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Abstract: In this work, the case of a Cox Process with Folded Normal Intensity (CP-FNI), in which the
intensity is given by Λ(t) = |Z(t)|, where Z(t) is a stationary Gaussian process, is studied. Here, two
particular cases are dealt with: (i) when the process Z(t) constitutes a family of independent random
variables and with a common probability law N(0, 1), and (ii) the case in which Z(t) is a second
order stationary process, with exponential type covariance function. In these cases, we observe that
the properties of the Gaussian process Z(t) are naturally transferred to the intensity Λ(t) and that
very analytical results are achievable from the analytical point of view for the point process N(t).
Finally, some simulations are presented in order to appreciate what type of counting phenomena can
be modeled by these cases of CP-FNI. In particular, it is interesting to see how the trajectories show a
tendency of the events to be grouped in certain periods of time, also leaving long periods of time
without the occurrence of events.

Keywords: cox process; temporal point process; gaussian process; folded normal intensity; moments
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1. Introduction

The Cox processes provide a wide range of options for the modeling of specific
processes over time. Cox [1] presents the case of a point process, which is defined as an
extension of the Poisson process, widely studied in the literature, for example, by Ross [2],
Barry [3], Cox and Miller [4], Parzen [5] and Rozanov [6], and Daley and Vere-Jones [7],
among others. The main characteristic of this process is that it is a point process where the
intensity is a stochastic process, such that conditional on each accomplishment or trajectory
of it. The specific process is a non-homogeneous Poisson Process with intensity given
precisely for this.

Møller et al. [8] introduced the class of Log-Gaussian Processes, where for each
t ≥ 0, Λ(t) = eZ(t), being {Z(t) : t ≥ 0} a Gaussian process. In this case, Λ(t) follows
a Log-Gaussian law, with the parameters corresponding to the Gaussian law of Z(t),
that is, the link function g(z) = ez is used to obtain a process of positive values from
a Gaussian process. Using this kind of process, several extensions have been proposed.
Diggle et al. [9] extend the Cox process with Log-Gaussian intensity process to the spatial
domain, and Cuevas-Pacheco and Møller [10] introduce the Log Gaussian Cox processes
on the sphere. A generalization of Gaussian Cox process to model multiple correlated point
data is provided by Aglietti [11] where closed-form expressions for the moments of the
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intensity functions are derived. A multivariate version of log-Gaussian Cox processes
is also proposed by Waagepetersen et al. [12]. Frías et al. [13] introduce a new class of
spatial Cox processes driven by a Hilbert-valued random log-intensity. The log Normal Cox
process and its extensions were used in a variety of applications (see, for example, [14–17]).

Recently, Walder and Bishop [18] proposed the Cox process with Gamma intensity,
making a construction analogous to that carried out by [8], but changing the link function
that allows obtaining a positive process from a Gaussian process. In particular, they consider

Λ(t) =
1
2
· Z2(t), which for t ≥ 0, Λ(t) follows a Gamma distribution and {Z(t) : t ≥ 0}

is a Gaussian process. This case is also mentioned by Møller et al. [8] for the particular
case of a process of mean equal to 0, obtaining the Cox process with Chi-Square intensity
(as a particular case of Gamma). The properties of the link function g(z) = 1

2 z2 are widely
studied by Flaxman and Sejdinovic [19]. On the other hand, Adams et al. [20] study a link
function given by g(z) = λ∗(1 + e−z)

−1.
In this work we are interested to study positive link functions of the type g : R→ R+,

which allow us to obtain a process of positive values from a Gaussian process. In the
context of distributions with positive support, Leone et al. [21] proposed the Folded-
Normal law or distribution, which it is constructed assuming that Y = |X| ∼ FN(µ, σ2),
where X ∼ N(µ, σ2). A particular case of this distribution is the Half-Normal distribution,
which is obtained when µ = 0, and is defined as Y = |X| ∼ HN(σ2), with X ∼ N(0, σ2).
Thus, Y ∼ FN(0, σ2)⇔ Y ∼ HN(σ2). The properties of this law of probability are widely
studied by Tsagris et al. [22]. In this same guideline, Psarakis and Panaretos [23] proposed
an extension of the Folded Gaussian to the bivariate case and considering the Folded
t−distribution, while Chakraborty and Chatterjee [24], and Kan and Robotti [25] studied
the properties of the multivariate Folded Gaussian distribution. Different other folded
models are described in Nadarajah and Bakar [26] where the Folded Normal distribution
and the Folded Laplace distribution (introduced by Liu and Kozubowski [27]) are particular
cases of the exponential power distribution presented by Subbotin [28]. Additionally,
Chatterjee and Chakraborty [29] proposed a simple procedure for calculating the values of a
Folded Normal distribution, and Liu et al. [30] presented a new ML algorithm for estimating
the parameters of a Folded Normal distribution and a Folded Normal regression model.

In this work we propose the Cox process with Folded Normal intensity process (CP-
FNI) and study some of its characteristics and properties. This paper is organized as follows.
In Section 2, the Folded Normal Intensity process is described. In Section 3, the Cox Process
with Folded Normal Intensity (CP-NFI) and its properties are introduced. A simulation
study is provided in Section 4. Finally, conclusions and future work are described in
Section 5.

2. The Folded Normal Intensity Process

In this section, the Folded Normal Intensity Process and some numerical features such
as the mean, variance and covariance functions, are defined.

2.1. Definition

Let {Z(t) : t ≥ 0} a Gaussian Process such that for each collection of times t1 < t2 <
. . . < tn it is verified that  Z(t1)

...
Z(tn)

 ∼ Nn(µ, Σ), (1)

where µ = (µ, . . . , µ)T denotes the vector of the means and Σ = (σij) the matrix of the
variance and covariance, with σij = kZ(ti − tj) = kZ(h), h = |ti − tj| and kZ(0) = σ2. Due
to the need to model random phenomena involving positive data, functions are required
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to generate data with such a characteristic from a given intensity process. A type of link
function that allows us to define positive values from a Gaussian process is given by

g : R → R+

z 7→ g(z).

This type of link is called a positive link. If we consider g(z) = |z|, the intensity
process {Λ(t) : t ≥ 0} can be defined in the form

Λ(t) = |Z(t)|, (2)

for t ≥ 0. It can be shown that Λ(t) follows a Folded Normal (FN) law. This result is
established in the following subsection.

2.2. Properties

Next, some results related to certain numerical characteristics of the intensity process
{Λ(t) : t ≥ 0} are presented. Specifically, the mean, variance and covariance function
are derived.

Proposition 1. Let {Λ(t) : t ≥ 0} be an intensity process. Then,

Λ(t) ∼ FN(µ, σ2). (3)

Proof. From Equation (1), it is immediate that, for all t, Z(t) ∼ N(µ, σ2). Furthermore,
from the definition of the law of the process, proposed in Equation (2), the proof is completed.

Proposition 2. The intensity process {Λ(t) : t ≥ 0} is such that:

(a) (mean value function)

mΛ(t) =

√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)]
; (4)

(b) (variance value function)

vΛ(t) = µ2 + σ2 −
{√

2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)]}2

, (5)

where, in both cases, Φ(·) denotes the distribution function of a random variable with standard
normal distribution.

Proof. It is immediate of the Proposition 1 and the results presented by Tsagris et al. [22].

Proposition 3. The intensity process {Λ(t) : t ≥ 0}, for the particular case in which µ = 0,
satisfies

kΛ(t, s) = C[Λ(t), Λ(s)] =
2
π

[√
σ4 − k2

Z(t− s) + kZ(t− s) · arcsin
kZ(t− s)

σ2 − σ2
]

.
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Proof. For the case µ = 0, we have that Λ(t) ∼ HN(σ2) and as an immediate consequence

of Proposition 2, E[Λ(t)] =
√

2
π

σ. On the other hand, from the fact that Λ(t) = |Z(t)|, we

obtain that

kΛ(t, s) = C[Λ(t), Λ(s)]
= C(|Z(t)|, |Z(s)|)
= E[|Z(t)| · |Z(s)|]−E[|Z(t)|] ·E[|Z(s)|]

= E[|Z(t) · Z(s)|]−
{√

2
π

σ

}2

.

Now, we consider the fact that if (Y1 Y2)
T is a Gaussian random vector with mean

vector (0 0)T , E(Y2
1 ) = σ2

1 , E(Y2
2 ) = σ2

2 , and E(Y1Y2) = ρσ1σ2, then

E[|Y1Y2|] =
2σ1σ2

π

(√
1− ρ2 + ρ · arcsin ρ

)
.

The demonstration can be found in Li and Wei [31]. Based on this result and consider-
ing E[Z(t)] = 0 and V[Z(t)] = σ2, for all t ≥ 0, then

E[|Z(t) · Z(s)|] =
2σ2

π

√1−
(

kZ(t− s)
σ2

)2

+
kZ(t− s)

σ2 · arcsin
kZ(t− s)

σ2


=

2σ2

π

√σ4 − k2
Z(t− s)
σ4 +

kZ(t− s)
σ2 · arcsin

kZ(t− s)
σ2


=

2
π

[√
σ4 − k2

Z(t− s) + kZ(t− s) · arcsin
kZ(t− s)

σ2

]
Consequently,

kΛ(t, s) =
2
π

[√
σ4 − k2

Z(t− s) + kZ(t− s) · arcsin
kZ(t− s)

σ2

]
−
{√

2
π

σ

}2

=
2
π

[√
σ4 − k2

Z(t− s) + kZ(t− s) · arcsin
kZ(t− s)

σ2

]
− 2σ2

π

=
2
π

[√
σ4 − k2

Z(t− s) + kZ(t− s) · arcsin
kZ(t− s)

σ2 − σ2
]

As we wanted to show.

Remark 1. Note that, from the Propositions 2 and 3, it is immediate that for the case µ = 0 the
intensity process {Λ(t) : t ≥ 0} is a second order stationary process. In particular, if we make
t− s = h and choose the covariance function

kZ(h) = σ2 · e−β|h|, h ∈ R,

we have

kΛ(h) =
2σ2

π

[√
1− e−2β|h| + e−β|h| · arcsin e−β|h| − 1

]
. (6)

This is the first particular case that is studied in this work.
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Proposition 4. The intensity process {Λ(t) : t ≥ 0}, for the particular case in which

kZ(t, s) =

{
σ2 t = s
0 t 6= s,

satisfies

kΛ(t, s) =


µ2 + σ2 −

{√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)]}2

t = s

0 t 6= s.

Proof. First, note that for the function of covariance kZ, we have that the process {Z(t) :
t ≥ 0} is a family of independent variables with a common distribution N(µ, σ2). On the
other hand, since kZ(t, s) = C[Z(t), Z(s)] = 0 if t 6= s, it follows that Z(t) ⊥ Z(s) for each
t 6= s. Second, from hereditary property of independence, discussed for example in [3],
which states that if U ⊥ V and f is a measurable function, then f (U) ⊥ f (V), we conclude
that, for f (·) = | · |,

t 6= s ⇒ Z(t) ⊥ Z(s)

⇒ |Z(t)| ⊥ |Z(s)|
⇒ Λ(t) ⊥ Λ(s).

Hence, it is immediate that kΛ(t, s) = 0 when t 6= s. Finally, for the case t = s

kΛ(t, s) = kΛ(t, t)

= C[Λ(t), Λ(t)]

= V[Λ(t)]

= µ2 + σ2 −
{√

2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)]}2

,

where the last equation is obtained directly from the Proposition 2.

Remark 2. From the Propositions 2 and 4, it is immediate that for the case kZ(t, s) = σ2 · I{t=s},
where IA denotes the indicator function, the intensity process {Λ(t) : t ≥ 0} is a second order
stationary process, moreover, it is even strictly stationary. In particular, if we do t− s = h, this can
be written as kZ(h) = σ2 · I{0}(h) and the covariance function of the intensity process is reduced
simply to

kΛ(h) =

µ2 + σ2 −
{√

2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)]}2
 · I{0}(h) (7)

This is the second particular case that is studied in this work.

Remark 3. It is important to mention that we can obtain a point process {N(t) : t ≥ 0}, which is
a Cox Process with Folded Normal Intensity (CP-NFI) defined by (1), (2) and (3).

3. Properties of the CP-NFI

In this section, the density function associated with the process CP-NFI is presented,
and its first and second moments are derived.
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3.1. Process Density

For the process {N(t) : t ≥ 0} it is verified that

P(N(t) = n) = E[P(N(t) = n|Λ(t))]. (8)

Now, doing

M(t) =
∫ t

0
Λ(s)ds (9)

and using the fact that, conditional to any path of the intensity process {Λ(t) : t ≥ 0},
the process {N(t) : t ≥ 0} is an inhomogenous Poisson Process, we have:

P(N(t) = n) = E
[
[M(t)]ne−M(t)

n!

]
. (10)

In our particular case, the Equation (9) can be written as

M(t) =
∫ t

0
|Z(s)|ds, (11)

where {Z(s) : s ≥ 0} corresponds to one of the two Gaussian process we have considered
to construct the Folded Normal intensity process; that is, in cases where {Z(s) : s ≥ 0}
corresponds to a family of independent variables with a common law N(µ, σ2), or in which
{Z(s) : s ≥ 0} is a stationary Gaussian process with mean equal to zero and covariance
function kZ(h) = σ2e−β|h|. Hence, Equation (10) can be rewritten as

P(N(t) = n) =
1
n!
·E
[(∫ t

0
|Z(s)|ds

)n
· exp

(
−
∫ t

0
|Z(s)|ds

)]
. (12)

Following Parzen [5], we can define the integral of the Equation (12) as

M(t) =
∫ t

0
|Z(s)|ds = lim

max
k=1...n

(tk − tk−1)→ 0

n

∑
k=1
|Z(tk)| · (tk − tk−1), (13)

where the considered limit is, in this case, a limit in quadratic mean. In particular, we can
choose an equation such that tk − tk−1 = ∆n be constant in k, but depend on n, and define

M(t) =
∫ t

0
|Z(s)|ds = lim

n→+∞

n

∑
k=1
|Z(tk)| · ∆n, (14)

considering again the limit taken as a limit in quadratic mean.

3.2. Properties of the Process

Note that Equation (9) can be written as

M(]0, t]) =
∫
]0,t]

Λ(s)ds (15)

and, more generally, for A ⊂ R+, we can write

M(A) =
∫

A
Λ(s)ds. (16)

According to Møller et al. [32], for bounded intervals A, B ⊂ R+, they are verified the
following relationships:
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• For the mean of {N(t) : t ≥ 0} over A ⊂ R+:

E[N(A)] = E[M(A)]; (17)

• For the variance of {N(t) : t ≥ 0} over A ⊂ R+:

V[N(A)] = V[M(A)] +E[M(A)]; (18)

• For the covariance of {N(t) : t ≥ 0} over A, B ⊂ R+:

C[N(A), N(B)] = C[M(A), M(B)] +E[M(A ∩ B)]. (19)

Proposition 5. The process CP-NFI satisfies the following properties:

(a) (mean value function)

mN(t) = E
[∫ t

0
|Z(u)|du

]
; (20)

(b) (variance value function)

vN(t) = V
[∫ t

0
|Z(u)|du

]
+E

[∫ t

0
|Z(u)|du

]
; (21)

(c) (covariance value function)

kN(t, s) = C
[∫ t

0
|Z(u)|du,

∫ t

0
|Z(v)|dv

]
+E

[∫ min{s,t}

0
|Z(u)|du

]
. (22)

Proof. In this case, the proof is direct, since Equations (17)–(19) can be written in terms of
the interval ]0, t]. Then, considering Equation (15), the integral given by (11) and the fact
that ]0, t]∩]0, s] =]0, min{t, s}], the proof is complete.

Remark 4. Note that, from Equation (9), the results of Proposition 5 can be directly expressed in
terms of the intensity process {Λ(t) : t ≥ 0}, as

(a’) mN(t) = E
[∫ t

0
Λ(u)du

]
;

(b’) vN(t) = V
[∫ t

0
Λ(u)du

]
+E

[∫ t

0
Λ(u)du

]
;

(c’) kN(t, s) = C
[∫ t

0
Λ(u)du,

∫ s

0
Λ(v)dv

]
+E

[∫ min{s,t}

0
Λ(u)du

]
.

Proposition 6. The process CP-NFI based on a Gaussian process with average value function
mZ(t) = 0 and with covariance function kZ(t, s) = σ2e−β|t−s| satisfies the following properties:

(a) (mean value function)

mN(t) =

√
2
π

σt; (23)

(b) (variance value function)

vN(t) = D(t) +
2σ2t2

π
+

√
2
π

σt, (24)

with

D(t) =
2σ2

π

∫ t

0

∫ t

0

[√
1− e−2β|u−s| + e−β|u−s| · arcsin e−β|u−s|

]
duds; (25)
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(c) (covariance value function)

kN(t, s) = B(t, s) +
2σ2t2

π
+

√
2
π

σ min{s, t}, (26)

with

B(t, s) =
2σ2

π

∫ t

0

∫ s

0

[√
1− e−2β|u−v| + e−β|u−s| · arcsin e−β|u−v|

]
dvdu. (27)

Proof. First, consider the following result described by Parzen [5] and Loéve [33]: let
{X(t) : t ≥ 0} be a stochastic process of continuous parameter with finite second order
moments, whose functions of average value mX and covariance kX are continuous functions.
Consequently, we have:

(i)
∫ b

a
X(t)dt, defined in the Equation (13), is well defined;

(ii) E
[∫ b

a
X(t)dt

]
=
∫ b

a
mX(t)dt;

(iii) V
[∫ b

a
X(t)dt

]
=
∫ b

a

∫ b

a
kX(t, s)dtds = 2

∫ b

a

∫ t

a
kX(t, s)dsdt;

(iv) C
[∫ b

a
X(t)dt ,

∫ d

c
X(s)ds

]
=
∫ b

a

∫ d

c
kX(t, s)dsdt .

Consider Proposition 2 for µ = 0 and the expectation operator given in (ii). Then,
the process mean value function is given by

mN(t) = E
[∫ t

0
Λ(u)du

]
=

∫ t

0
mΛ(s)ds

=
∫ t

0

√
2
π

σ ds

=

√
2
π

σt.

On the other hand, considering Proposition 3, the result (iii) and mean value function
obtained previously, the function of the variance value takes the form

vN(t) = V
[∫ t

0
Λ(u)du

]
+E

[∫ t

0
Λ(u)du

]
=

∫ t

0

∫ t

0
kΛ(u, s)duds +

√
2
π

σ t

=
∫ t

0

∫ t

0

2σ2

π

[√
1− e−2β|u−s| + e−β|u−s| · arcsin e−β|u−s| − 1

]
duds +

√
2
π

σ t

=
2σ2

π

∫ t

0

∫ t

0

[√
1− e−2β|u−s| + e−β|u−s| · arcsin e−β|u−s|

]
duds

+
2σ2t2

π
+

√
2
π

σ t

= D(t) +
2σ2t2

π
+

√
2
π

σt,

with

D(t) =
2σ2

π

∫ t

0

∫ t

0

[√
1− e−2β|u−s| + e−β|u−s| · arcsin e−β|u−s|

]
duds.
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Finally, by considering Proposition 3 again and the mean value function obtained in
this proposition, the covariance function is given by

kN(t, s) = C
[∫ t

0
Λ(u)du,

∫ s

0
Λ(v)dv

]
+E

[∫ min{s,t}

0
Λ(u)du

]
=

∫ t

0

∫ s

0
kΛ(u, v)dvdu +

√
2
π

σ min{s, t}

=
∫ t

0

∫ s

0

2σ2

π

[√
1− e−2β|u−v| + e−β|u−v| · arcsin e−β|u−v| − 1

]
dvdu

+

√
2
π

σ min{s, t}

=
2σ2

π

∫ t

0

∫ t

0

[√
1− e−2β|u−v| + e−β|u−v| · arcsin e−β|u−v|

]
dvdu

+
2σ2ts

π
+

√
2
π

σ min{s, t}

= B(t, s) +
2σ2t2

π
+

√
2
π

σ min{s, t},

with

B(t, s) =
2σ2

π

∫ t

0

∫ s

0

[√
1− e−2β|u−v| + e−β|u−s| · arcsin e−β|u−v|

]
dvdu.

Thus, the proof is completed.

Remark 5. Naturally, the resolution of D(t) and B(t, s) presented in the Proposition 6 can
be approached by numerical methods. In the literature there is a wide discussion about how to
approximate integrals analytically and numerically. Some related works are Tierney and Kadane [34],
Az-Zo’bi [35], Az-Zo’bi [36] and Az-Zo’bi et al. [37]. In practice, such integrals can be computed
numerically using, for example, the integrate function of the R software [38].

Proposition 7. The process CP-NFI based on a Gaussian process formed by a family of independent
random variables with common law N(µ, σ2) satisfies the following properties:

(a) (mean value function)

mN(t) =

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
t; (28)

(b) (variance value function)

vN(t) =

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
t; (29)

(c) (covariance function)

kN(t, s) =

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
·min{s, t}. (30)
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Proof. From Proposition 2, the mean value function is given by

mN(t) = E
[∫ t

0
Λ(u)du

]
=

∫ t

0
mΛ(s)ds

=
∫ t

0

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
ds

=

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
t.

Now, by considering Proposition 4 and the mean value function obtained above, the
variance value function can be obtained as

vN(t) = V
[∫ t

0
Λ(u)du

]
+E

[∫ t

0
Λ(u)du

]
=

∫ t

0

∫ t

0
kΛ(u, s)duds +

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
t

=
∫ t

0

∫ t

0

µ2 + σ2 −
{√

2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)]}2
 · I{u=s}duds

+

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
t

= 0 +

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
t

=

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
t.

Finally, from Proposition 4 and the mean value function obtained in this proposition,
the covariance function is given by

kN(t, s) = C
[∫ t

0
Λ(u)du,

∫ s

0
Λ(v)dv

]
+E

[∫ min{s,t}

0
Λ(u)du

]
=

∫ t

0

∫ s

0
kΛ(u, v)dvdu +

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
·min{s, t}

=
∫ t

0

∫ s

0

µ2 + σ2 −
{√

2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)]}2
 · I{u=v}dvdu

+

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
·min{s, t}

= 0 +

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
·min{s, t}

=

(√
2
π

σ · e−
µ2

2σ2 + µ ·
[
1− 2Φ

(
−µ

σ

)])
·min{s, t}.

Thus, the proof is completed.
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Note that in the integral of the covariance, being the covariance function null almost
everywhere, that is, it is only σ2 on the set {(t, s) ∈ R2 : t = s}, which has Lebesgue
measure 0 in R2, the validity of the results (i)–(iv) is not affected by such discontinuity.

4. Simulation Studies

A more or less simple way to simulate a Cox Process is basically to simulate a non-
homogeneous Poisson Process, using as intensity function one realization {λ(t) : t ≥ 0} of
the random field {Λ(t) : t ≥ 0}, as suggested by Gabriel [39].

Following, for example, Ross [40], an algorithm that simulates an inhomogeneous
Poisson process can be constructed, basically using the fact that this process can be gen-
erated by a random selection of times of a homogeneous Poisson Process of parameter λ.

The idea, basically, is that if an event of the latter occurs at time t with probability
λ(t)

t
,

then the process of counted events is an inhomogeneous Poisson process with a function of
intensity {λ(t) : t ≥ 0}, where in particular, we restrict ourselves to a time horizon [0, T].

The algorithm, in general terms, remains as:

Step 1 Start t = 0 and i = 0
Step 2 Generate U1, U2 ∼ U(0, 1)

Step 3 Make t = t− 1
λ
· log(U1). If t > T, end up. Else, go to Step 4

Step 4 If U2 ≤
λ(t)

t
, make i = i + 1 y S(i) = t.

Step 5 Go to Step 2.

More details of it, as well as a more complete analysis and discussion, can be found
in [40].

An adapted version of this algorithm has been used, by replacing the intensity function
with the realization of the Folded Normal intensity, as suggested in [39], and implementing
it in the free software R [38]. In particular, the Folded Normal intensity (λ(t)t) of the above
algorithm has been simulated starting from the parameters of a Gaussian process.

Some trajectories provided by the simulated Cox process with Folded Normal intensity
are represented in Figures 1–8. In particular, Figures 1–4 represent the trajectories provided
by this process in the temporal intervals [0, 15] and [0, 20] by using the parameter µ = 0
and the exponential covariance function kZ(h) = σ2e−β|h| with the combination of the
parameters (σ; β) equal to (1; 1), (9; 1), (1; 0, 15), and (9; 0, 15), respectively. In all cases, we
observe a common pattern given by periods with few events followed by periods with
clusters of events. In other words, the events tend to cluster in time (two or more events
occur in a close period of time), successively it follows a period with very few events and
then a cluster of events occurs again. This pattern is evident when considering a short
period of time such as [0, T] = [0, 20] as represented in Figures 1a, 2a and 3a, and for larger
time horizons such as in Figures 1b, 2b and 3b where [0, T] = [0, 60] has been used. This
makes us think that the proposed process could be adequate to model the phenomena
which tend to form clusters in time such as earthquake events above a certain magnitude
(for example the main earthquake and the strongest aftershocks), or some disease events.
The parameters used in the simulation study have been chosen randomly by way of
illustration. However, we have repeated the experiment with many other parameters and
time horizons, and all of them showed the same common pattern. These results could be
comparable with those processes considering clustering of events (see, for example, [41]).
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Figure 1. Simulation of a Cox process with n Folded Normal intensity functio with parameters µ = 0,
σ2 = 1 and with covariance function kZ(h) = e−|h| for T = 20 (a) and T = 60 (b).

5

10

15

5 10 15
Time

N
(t

)

0

10

20

30

40

50

0 20 40 60
Time

N
(t

)

(a) (b)

Figure 2. Simulation of a Cox process with Folded Normal intensity with parameters µ = 0, σ2 = 9
and with covariance function kZ(h) = 9e−|h| for T = 20 (a) and T = 60 (b).
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Figure 3. Simulation of a Cox process with Folded Normal intensity function with parameters µ = 0,
σ2 = 1 and with covariance function kZ(h) = e−0,15|h| for T = 20 (a) and T = 60 (b).

0

5

10

15

20

5 10 15 20
Time

N
(t

)

0

20

40

60

20 40 60
Time

N
(t

)

(a) (b)

Figure 4. Simulation of a Cox process with Folded Normal intensity function with parameters µ = 0,
σ2 = 9 and with covariance function kZ(h) = 9e−0,15|h| for T = 20 (a) and T = 60 (b).
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Figures 5–8 represent the trajectories of the simulated Cox process in the case that the
intensity process is a family of independent variables following a Folded Normal law for
different values of µ and σ2. In particular, we considered the following combination of para-
meters (µ; σ) for the periods [0, 20] and [0, 30]: (0; 1), (5; 9), (7; 0.8) and (15; 169). As in the
experiment with exponential covariance function, the independent case maintains the same
pattern in short (with [0, T] = [0, 20]) and longer (with [0, T] = [0, 60]) temporal horizons.
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(a) (b)

Figure 5. Simulation of a Cox process with Folded Normal intensity function with parameters µ = 0,
σ2 = 1 and with covariance function kZ(h) = I{0}(h) for T = 20 (a) and T = 60 (b).

4

8

12

5 10 15 20
Time

N
(t

)

0

10

20

30

40

10 20 30 40 50 60
Time

N
(t

)

(a) (b)

Figure 6. Simulation of a Cox process with Folded Normal intensity function of parameters µ = 5,
σ2 = 8 and with covariance function kZ(h) = 9 · I{0}(h) for T = 20 (a) and T = 60 (b).
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Figure 7. Simulation of a Cox process with Folded Normal intensity function of parameters µ = 7,
σ2 = 0.8 and with covariance function kZ(h) = 0.8 · I{0}(h) for T = 20 (a) and T = 60 (b).
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Figure 8. Simulation of a Cox process with Folded Normal intensity function of parameters µ = 15,
σ2 = 169 and with covariance function kZ(h) = 169 · I{0}(h) for T = 20 (a) and T = 60 (b).

As in the first set of simulations (where the exponential covariance was used), the same
pattern representing periods with cluster of events followed by periods with few events is
maintained for the case of independent variables.

5. Conclusions and Future Work

The Cox Processes provide a wide range of options for modeling specific processes
over time. The particular case of the Cox Process with Folded Normal intensity, introduced
in this work, presents the interesting characteristic of having analytically quite manageable
results, and being able to adapt to different situations, depending on the values of its
parameters. Based on the simulations, we observe that it adapts quite acceptably to specific
processes that are characterized by having a concentration of occurrences in a certain period
of time, and then prolonged intervals of “rest”, where “occurrences” are not observed. It is
also appreciated that these events that occur in clusters have a slight tendency to repeat the
same pattern at larger time horizons.

Regarding future work, we believe that there are many possibilities; some of these
are to address this same process with different covariance functions, or to study the
statistical inference about it, for example by estimators of moments, or Bayesian and
classical estimators based on the maximum likelihood function. Moreover, the proposed
process could be applied to real data for studying events that tend toward clustering in
time such as earthquake or disease events. Another very interesting line of work may be
to extend this process to space and time-space domains, and naturally from there to make
classical and Bayesian inference. In this context, some methods have been proposed in he
literature (see, for example, [42–45]). Additionally, some covariates could be included in
the process following [46]. Lastly, more advanced algorithms for calculating the value of
the Folded Normal intensity such that proposed by Chatterjee and Chakraborty [29] could
be considered, in addition to studying new Cox processes with different intensity functions
such as the Laplace Folded distribution proposed by Liu and Kozubowski [27].
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