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Abstract: One of the most common tools for achieving optimization and adequate production process
management is linear programming (LP) in various forms. However, there are specific cases of the
application of linear programming when production optimization implies several potential solutions
instead of one. Exactly such a problem is solved in this paper, which integrates linear programming
and a Multi-Criteria Decision-Making (MCDM) model. First, linear programming was applied to
optimize production and several potential solutions lying on the line segment AB were obtained.
A list of criteria was created and evaluated using the Improved Fuzzy Stepwise Weight Assessment
Ratio Analysis (IMF SWARA). To obtain the final solution, a novel Rough compromise ranking of
alternatives from distance to ideal solution (R-CRADIS) method was developed and verified through
comparative analysis. The results show that the integration of linear programming and a Fuzzy-
Rough MCDM model can be an exceptional solution for solving specific optimization problems.

Keywords: linear programming; IMF SWARA; production optimization; Rough CRADIS
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1. Introduction

Today, linear programming is one of the most effective mathematical tools for solv-
ing economic problems, certainly with the support of computer systems. Along with
the development of computer systems, there has been an intensified application of lin-
ear programming and other related functions to solve specific economic problems. By
applying linear programming, greater efficiency is achieved, and production costs can be
significantly reduced, as indicated in [1] in which the authors applied the Mixed-Integer
Linear Programming model. This is also confirmed by the authors Chandrawat et al. [2]
applying fuzzy linear programming to optimize production costs because, in order to
optimize these processes, we must make changes that are allow managers to be well in-
formed [3]. However, taking into account that market conditions change very quickly and
that there is uncertainty in every segment of the economic system, integrated models are
most frequently applied to optimize various problems, as is the case in this paper, in which
we presented a novel Rough CRADIS model in integration with the IMF SWARA method
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and linear programming. The application of linear programming and multi-criteria models
is not rare [4–7]. Cheng et al. [8] created an integration model of multi-criteria decision
analysis (MCDA) and inexact mixed integer linear programming (IMILP) to support the
selection of an optimal landfill location and waste-flow-allocation pattern so that the total
system cost can be minimized. This model includes qualitative and quantitative indica-
tors, which is an advantage considering that the disadvantage of various multi-objective
programming models is that they are basically mathematical and often ignore qualitative
and subjective factors [8]. The paper [9] uses an integrated fuzzy multi-criteria model
and a multi-objective programming approach for supplier selection and order allocation
in a green supply chain. First, the fuzzy analytic hierarchy process and fuzzy TOPSIS
were applied in order to analyze the significance of criteria and determine the best green
suppliers. Then, multi-objective linear programming was used to consider and formulate
various constraints such as quality control, capacity and other objectives. The objective of
the mathematical model is simultaneously to maximize the total value of purchasing and
to minimize the total cost of purchasing. The subject of research in the paper [10] refers to
an integrated approach of multi-attribute utility theory (MAUT) and linear programming
(LP) for evaluating and selecting the best suppliers and defining optimal order quantities
among the selected ones to maximize total utility.

The following can be identified as special contributions of this paper:
(1) Formation of a novel integrated model consisting of linear programming, IMF

SWARA method and Rough CRADIS approach.
(2) Extending the CRADIS approach with Rough Numbers (R-CRADIS) and presenting

it for the first time in the literature, which is an enrichment of the entire field that treats
multi-criteria problems.

(3) Solving the special case of linear programming obtaining multiple optimal solutions
and integration with a MCDM model in order to achieve the desired optimum.

(4) Carrying out a sensitivity analysis based on which decision-makers can make
decisions in real time, by looking at the real needs of the company and market requirements
at any moment, and by considering the simulated values of criteria and obtaining new
optimal solutions.

Motivation and objectives of the paper can be manifested through the following.
When applying LP for the optimization and management of production processes in this
special case, several potential solutions are obtained instead of one which is usually the
case. In order to determine one solution that is optimal under the given circumstances and
taking into account various factors, integration with a novel MCDM model was carried out.
Moreover, the aim is to develop a model ensuring managers use real-time decision-making.

The rest of the paper consists of the following sections. In Section 2, materials and
methods are given. The overall flow of the research is presented graphically and the steps
of the developed method and applied methods are explained. The development of a novel
Rough CRADIS approach is presented in detail. Section 3 introduces the optimization of
production with the aim of maximizing profit. A special case of linear programming and its
integration with a fuzzy-rough MCDM model is given. Section 4 is also of great importance
because it presents the verification of the proposed model through sensitivity analysis,
comparative analysis and calculation of statistical SCC and WS coefficients to determine
the correlation of the ranks obtained. Finally, Section 5 provides concluding considerations
with guidelines for future actions.

2. Materials and Methods
2.1. Methodology Steps

Figure 1 presents the overall methodology of this paper, which is divided into four
different phases (I, II, III and IV). The first phase represents the expressed need for solving
special problems by LP optimization. Additionally, in this phase, solving the problem of op-
timizing the production plan is presented with the aim of determining the maximum profit.
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Figure 1. Research methodology.

When applying LP for the optimization and management of production processes in
this special case, several potential solutions are obtained instead of one which is usually the
case. In order to determine one solution that is optimal under the given circumstances and
taking into account various factors, the integration with a novel MCDM model was carried
out. This represents the second phase of the research. First, four criteria were defined:
capacity utilization of the first group of machines M (C1), capacity utilization of the second
group of machines N (C2), supplying the market with articles of group A (C3) supplying
the market with articles of group B (C4). Alternatives represent all potential solutions for
x1 = 2000–2500, and for x2 = 1000–2000. A total of 21 potential solutions were created, and
then the data were transformed into an initial decision matrix. The third phase involves
the development of the novel Rough CRADIS approach (in which computation was made
in Microsoft Excel), which represents a contribution from the methodological aspect. The
developed approach is used to evaluate potential solutions, while the IMF SWARA method
is used to calculate the weights of criteria. The fourth phase is determining the verification
of the proposed model through several steps. Using sensitivity analysis and the formation
of 40 scenarios, it is possible for decision-makers to determine the optimal solution in real
time, which is also one of the contributions of this research both from the methodological
and professional aspect. Then the obtained results were compared with four other Rough
MCDM methods: Rough WASPAS [11], Rough SAW [12], Rough ARAS [13] and Rough
MARCOS [14]. An additional test of the rank stability of potential solutions was also
performed by creating 20 new scenarios in which the worst alternative was removed, and
the entire procedure was repeated. Finally, statistical correlation tests were calculated for
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both sensitivity analysis and comparative analysis. Thus, SCC [15] and WS coefficients
were calculated [16].

2.2. Linear Programming

The general task of LP: find a non-negative solution

X = (x1, x2, . . . , xn), (xi ≥ 0, i = 1, 2, . . . , n) (1)

of the systems of linear inequalities or equations with constraints:

a11x1 + a12x2 + . . . + a1nxn

{
≥
=
≤

}
b1

a21x1 + a22x2 + . . . + a2nxn

{
≥
=
≤

}
b2

...

am1x1 + am2x2 + . . . + amnxn

{
≥
=
≤

}
bm

(2)

so that the linear objective function reaches an extremum, i.e., a minimum or maxi-
mum value.

F = F(x1, x2, . . . , xn) = c1x1 + c2x2 + . . . + cnxn (3)

The constraints in the LP problem form a domain of admissible solutions, which
contains a set of solutions C. Each point in C is a candidate for a solution in the LP problem
and is denoted as an admissible solution. A set C represents a set of admissible solutions.
Among all points in the set C, the point(s) that optimize(s) the objective function of the LP
problem is called the optimal solution of the LP problem.

2.3. IMF SWARA Method

The IMF SWARA method has been created by Vrtagić et al. [17] and consists of the
following steps [14,18]:

Step 1: Sorting criteria in descending order based on their expected significance.
Step 2: Relatively smaller significance of each criterion (criterion Cj) is determined in

relation to the previous one (Cj − 1), and this is repeated for each subsequent criterion. The
comparative significance of the average value is denoted by ℘j. Linguistics and the TFN
scale for assessment of criteria is shown in Table 1.

Table 1. Linguistics and the TFN scale.

Linguistic Variable Abbreviation TFN Scale

Absolutely less significant ALS 1 1 1
Dominantly less significant DLS 1/2 2/3 1

Much less significant MLS 2/5 1/2 2/3
Really less significant RLS 1/3 2/5 1/2

Less significant LS 2/7 1/3 2/5
Moderately less significant MDLS 1/4 2/7 1/3

Weakly less significant WLS 2/9 1/4 2/7
Equally significant ES 0 0 0

Step 3: Determining the fuzzy coefficient =j from Equation (4):

=j =

{
1 j = 1

℘j ⊕ 1 j > 1
(4)

The comparative significance of the average value—℘j can then be found.
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Step 4: Determining the calculated weights ℵj from Equation (5):

ℵj =

 1 j = 1
ℵj−1

=j
j > 1

(5)

=j is the fuzzy coefficient from the previous step.
Step 5: Calculation of the fuzzy weight coefficients, from Equation (6):

wj =
ℵj

n
∑

j=1
ℵj

(6)

where wj represents the fuzzy relative weight of the criteria j, and n represents the number
of criteria.

2.4. Development of a Novel Rough CRADIS Approach

In this section of the paper, the CRADIS approach [19–21] was extended with Rough
numbers. The developed Rough CRADIS approach is described through the following
steps and equations.

Step 1. The first step includes the formation of an initial Rough decision matrix
consisting of n criteria and m alternatives as shown in Equation (7),

ξ =


[
ξL

11, ξU
11
][

ξL
21, ξU

21
]

...[
ξL

m1, ξU
m1
]
[
ξL

12, ξU
12
][

ξL
22, ξU

22
]

...[
ξL

m2, ξU
m2
]
· · ·
· · ·
. . .
· · ·

[
ξL

1n, ξU
1n
][

ξL
2n, ξU

2n
]

...[
ξL

mn, ξU
mn
]
 (7)

where ξij denotes the performance of alternative m in relation to criterion n.
Step 2. Determination of a Rough normalized decision matrix (8) using Equations (9)

and (10):

ς =


[
ςL

11, ςU
11
][

ςL
21, ςU

21
]

...[
ςL

m1, ςU
m1
]
[
ςL

12, ςU
12
][

ςL
22, ςU

22
]

...[
ςL

m2, ςU
m2
]
· · ·
· · ·
. . .
· · ·

[
ςL

1n, ςU
1n
][

ςL
2n, ςU

2n
]

...[
ςL

mn, ςU
mn
]
 (8)

ςij =
ξij

maxξij
=

[
ξL

ij

maxξU
ij

,
ξU

ij

maxξL
ij

]
, j ∈ B (9)

where B marks a set of benefit criteria, and

ςij =
minξij

ξij
=

[
minξL

ij

ξU
ij

,
minξU

ij

ξL
ij

]
, j ∈ C (10)

where C marks a set of cost criteria.
Step 3. Calculation of the weighted normalized Rough matrix (11) using Equation (12):

υ =


[
υL

11, υU
11
][

υL
21, υU

21
]

...[
υL

m1, υU
m1
]
[
υL

12, υU
12
][

υL
22, υU

22
]

...[
υL

m2, υU
m2
]
· · ·
· · ·
. . .
· · ·

[
υL

1n, υU
1n
][

υL
2n, υU

2n
]

...[
υL

mn, υU
mn
]
 (11)

υij = ςij ⊗ wj =
[
ςL

ij ⊗ wL
j , ςU

ij ⊗ wU
j

]
(12)
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Step 4. Calculation of an ideal τid (the largest value of υij) and anti-ideal solution τaid
(the smallest value υij).

τid =
[
τL

id, τU
id

]
1×n

= maxυij (13)

τaid =
[
τL

aid, τU
aid

]
1×n

= minυij (14)

Step 5. Determination of deviations from ideal and anti-ideal solutions, Equations (15)
and (16).

δ+ij =
[
δ+L

ij , δ+U
ij

]
m×n

= maxτid − υij =
[
maxτL

ij − υU
ij , maxτU

ij − υL
ij

]
(15)

δ−ij =
[
δ−L

ij , δ−U
ij

]
m×n

= υij −minτaid =
[
υL

ij −minτU
ij , υU

ij −minτL
ij

]
(16)

Step 6. Calculation of the degree of deviation of each alternative from ideal and
anti-ideal solutions.

<+
i =

[
<+L

i ,<+U
i

]
1×m

=
n

∑
j=1

δ+ij (17)

<−i =
[
<−L

i ,<−U
i

]
1×m

=
n

∑
j=1

δ−ij (18)

Step 7. Determination of the utility function of each alternative relative to the opti-
mal alternatives.

}+i =
[
}+L

i ,}+U
i

]
1×m

=

[
<+o
<+i

]
=

[
<+L

o
<+U

i
, <

+U
o
<+L

i

]
<+

o =
n
∑

j=1

(
min

(
δ+ij

)) (19)

}−i =
[
}−L

i ,}−U
i

]
1×m

=

[
<−o
<−i

]
=

[
<−L

o
<−U

i
, <
−U
o
<−L

i

]
<−o =

n
∑

j=1

(
min

(
δ−ij

)) (20)

Step 8. Sorting alternatives by calculating the average utility function using Equation (21).
The best alternative is the one with the highest value.

χi =
[
χ−L

i , χ−U
i

]
1×m

=

[
}+i + }−i

2

]
=

[
}+L

i + }−L
i

2
,
}+U

i + }−U
i

2

]
(21)

3. Integration of Linear Programming and a Fuzzy-Rough MCDM Model for
Production Optimization
3.1. Special Case of Linear Programming Optimization

The company produces two articles, A and B, on two groups of machines, M and N.
In the period considered, the first group of machines has a capacity of 6000 working hours,
and the second group has a capacity of 3000 working hours. The processing time of a unit
of article A is 1.5 working hours on the first group of machines, and 1 working hour on the
second group of machines. The processing time of a unit of article B is 1.5 working hours
on the first group of machines, and 0.5 working hour on the second group of machines. For
the production realization, the company has enough raw materials and labor, but it can
only put 2500 units of article A and 3000 units of article B on the market. By selling, the
company makes a profit of 2000 monetary units per unit of article A and 1000 monetary
units per unit of article B. It is necessary to determine the optimal production plan in order
to achieve the maximum profit for the company.
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First of all, it is necessary to set up a mathematical model in accordance with Equations (1)–(3).
Constraints of the model according to the parameters of the study are as follows:

3
2 x1 +

3
2 x2 ≤ 6000

x1 +
1
2 x2 ≤ 3000

x1 ≤ 2500
x2 ≤ 3000
x1, x2 ≥ 0

while the objective function of maximizing the company’s profit is presented as follows:

Fmax = 2000x1 + 1000x2

By applying the simplex method of linear programming (Simplex Method calculator),
the values of the objective function presented in Table 2 are obtained.

Table 2. Value of function F.

x1 X2 S1 S2 S3 S4 Const.

0 0 1 −3 3/2 0 750
0 1 0 2 −2 0 1000
1 0 0 0 1 0 2500
0 0 0 −2 2 1 2000

0 0 0 −2000 0 0 F −
6000000

0 0 2/3 −2 1 0 500
0 1 0 2 −2 0 1000
1 0 0 0 1 0 2500
0 0 0 −2 2 1 2000

0 0 0 −2000 0 0 F −
6000000

0 0 2/3 −2 1 0 500
0 1 4/3 −2 0 0 2000
1 0 −2/3 2 0 0 2000
0 0 −4/3 2 0 1 1000

0 0 0 −2000 0 0 F −
6000000

Non-basic variables are zero. The value of the basic variables can be taken into account.
The function F contains only non-basic variables. Thus, the value of the function F for the
basis can be kept in mind.

S1 = 0, S2 = 0, S3 = 500, S4 = 1000
x1 = 2000, x2 = 2000
F− 6000000 = 0⇒ F = 6000000

(22)

From a geometric point of view, both solutions are points of space, i.e., they form a
line segment. Any point (any solution) on this segment will also be a solution.

Finally, the result of linear programming is presented by the following function:

x1 = 2500t + 2000(1− t)
x2 = 1000t + 2000(1− t)
0 ≤ t ≤ 1
Fmax = 6000000

The optimal solution is represented by the extreme points, A and B, of the convex set
C (Figure 2). In other words, the optimal solution is represented by every point of the line
segment AB.
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The maximum value of the objective function is as follows:

Fmax(X) = F(A) = 2000(2000) + 1000(2000) = 6000000 (23)

i.e.,
Fmax(X) = F(B) = 2000(2500) + 1000(1000) = 6000000 (24)

We will obtain the same value of the criterion function if we include the coordinates of
any point on the line segment AB, which represents a large number of admissible optimal
solutions. The optimal value of the objective function is unique because it is six million
regardless of how many products A and how many products B will be produced, but there
are infinitely many admissible solutions that provide this function value.

The multiplicity of the optimal solution gives greater opportunities to the decision-
maker, and this is where MCDM methods come into focus. The decision-maker chooses
an optimal solution that best fits these conditions, e.g., if the extreme point B is taken
as the optimal solution, then the capacity of the second group of machines will be fully
utilized, while the first group of machines will have an unused capacity of 750 working
hours. The market will be fully supplied by the first article, and it will lack 2000 units of
article B. Which solution the decision-maker will choose depends on whether it is more
important for him to use the capacity of the machines or to supply the market with articles
individually. It is through the further development of the multi-criteria Fuzzy-Rough
MCDM model that the optimal solution is reached depending on the current needs of
the company, and it is defined through determining the significance of the criteria and
extensive sensitivity analysis.

3.2. Formation of MCDM Model—Defining Criteria and Alternatives

Since we have as a solution many points that represent the optimal solution, a multi-
criteria model can be applied further. Four criteria are defined: capacity utilization of the
first group of machines M (C1), capacity utilization of the second group of machines N (C2),
supplying the market with articles of group A (C3) and supplying the market with articles
of group B (C4). A total of 21 alternatives were defined in accordance with the value t = 0–1
with an interval of 0.05 (Table 3):
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Table 3. Defining alternatives depending on the value t.

t x1 x2

A1 1 2500 1000
A2 0.095 2475 1050
A3 0.090 2450 1100
A4 0.085 2425 1150
A5 0.080 2400 1200
A6 0.075 2375 1250
A7 0.070 2350 1300
A8 0.065 2325 1350
A9 0.060 2300 1400
A10 0.055 2275 1450
A11 0.050 2250 1500
A12 0.045 2225 1550
A13 0.040 2200 1600
A14 0.035 2175 1650
A15 0.030 2150 1700
A16 0.025 2125 1750
A17 0.020 2100 1800
A18 0.015 2075 1850
A19 0.010 2050 1900
A20 0.05 2025 1950
A21 0 2000 2000

3.3. Determining the Significance of Criteria Using the IMF SWARA Method

In this section of the paper, the calculation of weight values of the criteria was carried
out using the IMF SWARA method. It is not group decision-making because previously it
was a specific optimization problem using linear programming, after which the decision-
maker takes into account the current state and needs of the company and evaluates the
criteria as shown in Table 4.

Table 4. Weight values of the criteria calculated with the IMF SWARA method.

℘j =j ℵj wj

C3 1.000 1.000 1.000 1.000 1.000 1.000 0.287 0.291 0.296
C4 ES 1.000 1.000 1.000 1.000 1.000 1.000 0.287 0.291 0.296
C1 WLS 1.222 1.250 1.286 0.778 0.800 0.818 0.223 0.233 0.242
C2 WLS 1.222 1.250 1.286 0.605 0.640 0.669 0.173 0.186 0.198

SUM 3.383 3.440 3.488

First, the linguistic values of the criterion comparison ℘j are defined, and the values =j

for j > 1 are obtained by adding TFN (1,1,1). The values ℵj for j > 1 are obtained as follows:

ℵ1 = ℵ1−1
=1

= ℵ4
=1

=
(

1
1.286 , 1

1.250 , 1
1.222

)
= (0.778, 0.800, 0.818). The final fuzzy criterion

weights are obtained as follows:

w1 =
ℵ1

n
∑

j=1
ℵj

=

(
1

3.488
,

1
3.440

,
1

3.383

)
= (0.287, 0.291, 0.296).

The results show that the decision-maker views the significance of the criteria quite
equally, so did not decide to assign much greater significance to any one criterion than to
the others. Even the highest-ranked criterion is not much more significant compared to the
least significant one.
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3.4. Determining the Optimal Solution Using the Rough CRADIS Approach

In Section 3.2, alternative values of t and values of x1 and x2 are defined, by including
the values of x1 and x2 in each constraint, as e.g., for A1:

3
2 × 2500 + 3

2 × 1000 = 5250 ≤ 6000 (750)
2500 + 1

2 × 1000 = 3000 (0)
2500 = 2500 (0)

1000 ≤ 3000 (2000)

For A2:
3
2 × 2475 + 3

2 × 1050 = 5287.5 ≤ 6000 (712.5)
2475 + 1

2 × 1050 = 3000 (0)
2475 ≤ 2500 (25)

1050 ≤ 3000 (1950)

For A21:
3
2 × 2000 + 3

2 × 2000 = 6000 (0)
2000 + 1

2 × 2000 = 3000 (0)
2000 ≤ 2500 (500)

2000 ≤ 3000 (1000)

In this way, the complete initial decision matrix is obtained as shown in Table 5,
which essentially represents the difference in satisfying the set restrictions for each criterion
separately. For example, for A1, the values of x1 and x2 are 2500 and 1000, respectively,
and the utilization of the first group of machines M is not complete, but there are still
750 h available, while the second group of machines N is fully utilized. When it comes to
meeting the requirements of the market with product A, it is fully satisfied, while there is a
shortage of 2000 products B according to these parameters. The initial decision-making
matrix represents equal low and upper numbers because it represents the difference in
satisfying the set restrictions for each criterion separately which is essential for managers
while having no influence on the application of the rough model.

Table 5. Initial decision matrix.

C1 C2 C3 C4

A1 750.00 750.00 1 1 1 1 2000 2000
A2 712.50 712.50 1 1 25 25 1950 1950
A3 675.00 675.00 1 1 50 50 1900 1900
A4 637.50 637.50 1 1 75 75 1850 1850
A5 600.00 600.00 1 1 100 100 1800 1800
A6 562.50 562.50 1 1 125 125 1750 1750
A7 525.00 525.00 1 1 150 150 1700 1700
A8 487.50 487.50 1 1 175 175 1650 1650
A9 450.00 450.00 1 1 200 200 1600 1600

A10 412.50 412.50 1 1 225 225 1550 1550
A11 375.00 375.00 1 1 250 250 1500 1500
A12 337.50 337.50 1 1 275 275 1450 1450
A13 300.00 300.00 1 1 300 300 1400 1400
A14 262.50 262.50 1 1 325 325 1350 1350
A15 225.00 225.00 1 1 350 350 1300 1300
A16 187.50 187.50 1 1 375 375 1250 1250
A17 150.00 150.00 1 1 400 400 1200 1200
A18 112.50 112.50 1 1 425 425 1150 1150
A19 75.00 75.00 1 1 450 450 1100 1100
A20 37.50 37.50 1 1 475 475 1050 1050
A21 1.00 1.00 1 1 500 500 1000 1000
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By Equations (8)–(21), the final results of applying the new Rough CRADIS approach
are obtained, which is shown in Table 6.

Table 6. Results of applying the Rough CRADIS approach.

<+
i <−i <+

o <−o h̄+
i h̄−i χi Rank

A1 0.9465 0.6685

0.6165 0.9985

0.6514 0.669542 0.660 1
A2 1.3343 0.2807 0.4621 0.281146 0.372 3
A3 1.3422 0.2729 0.4594 0.273271 0.366 7
A4 1.3446 0.2704 0.4585 0.270808 0.365 11
A5 1.3457 0.2693 0.4581 0.269709 0.364 14
A6 1.3463 0.2688 0.4580 0.269167 0.364 17
A7 1.3465 0.2685 0.4579 0.268913 0.363 19
A8 1.3466 0.2684 0.4578 0.268834 0.363 21
A9 1.3466 0.2685 0.4579 0.268876 0.363 20

A10 1.3464 0.2686 0.4579 0.269011 0.363 18
A11 1.3462 0.2688 0.4580 0.269222 0.364 16
A12 1.3459 0.2691 0.4581 0.269506 0.364 15
A13 1.3456 0.2695 0.4582 0.269862 0.364 13
A14 1.3451 0.2699 0.4583 0.270297 0.364 12
A15 1.3446 0.2704 0.4585 0.270829 0.365 10
A16 1.3439 0.2711 0.4587 0.271487 0.365 9
A17 1.3431 0.2719 0.4590 0.272337 0.366 8
A18 1.3419 0.2731 0.4594 0.273524 0.366 6
A19 1.3400 0.2751 0.4601 0.275485 0.368 5
A20 1.3351 0.2800 0.4618 0.280383 0.371 4
A21 1.0199 0.5951 0.6045 0.596012 0.600 2

After applying the Rough CRADIS model, the optimal solution is alternative A1, while
the alternative A21 represents the second best solution under the given conditions and
parameters of the model.

4. Verification of the Developed Model and Discussion
4.1. Sensitivity Analysis

The sensitivity analysis has been performed through 40 scenarios that represent new
simulated criterion values using Equation (22) [22–24]:

Wnβ =
(
1−Wnα

) Wn=β(
1−Wn

) (25)

The new criterion values are shown in Figure 3, where the values are simulated as
follows: starting from the first scenario in which the value of criterion C1 is reduced by 5%
to S10 in which the value of that criterion is reduced by 95%, while the values of criteria C2,
C3 and C4 increase proportionally. In the same way, new criterion values are determined
in S11–S20 for C2, in S21–S30 for C3 and in S31–S40 for C4.

Figure 4 shows the ranks of all alternatives depending on the simulated weight values
of the criteria.

The change in the ranks of alternatives is obvious so, e.g., A1 in S4–S10 is in the
first position, which is a consequence of the reduction of C1 criterion by 35–95% while,
e.g., in S27–S30, its rank decreases drastically to the 7th, 11th, 14th and 19th position,
respectively, which is a consequence of the decrease in the significance of criterion C3 by
65–95%. This kind of sensitivity analysis in this special case of searching for an optimal
solution represents an exceptional contribution for the decision-maker because he can fully
perceive the real needs and determine which solution is optimal in real time.
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Since there are certain changes in the ranks of potential solutions when reducing the
weight values of the criteria, a statistical correlation of the ranks is performed (Figure 5),
SCC and WS, which has already been mentioned in the methodology section of the paper.
The lowest SCC = 0.521 is in set 40 since A3 drastically increases its position with a total
decrease in the value of criterion C4. The lowest WS = 0.762 is in set 31, when the value
of the third criterion decreases. Considering the large set of potential solutions (21), the
average values of both coefficients show a very high level of rank correlation: SCC = 0.970,
WS = 0.944.
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4.2. Comparative Analysis

Comparative analysis represents one of the ways of testing the results obtained [25].
As already mentioned, the comparative analysis involves a comparison with four other
Rough MCDM methods: Rough WASPAS [11], Rough SAW [12], Rough ARAS [13] and
Rough MARCOS [14]. The results of the comparative analysis are shown in Figure 6.
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Compared to three Rough MCDM methods, there is no change in the best alternative,
while when applying the Rough ARAS method, the two best alternatives exchange places.
Moreover, the greatest changes are in the comparison of Rough CRADIS with the Rough
ARAS method, where A3 changes its position by several places.

Figure 7 shows the values of SCC and WS coefficients in the comparative analysis.
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Figure 7. Correlation of ranks in comparative analysis.

Rough CRADIS has a full correlation of ranks with Rough SAW, while it has 0.999
with Rough MARCOS, 0.874 with Rough ARAS, and 0.961 with Rough WASPAS when it
comes to the SCC coefficient. The situation is similar with the WS coefficient, which has a
full correlation with R-WASPAS, R-SAW, R-MARCOS.

4.3. Limitations and Managerial Implications

Limitations of the solution proposed by this research can be traced to linear program-
ming and MCDM methodology. From the aspect of linear programming, the number of
variables can represent limitations, while the developed Rough CRADIS model can be
applied for group decision-making only, which is the second limitation.

It is very important to note that sensitivity analysis enables real-time decision-making
since the decision-maker has at his disposal a set of 40 formed scenarios in which the
criteria change their original values. This means that in real time, if it is more important for
the company to satisfy the requirements of the market with product B rather than A, it can
precisely determine from the obtained results what quantity of product it needs. The same
is the case with the use of own resources, which are presented in the paper as criteria.

5. Conclusions

The paper proposes a novel integrated model consisting of a combination of linear
programming, fuzzy set theory, rough set theory and a MCDM method. A novel Rough
CRADIS approach has been created that can be used for any problem involving multiple
criteria. The problem of optimizing production with the aim of maximizing profit, which
represents a specific problem of linear programming, has been presented and solved. Based
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on a numerical example using linear programming, a set of optimal solutions that lie on the
line segment AB has been obtained. After that, a total of 21 different solutions were formed,
which can represent the optimum depending on the real requirements of the market and the
orientation of the company. The IMF SWARA method was applied in order to determine
the significance of the criteria considered when making a decision. At the end, a calculation
was made using the novel Rough CRADIS approach in order to determine the optimal
solution under the given conditions, i.e., how many products should be produced. The
results show that the integration of linear programming and a Fuzzy-Rough MCDM model
can be an exceptional solution for solving specific optimization problems.

Future research can be reflected through defining a larger number of influential factors
and defining an objective function that will minimize costs while maximizing the profit.
In addition, the application of fuzzy linear programming with the development of new
approaches is highlighted as a useful option.
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