 3.75 × 10−32 0 3.10 × 10−31 4.77 × 10−28

F13 2.23 × 10−42 2.76 × 10−30 2.61 × 10−25 3.34 × 10−40 3.87 × 10−32 3.72 × 10−32

F14 6.97 × 10−6 6.75 × 10−6 2.70 × 10−6 9.66 × 10−7 3.85 × 10−8 5.42 × 10−6

F15 1.62 × 10−1 3.65 × 10−1 1.15 × 100 7.23 × 10−1 5.44 × 10−1 6.21 × 100

The effect of the Patron–Prophet model and Self-Adaptability on an individual basis
in the standard ABC technique is presented in Table 3. We interpreted the outcome in
achieving the minimum as the objective of the six functions to perform its best in mutual
between both the models. As a standalone process, the Patron–Prophet model attained
a maximum of four parts, and the Self-Adaptability strategy achieved three other func-
tions. The proposed method shows the capability of the Patron–Prophet on intensification
towards optimal solutions. In addition, interpreting the standard deviation values of
Self-Adaptability offers a diverse range of results at the end of the run, showing the search
capability (diversification) of the Self-Adaptability model of ABC. Hence, combining these
two models and incorporating them in ABC results in better mathematical benchmark func-
tions in terms of intensification towards optimal solutions and diversification throughout
the search space.

From the results shown in Table 4, which covers the 10-dimensional problem set of
the provided functions, the outcome of the PP-ABC technique converges towards globally
optimal solutions compared with other stated algorithm results. In unimodal functions
(F1, F2), the multimodal function (F9, F11) results of the proposed algorithm achieve
exact global optimum solutions in the entire algorithm population. In multimodal (F5, F7)
and penalty functions (F12), some individuals of the proposed algorithm attain optimal
solutions with some deviation compared to another individual in the entire population.

Table 5 shows the results of the 30-dimensional problem set of the provided benchmark
functions. Apart from functions F2, F3, F5, F6, and F10, the F13 PP-ABC achieves superior
outcomes in all the other parts. The proposed algorithm attains a global solution of 0 in the
entire population for the functions F1, F7, F8, F9, and F14. The proposed model shows the
consistency of the proposed algorithm over other algorithms. The proposed algorithm is
second best in achieving global minimum within the provided iterations on two benchmark
functions, including F2 and F11. Figure 2 shows the convergence frequency of the proposed
algorithm concerning generations for the benchmark functions of 30 dimensions.
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Table 4. Simulation results of benchmark functions with ten dimensions.

PP-ABC DGABC APABC ABC

Min Mean Std.dev Min Mean Std.dev Min Mean Std.dev Min Mean Std.dev

F1 0 0 0 0 2.22 × 10−21 2.0 × 10−21 0 0 0 0 0 0
F2 0 0 0 0 1.47 × 10−10 6.94 × 10−11 2.66 × 10−2 9.14 × 10−2 6.99 × 10−2 2.46 × 100 5.75 × 100 2.54 × 100

F3 4.58 × 10−8 2.56 × 10−2 5.24 × 10−2 3.97 × 100 4.55 × 100 1.96 × 100 1.03 × 10−2 7.21 × 10−1 6.21 × 10−1 8.57 × 10−3 3.97 × 10−1 2.85 × 10−1

F4 3.65 × 10−12 6.89 × 10−5 2.14 × 10−5 9.86 × 10−7 4.54 × 10−5 2.51 × 10−5 8.55 × 10−1 3.21× 10−1 2.39× 10−1 2.54 × 102 4.25 × 102 2.11 × 102

F5 0 9.54 × 10−16 3.51 × 10−18 6.90 × 10−7 5.35 × 10−5 2.00 × 10−3 0 5.65 × 10−15 1.90 × 10−15 5.45 × 10−17 7.65× 10−15 2.50 × 10−14

F6 5.72 × 10−8 2.65 × 10−7 3.59 × 10−7 1.14 × 10−9 2.61 × 10−8 3.75 × 10−8 5.27 × 10−8 3.52 × 10−7 5.95 × 10−7 2.65 × 10−1 3.52 × 10−1 4.52 × 10−1

F7 0 5.36 × 10−10 2.69 × 10−10 5.12 × 10−2 7.64 × 10−2 2.99 × 10−2 7.66 × 10−8 2.02 × 10−7 2.65 × 10−7 5.74 × 10−4 2.65 × 10−3 4.96 × 10−3

F8 2.61 × 10−5 8.15 × 10−2 1.42 × 10−2 7.59 × 10−2 9.55 × 10−2 2.65 × 10−2 1.16 × 10−1 1.21 × 10−1 4.65 × 10−2 3.86 × 10−2 8.65 × 10−2 3.75 × 10−2

F9 0 0 0 5.21 × 100 6.75 × 100 2.01 × 100 0 0 0 0 0 0

F10 4.35 × 100 7.36 × 100 2.65 × 100 1.21 ×
101E+01 1.45 × 101 3.55 × 100 4.27 × 100 9.95 × 100 1.97 × 100 1.19 × 101 3.26 × 101 1.30 × 101

F11 0 0 0 2.21 × 102 3.93 × 102 1.92 × 102 0 0 0 0 0 0
F12 0 1.98× 100 2.65 × 10−40 9.55 × 10−17 6.93 × 10−16 2.33 × 10−15 0 4.82 × 10−32 1.65 × 10−46 1.26 × 10−32 4.99 × 10−32 4.42 × 10−32

F13 1.12 × 10−46 1.65 × 10−27 1.50 × 10−26 1.15 × 10−19 1.75 × 10−19 3.54 × 10−19 0 1.89 × 10−3 1.05 × 10−32 0.00 × 100 1.66 × 10−32 2.97 × 10−48

F14 7.86 × 10−8 5.64 × 10−7 1.69 × 10−7 2.66 × 10−7 4.75 × 10−7 1.85 × 10−6 4.79 × 10−3 2.55 × 10−2 6.97 × 10−2 1.55 × 10−4 3.85 × 10−4 1.20 × 10−3

F15 9.57 × 10−2 2.54 × 10−1 9.85 × 10−1 5.48 × 10−1 2.01 × 100 9.55 × 10−1 1.88 × 100 5.94 × 100 3.98 × 100 1.36 × 101 1.59 × 101 6.46 × 100

ACoM-ABC SABC-SG KFABC MPABC

Min Mean Std.dev Min Mean Std.dev Min Mean Std.dev Min Mean Std.dev

F1 0 0 0 0 0 0 0 0 0 0 0 0
F2 1.12 × 10−23 1.55 × 10−23 3.56 × 10−23 0 0 0 2.61 × 10−12 6.52 × 10−12 2.64 × 10−13 0 0 0
F3 1.64 × 10−7 2.45 × 10−7 7.34 × 10−8 2.69 × 10−7 2.45 × 10−6 7.34 × 10−7 2.57 × 10−6 7.32 × 10−6 9.82 × 10−7 8.37 × 10−6 5.47 × 10−5 4.57 × 10−6

F4 4.62 × 10−21 9.68 × 10−21 3.52 × 10−22 5.92 × 10−18 8.72 × 10−18 2.32 × 10−19 6.47 × 10−10 8.12 × 10−10 6.25 × 10−11 3.97 × 10−7 5.47 × 10−6 2.64 × 10−7

F5 0 0 0 6.38 × 10−13 9.42 × 10−12 4.25 × 10−13 2.46 × 10−11 3.64 × 10−11 9.24 × 10−12 4.57 × 10−15 6.54 × 10−15 9.87 × 10−16

F6 3.62 × 10−15 3.62 × 10−15 0 4.62 × 10−3 4.62 × 10−3 0 2.64 × 10−2 7.58 × 10−2 5.62 × 10−2 6.42 × 10−3 7.24 × 10−3 4.68× 10−4

F7 0 0 0 6.25 × 10−6 8.27 × 10−5 6.24 × 10−5 5.12 × 10−2 8.36 × 10−2 6.25 × 10−3 2.64 × 10−2 5.92 × 10−2 5.14 × 10−2

F8 2.47 × 10−2 5.24 × 10−2 2.40 × 10−2 6.30 × 10−2 7.21 × 10−1 2.61 × 10−2 2.47 × 10−1 5.93 × 10−1 6.42 × 10−1 2.61 × 10−2 8.15 × 10−2 1.42 × 10−3

F9 0 0 0 2.62 × 100 5.84 × 100 2.14 × 100 4.95 × 100 1.26 × 101 7.35 × 100 0 0 0
F10 8.24 × 100 1.27 × 101 2.70 × 100 1.26 × 101 2.74 × 101 1.64 × 101 1.62 × 101 2.94 × 101 1.57 × 101 1.50 × 101 2.65 × 101 1.43 × 101

F11 1.40 × 102 2.28 × 102 4.26 × 101 2.67 × 102 3.64 × 102 1.24 × 102 0 0 0 2.64 × 10−16 7.65 × 10−16 5.61 × 10−16

F12 3.67 × 10−32 5.65 × 10−32 1.96 × 10−47 6.47 × 10−16 7.57 × 10−15 5.47 × 10−16 2.28 × 10−24 2.28 × 10−24 0 3.47 × 10−32 6.49 × 10−32 4.62 × 10−38

F13 1.74 × 10−32 2.64 × 10−32 2.52 × 10−48 1.82 × 10−16 5.62 × 10−16 3.43 × 10−32 1.54 × 10−19 4.62 × 10−19 7.52 × 10−20 2.64 × 10−24 7.53 × 10−24 2.67 × 10−25

F14 0 0 0 0 0 0 0 0 0 5.62 × 10−2 8.62 × 10−2 1.69 × 10−3

F15 1.70 × 10−1 5.20 × 10−1 9.10 × 10−1 6.40 × 10−1 7.60 × 10−1 2.60 × 10−2 5.61 × 100 1.25 × 101 4.64 × 100 1.24 × 100 5.62 × 100 2.50 × 100
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Table 5. Simulation results of benchmark functions with 30 dimensions.

PP-ABC DGABC APABC ABC

Min Mean Std.dev Min Mean Std.dev Min Mean Std.dev Min Mean Std.dev

F1 0 0 0 2.21 × 10−24 2.87 × 10−23 2.65 × 10−23 0 0 0 0 0 0
F2 1.26 × 10−1 4.75 × 10−1 1.47 × 101 1.09 × 10−1 3.55 × 10−1 2.46 × 10−1 6.39 × 102 7.85 × 102 1.45 × 102 2.07 × 103 3.21 × 103 1.15 × 103

F3 1.97 × 10−2 6.75 × 10−1 6.55 × 10−1 1.36 × 101 2.46 × 101 7.45 × 100 6.93× 10−1 4.55 × 100 3.85 × 100 6.87 × 10−6 5.47 × 10−4 3.46× 10−5

F4 5.48 × 102 1.56 × 103 5.68 × 102 1.27 × 103 2.13 × 103 8.55 × 102 6.86× 103 7.96 × 103 1.13 × 103 2.32 × 104 2.87 × 104 5.48 × 103

F5 1.64 × 10−14 1.95 × 10−14 3.15 × 10−15 5.82 × 10−3 7.46 × 10−2 2.11 × 10−1 2.96 × 10−25 5.70 × 10−24 6.98 × 10−23 5.48 × 10−16 3.48 × 10−15 3.66 × 10−15

F6 5.87 × 10−15 5.87 × 10−15 0 6.48 × 10−11 2.66 × 10−10 9.02 × 10−10 5.78 × 10−4 3.25 × 10−3 3.25 × 10−3 1.71× 101 1.80 × 101 8.65 × 10−1

F7 0 0 0 2.87 × 10−18 1.66 × 10−17 5.70 × 10−17 4.69 × 10−14 2.55 × 10−17 7.54 × 10−17 0 0 0
F8 0 0 0 1.02 × 10−3 1.56 × 10−3 2.58 × 10−3 9.87 × 10−4 3.59 × 10−2 1.99 × 10−2 3.29 × 10−5 1.99 × 10−4 1.66 × 10−4

F9 0 0 0 4.28 × 101 4.94 × 101 6.55 × 100 0 0 0 0 0 0
F10 1.97 × 101 5.75 × 101 2.69 × 101 1.13 × 102 1.28 × 102 1.54 × 101 7.80 × 1011 9.47 × 101 1.67 × 101 2.67 × 102 2.96 × 102 2.97 × 101

F11 0 0 0 3.09 × 103 3.66 × 103 4.12 × 102 5.72 × 10−14 1.99 × 10−13 6.11 × 10−13 9.72 × 10−13 1.54 × 10−12 5.70 × 10−13

F12 5.43 × 10−56 5.48 × 10−56 1.75 × 10−64 1.15 × 10−2 2.55 × 10−2 3.70 × 10−2 4.63 × 10−32 2.66 × 10−31 2.70 × 10−31 1.7 × 10−32 1.70 × 10−32 5.69 × 10−49

F13 1.76 × 10−17 1.78 × 10−17 2.46 × 10−27 3.56 × 10−17 1.57 × 10−17 5.13 × 10−17 2.87 × 10−31 1.60 × 10−30 1.31 × 10−30 1.52 × 10−32 1.52 × 10−32 2.66 × 10−48

F14 0 0 0 2.09 × 10−13 5.68 × 10−14 2.66 × 10−13 4.95 × 10−7 1.25 × 10−6 3.01 × 10−6 0 0 0

F15 4.87 × 100 1.60 × 101 5.69 × 100 1.55 × 101 2.07 × 101 5.15 × 100 5.58 × 100 7.57 × 100 1.99
× 100 1.07 × 100 1.36 × 101 2.87 × 100

ACoM-ABC SABC-SG KFABC MPABC

Min Mean Std.dev Min Mean Std.dev Min Mean Std.dev Min Mean Std.dev

F1 0 0 0 0 0 0 4.22 × 10−6 5.24 × 10−6 3.66 × 10−6 0 0 0

F2 2.57 × 10−5 9.46 × 10−5 7.88 × 10−5 2.54 × 100 1.82 × 101 1.45 × 101 3.64 × 100 2.16 × 101 1.65 × 101 2.65 × 100 3.54
× 100 1.25 × 100

F3 5.54 × 10−2 5.66 × 10−2 3.52 × 10−3 5.47 × 100 6.54 × 100 1.25 × 100 8.37 × 100 9.54 × 100 2.54 × 100 0 2.65 × 10−30 5.82 × 10−30

F4 1.25 × 103 1.6 × 103 2.0× 102 8.5 × 102 1.46× 103 5.36 × 103 9.47 × 103 1.76 × 103 6.87 × 103 9.56 × 102 1.53 × 103 2.74 × 102

F5 2.54 × 10−13 4.89 × 10−13 1.96 × 10−13 5.65 × 10−9 8.24 × 10−9 3.54 × 10−9 3.65 × 10−10 6.74 × 10−10 4.74 × 10−11 7.25 × 10−10 9.15 × 10−9 4.25 × 10−9

F6 4.13 × 10−15 4.13 × 10−15 0 2.47 × 10−11 7.41 × 10−11 4.21 × 10−12 4.57 × 10−9 4.57 × 10−9 0 8.88 × 10−16 8.88 × 10−16 0
F7 0 0 0 3.65 × 10−12 5.96 × 10−12 2.34 × 10−13 0 0 0 0 0 0
F8 0 0 0 7.00 × 10−5 9.87 × 10−5 6.47 × 10−6 7.00 × 10−5 9.87 × 10−5 6.47 × 10−6 0 0 0
F9 0 0 0 1.75 × 101 2.98 × 101 1.24 × 101 2.14 × 101 3.65 × 10−1 1.15 × 101 0 0 0

F10 8.15 × 101 9.16 × 10−1 2.04 × 101 4.60 × 101 7.85 × 101 1.16 × 101 0 0 0 5.42 × 101 6.51
× 101 2.15 × 101

F11 0 0 0 0 0 0 0 0 0 0 0 0
F12 2.65 × 10−32 2.88 × 10−32 2.34 × 10−47 2.64 × 10−26 6.57 × 10−26 7.68 × 10−42 3.65 × 10−18 8.24 × 10−18 5.43 × 10−32 1.57 × 10−32 1.57 × 10−32 5.24 × 10−48

F13 1.66 × 10−16 2.68 × 10−16 2.70 × 10−25 6.92 × 10−8 9.38 × 10−8 1.26 × 10−10 4.28 × 10−10 6.47 × 10−10 2.67 × 10−11 5.47 × 10−12 8.75 × 10−12 1.11 × 10−12

F14 0 0 0 5.97 × 10−12 7.54 × 10−12 1.62 × 10−12 2.21 × 10−14 4.92 × 10−14 1.21 × 10−15 0 0 0

F15 1.05 × 101 1.27 × 101 3.25 1.86 × 101 5.72 × 101 2.65 × 101 2.13 × 101 6.41 × 101 2.67
× 101

7.54
× 100

1.25
× 101 3.21 × 100
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Figure 2. Convergence rate of the (a) F1 and (b) F2 benchmark functions. Convergence rate of the
(c) F3, (d) F4, (e) F5, (f) F6, (g) F7, and (h) F8 benchmark functions. Convergence rate of the (i) F9,
(j) F10, (k) F11, (l) F12, (m) F13, and (n) F14 benchmark functions. Convergence rate of the (o) F15
benchmark function.



Axioms 2022, 11, 523 16 of 24

4.1.1. Analysis of the Intensification Capability of PP-ABC

Functions F1–F4 represent the unimodal benchmark functions since only one global
optimal solution exists in the search space. Unimodal functions were evaluated in this paper
to analyze the proposed algorithm’s intensification capability [61]. Tables 4 and 5 show that
the PP-ABC strategy performs significantly better in determining the optimal solution and
is competitive in relation to other existing algorithms. In Table 4, the proposed PP-ABC
provides the best result for F1–F3 functions and the best for the F4 unimodal function. In
Table 5, for unimodal functions with 30 dimensions, the proposed PP-ABC delivers optimal
results for functions F1 and F4, and at least second best for part F2 and third best for F3.
Thus, it is apparent that the proposed algorithm holds significant intensification capability.

4.1.2. Analysis of Diversification Capability of PP-ABC

In contrast with unimodal functions, multimodal functions (F5–F11) comprise multiple
local optima that induce high local optima concerning problem dimensions. Addressing
these benchmark functions to evaluate an algorithm’s performance results in its diversifica-
tion capability over the provided search space. Tables 4 and 5 demonstrate the proposed
algorithm’s performance in determining the optimal best-fit solution in the shared mul-
timodal search space of 10 and 30-dimension mathematical benchmark functions. On
multimodal functions (F5–F11) with ten dimensions, in Table 3, it is noticeable that the
PP-ABC obtains optimal solutions on five different search spaces (F5, F7–F9, and F11) out of
seven multimodal mathematical functions. For multimodal operations with 30 dimensions,
the proposed PP-ABC outperforms other existing algorithms on functions F7–F9 and F11.
Indeed, the proposed algorithm is better in terms of diversification over most test problems.

4.1.3. Analysis of Skipping Capability from Local Optima of PP-ABC

Achieving global optima in composite test functions is a challenging task where
only the algorithm with a balanced diversification and intensification capability has the
potential to accomplish it. From Tables 4 and 5, it can be observed that the proposed
PP-ABC outperforms and is better than the compared algorithms F14 and F15 of 10 and
30 dimensions, respectively. From the results of F14 and F15 in Table 4, we can observe that
PP-ABC has better outcomes for the F15 composite function and second best for function
F14. In Table 5, on composite parts with 30 dimensions, the proposed PP-ABC obtained an
optimal solution for both hybrid procedures.

A. Statistical analysis of the mathematical benchmark function results

A pairwise statistical test, namely Wilcoxon Signed Rank Test (WSRT), was utilized
to associate the PP-ABC with the existing algorithms. The test results of each algorithm
run were used for effective pairwise comparison with a significant value of 0.05. Tables 6
and 7 show the statistical non-parametrical pairwise Wilcoxon Signed Rank test comparing
PP-ABC with other existing algorithms on 10- and 30-dimensional benchmark functions to
prove the significant difference. ‘+’ represents the outcome that shows Null Hypothesis H0
is rejected, and the proposed PP-ABC shows a superior performance with the compared
algorithm. ‘=’ refers to no statistical variations among the compared algorithms. ‘−’ refers
to H0 being rejected, and PP-ABC shows inferior performance than the proposed algorithm.
At the end of each table, the total number of all cases of pairwise comparisons is provided.
A p-value below 1.76 × 10-6 is rounded and represents 0.
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Table 6. WSRT for benchmark functions with 10 dimensions.

Function
PP-ABC vs DGABC PP-ABC vs APABC PP-ABC vs ABC

p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner

F1 0 0 465 + 1 0 0 = 1 0 0 =
F2 0 0 465 + 0 0 465 + 0 0 465 +
F3 0 0 465 + 0 0 465 + 0 0 465 +
F4 3.38 × 10−3 375 90 − 0 0 465 + 0 0 465 +
F5 0 0 465 + 2.88 × 10−6 5 460 + 0 0 465 +
F6 0 465 0 − 6.42 × 10−3 100 365 + 0 0 465 +
F7 0 0 465 + 0 0 465 + 0 0 465 +
F8 1.83 × 10−3 81 384 + 1.80 × 10−5 24 441 + 4.68 × 10−3 95 370 +
F9 0 0 465 + 1 0 0 = 1 0 0 =

F10 0 0 465 + 4.11 × 10−3 93 372 + 0 0 465 +
F11 0 0 465 + 1 0 0 = 1 0 0 =
F12 0 0 465 + 0 0 465 + 0 0 465 +
F13 0 0 465 + 0 465 0 − 0 465 0 −
F14 3.7 ×

10−2 276 189 − 0 0 465 + 0 0 465 +
F15 0 0 465 + 0 0 465 + 0 0 465 +

+/=/− 12/0/3 11/3/1 11/3/1

Function
PP-ABC vs ACoM-ABC PP-ABC vs SABC-SG PP-ABC vs KFABC PP-ABC vs MPABC

p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner

F1 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 =
F2 0 0 465 + 1 0 0 = 0 0 465 + 1 0 0 =
F3 0 465 0 − 0 465 0 − 0 465 0 − 0 465 0 −
F4 0 465 0 − 0 465 0 − 0 465 0 − 3.52 × 10−4 458 7 −
F5 0 465 0 − 0 0 465 + 0 0 465 + 0 0 465 +
F6 0 0 465 + 0 0 465 + 0 0 465 + 0 0 465 +
F7 0 465 0 − 0 0 465 + 0 0 465 + 0 0 465 +
F8 0 0 465 + 0 0 465 + 0 0 465 + 0 0 465 +
F9 1 0 0 = 0 0 465 + 0 0 465 + 1 0 0 =

F10 2.35 × 10−6 3 462 + 0 0 465 + 0 0 465 + 0 0 465 +
F11 0 0 465 + 0 0 465 + 1 0 0 = 0 0 465 +
F12 0 0 465 + 0 0 465 + 0 0 465 + 0 0 465 +
F13 0 0 465 + 0 0 465 + 0 0 465 + 0 0 465 +
F14 0 465 0 − 0 465 0 − 0 465 0 − 0 0 465 +
F15 5.75 × 10−6 12 453 + 0 0 465 + 0 0 465 + 0 0 465 +

+/=/− 8/2/5 10/2/3 10/2/3 10/3/2
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Table 7. WSRT for benchmark functions with 30 dimensions.

Function
PP-ABC vs. DGABC PP-ABC vs. APABC PP-ABC vs. ABC

p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner

F1 0 0 465 + 1 0 0 = 1 0 0 =
F2 1.65 ×

10-1 300 165 − 0 0 465 + 0 0 465 +
F3 0 0 465 + 0 0 465 + 0 0 465 +
F4 1.48 ×

10-4 48 417 + 0 0 465 + 0 0 465 +
F5 0 0 465 + 0 465 0 − 0 0 465 +
F6 0 0 465 + 0 0 465 + 1 0 0 =
F7 0 0 465 + 0 0 465 + 0 465 0 −
F8 0 0 465 + 0 0 465 + 0 0 465 +
F9 0 0 465 + 1 0 0 = 1 0 0 =
F10 0 0 465 + 0 0 465 + 0 0 465 +
F11 0 0 465 + 0 0 465 + 0 0 465 +
F12 0 0 465 + 0 0 465 + 0 0 465 +
F13 6.44 ×

10−1 255 210 − 0 465 0 − 0 465 0 −
F14 0 0 465 + 0 0 465 + 1 0 0 =
F15 9.84 ×

10−2 107 358 + 6.98 × 10−6 451 14 − 1.04 × 10−2 357 108 −

+/=/− 13/0/2 10/2/3 9/3/3

Function
PP-ABC vs. ACoM-ABC PP-ABC vs. SABC-SG PP-ABC vs. KFABC PP-ABC vs. MPABC

p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner

F1 1 0 0 = 1 0 0 = 0 0 465 + 1 0 0 =
F2 2.83 × 10−4 56 409 + 0 0 465 + 0 0 465 + 0 0 465 +
F3 0 465 0 − 0 0 465 + 0 0 465 + 0 465 0 −
F4 1.71 × 10−1 166 299 + 2.18 × 10−2 344 121 − 4.07 ×

10−2 133 322 + 5.44 × 10−1 203 262 +
F5 0 0 465 + 0 0 465 + 0 0 465 + 0 0 465 +
F6 0 465 0 - 0 0 465 + 0 0 465 + 0 465 0 −
F7 1 0 0 = 0 0 465 + 1 0 0 = 1 0 0 =
F8 1 0 0 = 0 0 465 + 0 0 465 + 1 0 0 =
F9 1 0 0 = 0 0 465 + 0 0 465 + 1 0 0 =

F10 1.92 × 10−6 1 464 + 2.22 × 10−4 53 412 + 0 465 0 − 3.61 × 10−1 151 314 +
F11 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 =
F12 0 0 465 + 0 0 465 + 0 0 465 + 0 0 465 +
F13 0 0 465 + 0 0 465 + 0 0 465 + 0 0 465 +
F14 1 0 0 = 0 0 465 + 0 0 465 + 1 0 0 =
F15 1.24 × 10−5 345 120 − 0 0 465 + 0 0 465 + 2.85 × 10−2 339 126 −

+/=/− 6/6/3 12/2/1 12/2/1 6/6/3
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Table 6 shows the pairwise comparison of the PP-ABC with the existing techniques.
T− represents the cumulative rank the proposed PP-ABC obtained in 30 runs. T+ represents
the cumulative rank accepted by the competitive algorithm when the minimum attained
values are ranked. The attribute winner represents ‘+’ for the algorithm that attained
maximum cumulative rank in minimization. ‘=‘ describes that neither algorithm obtained
the winner status.

Additionally, ‘−’ represents our proposed algorithm’s loss in relation to the com-
petitive algorithm. The last row of Table 5 illustrates the consolidated position of the
pairwise comparison. On analyzing the statistical performance of PP-ABC on mathematical
benchmark functions with ten dimensions, PP-ABC outperforms DGABC on 12 benchmark
functions, is superior on 11 benchmark functions over APABC and ABC, is excellent on
10 dimensions on SABC-SG, KFABC, and MPABC, and has a particular minimum inference
on 8 dimensions against ACoM-ABC.

Table 7 shows the pairwise comparison of proposed PP-ABC on benchmark functions
with 30 dimensions with the existing algorithms. Comparing the results of PP-ABC with
DGABC shows the former’s superior performance over 13 benchmark functions and on
12 procedures over KFABC and SABC-SG, respectively. Additionally, the proposed PP-
ABC has equal competence with the algorithms ACoM-ABC and MPABC on six superior
performances and equivalent competence on six functions with an inferior performance
over three different tasks. Thus, this shows that PP-ABC has a better outcome on high-
dimensional benchmark functions and is no less to the existing bio-inspired algorithms.

Tables 8 and 9 show a category-based (UM, MM, PF, and CF) comparison for 10- and
30-dimensional functions. The values of Tables 8 and 9 are counted from Tables 6 and 7
according to the category stated, respectively. The consolidated tables in Tables 8 and 9
show that the proposed PP-ABC leads to a significantly superior performance in most cases.
In particular, from Table 8, it can be inferred that PP-ABC provides ideal solutions compared
to the existing techniques in the MM function category, which is considered the core part
of the algorithm in solving problems with multimodal search space. Additionally, in the
function categories PF and CF, PP-ABC performs no worse than the existing techniques.
From Table 9, it can be inferred that, on unimodal functions with high dimensions, PP-ABC
outperforms the current algorithms with a high performance. Additionally, for the MM
function category, PP-ABC defeats DGABC, APABC, ABC, SABC-SG, and KFABC and
competes with ACoM-ABC and MPABC with its high diversification capability.

Table 8. Category-based comparison for the proposed PP-ABC algorithm for benchmark functions
with 10 dimensions.

Function
Category

PP-ABC vs.
DGABC

PP-ABC vs.
APABC

PP-ABC vs.
ABC

PP-ABC vs.
ACoM-ABC

PP-ABC vs.
SABC-SG

PP-ABC vs.
KFABC

PP-ABC vs.
MPABC

UM (F1–F4) 3/0/1 3/1/0 3/1/0 1/1/2 0/2/2 1/1/2 0/2/2
MM (F5–F11) 7/0/0 5/1/1 5/1/1 4/1/2 7/0/0 6/1/0 6/1/0
PF (F12, F13) 1/0/1 1/0/1 1/0/1 2/0/0 2/0/0 2/0/0 2/0/0
CF (F14, F15) 2/0/0 1/0/1 0/1/1 1/0/1 1/0/1 1/0/1 2/0/0

Table 9. Category-based comparison for the proposed PP-ABC algorithm for benchmark functions
with 30 dimensions.

Function
Category

PP-ABC vs.
DGABC

PP-ABC vs.
APABC

PP-ABC vs.
ABC

PP-ABC vs.
ACoM-ABC

PP-ABC vs.
SABC-SG

PP-ABC vs.
KFABC

PP-ABC vs.
MPABC

UM (F1–F4) 3/0/1 3/1/0 3/1/0 2/1/1 2/1/1 4/0/0 2/1/1
MM (F5–F11) 6/0/1 5/2/0 5/2/0 2/4/1 6/1/0 4/2/1 2/4/1
PF (F12, F13) 2/0/0 1/0/1 1/0/1 2/0/0 2/0/0 2/0/0 2/0/0
CF (F14, F15) 1/0/1 2/0/0 2/0/0 0/1/1 2/0/0 2/0/0 0/1/1
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4.2. Time Complexity Analysis of Patron–Prophet ABC

The time complexity of the proposed ABC method lies on three major factors, namely
the population size (F ), the dimension of a problem (S), and the total number of iterations
for a single run (MaxIterations).

i. Initial phase: For population initialization, the time complexity is O(F∗S).
ii. Employee bee phase: In the employee bee phase, all the individuals take part in the

computation of another individual and hence the time complexity of O(F∗S).
iii. Onlooker bee phase: Only in the onlooker bee phase, the selected individuals take

part in the generation of solutions for the subsequent iterations, and hence the time
complexity can be an average of O(F∗S)

2 based on asymptotic notations, and it is
expressed as O(F∗S).

iv. Scout bee phase: Only in the scout bee phase, the unimproved solutions are subject
to improvisation. Since the balancing factor between intensification and diversi-
fication is handled efficiently, on every iteration, the scout bee phase obtains its
computation half the way lower than the previous iteration. However, during
each computation, all abandoned solutions act as a source of information for every
newly generated key. Since every time the quantity of solution obtains half, we
can define T(F∗S) as T(F∗S)

2 and the computation in every turn of the scout bee
phase is (F∗S) log(F∗S); the final statement is T(F∗S) and for the scout bee phase
is T(F∗S)

2 + (F∗S) log(F∗S), which results in O((F∗S) log2(F∗S)).
v. Fitness computation: The computational complexity for the fitness calculation

is O(F ).
On the entire process, the total computation of Patron–Prophet can be summarized

as T(F∗S) = O(F∗S) + O(F∗S) + O(F∗S) + O((F∗S) log2(F∗S)) + O(F ). Based on
asymptotic notations considering the upper bound time complexity, it can be represented
as T(F∗S) = O((F∗S) log2(F∗S)).

4.3. Three-Bar Truss Design Optimization Problem

The balance in load with a three-bar truss in terms of volume was mathematically
modelled as an engineering design problem with different constraints, such as stress,
deflection, and buckling. In this engineering design problem, there are two design variables
that are to be optimized, namely a1 and a2. The three-bar truss design model is depicted in
Figure 3. The objective function for this model was mathematically formulated as follows:

Minimize
{

L×
(

a2 + 2
√

2× a1

)}
where L = 100. This model is subject to three different constraints, and they are mathemati-
cally modelled as follows:

C1 =
a2

2× a1 × a2 +
√

2× a2
1

× P− σ ≤ 0

C2 =
a2 +

√
2× a1

2× a1 × a2 +
√

2× a2
1

× P− σ ≤ 0

C3 =
1

a1 +
√

2× a2
× P− σ ≤ 0

where a1 and a2 should be in the range [0, 1], P = 2, and σ = 2.
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Figure 3. Three-bar truss design model.

The proposed model wa compared with the existing algorithms in Table 10, and
the current results were obtained from [62]. The proposed model was implemented in
MATLAB version 2018a in the computational system discussed in Section 4.1. The number
of iterations for every run was a maximum of 250, with 25 as the population size. The
comparison of the performance of PP-ABC shows that it competes equally with the existing
models in recent studies.

Table 10. The comparison results of PP-ABC with the existing models on three-bar truss design.

Algorithm a1 a2 Objective Function Value

PP-ABC 0.7886 0.4082 263.895

WOAmM 0.7894 0.4061 263.895

AAA 0.7887 0.4081 263.895

TSA 0.788 0.408 263.68 (infeasible)

CS 0.7887 0.4090 263.895

BAT 0.7886 0.4084 263.895

MBA 0.7886 0.4086 263.895

MVO 0.7886 0.4084 263.895

5. Conclusions

This work proposed the Patron–Prophet ABC for effectively addressing numerical
optimization problems. The proposed PP-ABC strategy consists of a Patron–Prophet mode
and balanced diversification and intensification factors for handling high dimensional
issues. The Patron–Prophet strategy is imposed to obtain knowledge regarding deviation
from suitable to discarded solutions. Additionally, one other Self-Adaptability aspect,
namely α, is to retain the balance of diversification and intensification. PP-ABC’s per-
formance was measured and compared with the literature techniques for mathematical
benchmark functions with different dimensions and categories. The performance was
assessed in three various forms: conventional performance metrics (minimum, mean, and
std.dev), statistical analysis, Wilcoxon Signed Rank Test, and performance evaluation in
multimodality. Concerning standard and statistical outcome trials, the introduced PP-ABC
provides a superior solution compared to other techniques on normal unimodal, multi-
modal, and hybrid benchmark functions. This research can be extended by solving different
engineering applications that are in much need of optimized solutions.
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