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Abstract: The principal objective of this paper is to find the solution to a constrained minimization
problem and the zero of the monotone operator in geodesic spaces. The basic tool in our study
is a nonexpansive mapping. Further, we employ the general Picard–Mann iterative method to
approximate fixed points of nonexpansive mappings under various conditions. We obtain certain
theorems concerning ∆ and strong convergence.
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1. Introduction

Finding a minimizer of a function defined on a Hilbert space, which is convex lower
semicontinuous (in short, lsc), is an important problem in optimization theory. See the
early works of Martinet [1], Rockafellar [2], and Brézis and Lions [3]. Further, monotone
operator theory is a pivotal topic in nonlinear analysis (in particular, convex analysis). More
precisely, a zero of a monotone operator is a solution of a variational inequality problem
governed by the monotone operator and an equilibrium point of an evolution equation.

Gradually, many of the iterative methods for solving optimization problems have
been generalized from linear spaces (Banach, Hilbert, and Euclidean) into nonlinear spaces
(Riemannian manifolds and geodesic metric spaces of nonpositive curvature), see [4–7]. For
instance, Bačák [4] generalized the proximal point method (in terms of the Moreau—Yosida re-
solvent) from Hilbert spaces to geodesic spaces. Further, Khatibzadeh and Ranjbar [6] used
the duality theory and considered monotone operators and their resolvents in Hadamard
spaces. For the most recent results dealing with monotone operators, see [8,9] and refer-
ences therein.

On the other hand, nonexpansive mappings are those that have a Lipschitz constant
equal to one. This class of mappings need not admit a fixed point in a complete space. For
the results ensuring the fixed point of nonexpansive mappings in Banach spaces, see the
early works of Browder [10], Göhde [11], and Kirk [12]. This class of mappings has a strong
connection with transition operators for initial value problems (of differential inclusion),
monotone operators, accretive operators, equilibrium problems, and variational inequality
problems. Takahashi [13] endowed the metric space with a convex structure and obtained
theorems concerning the existence of a fixed point of nonexpansive mappings. Goebel
and Kirk [14] considered the Krasnosel’skiı̆-Mann iterative method to approximate fixed
points of nonexpansive mappings in nonlinear spaces. Over the last few years, a number of
papers have been published dealing with the important fixed point results in the setting of
geodesic spaces, see [15–24]. Indeed, Ariza-Ruiz et al. [18] generalized some well known
theorems on firmly nonexpansive mappings (even asymptotic behaviour of Picard iterative
method) in linear spaces to geodesic spaces. Leuştean [16] extended celebrated fixed point
theory results in geodesic spaces, for example, the monotone modulus of uniform convexity,
asymptotic centers, and the asymptotic regularity for the Ishikawa iterative method.
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Motivated by the above developments, we approximate fixed points of nonexpansive
mappings in nonlinear spaces (in particular, geodesic spaces). We extend the general
Picard–Mann iterative method from Banach spaces to geodesic spaces and obtain ∆ and
strong convergence theorems under certain assumptions. Thereafter, we use these findings
to obtain the solution of a constrained minimization problem and the zero of the monotone
operator. Our results generalize, extend, and complement several results from [7,25].

2. Preliminaries

Let (Υ, Γ) be a metric space, and [0, l] ⊂ R. Given a pair of points σ, ς ∈ Υ, a path
ξ : [0, 1]→ Υ joins σ and ς if ξ(0) = σ and ξ(1) = ς. A path ξ is called a geodesic if

Γ(ξ(s), ξ(t)) = Γ(ξ(0), ξ(1))|s− t|, for all s, t ∈ [0, 1].

A given metric space (Υ, Γ) is called a geodesic space if any pair of points σ, ς ∈ Υ are
connected by a geodesic. The geodesic segment joining σ and ς is not necessarily unique.
The following precise formulation of hyperbolic spaces was introduced by Kohlenbach [26].

Definition 1 ([26]). A triplet (Υ, Γ, W) is called a hyperbolic metric space (or W-hyperbolic space)
if (Υ, Γ) is a metric space, and the function W : Υ × Υ × [0, 1] → Υ satisfies the following
conditions for all σ, ς, z, w ∈ Υ and µ, θ ∈ [0, 1]

(W1) Γ(z, W(σ, ς, µ)) ≤ (1− µ)Γ(z, σ) + µΓ(z, ς);
(W2) Γ(W(σ, ς, µ), W(σ, ς, θ)) = |µ− θ|Γ(σ, ς);
(W3) W(σ, ς, µ) = W(ς, σ, 1− µ);
(W4) Γ(W(σ, z, µ), W(ς, w, µ)) ≤ (1− µ)Γ(σ, ς) + µΓ(z, w).

Any Busemann space is uniquely geodesic; that is, for any pair of points σ, ς ∈ Υ,
there exists a unique geodesic segment that joins σ and ς, see [27]. The following spaces
are some well-known examples of W-hyperbolic spaces: all normed spaces, Hadamard
manifolds, the CAT(0)-spaces, and the Hilbert open unit ball equipped with the hyperbolic
metric (cf. [18,26]).

Remark 1. If W(σ, ς, µ) = (1− µ)σ + µς for all σ, ς ∈ Υ, µ ∈ [0, 1], then it follows that all
normed linear spaces are W-hyperbolic spaces.

We shall write
W(σ, ς, µ) := (1− µ)σ⊕ µς

to denote a point W(σ, ς, µ) in a W-hyperbolic space. For σ, ς ∈ Υ, we denote

[σ, ς] = {(1− µ)σ⊕ µς : µ ∈ [0, 1]}

as a geodesic segment. A nonempty subset C of W-hyperbolic space (Υ, Γ, W) is said to be
convex if [σ, ς] ⊂ C for all σ, ς ∈ C.

Definition 2 ([19]). A W hyperbolic space (Υ, Γ) is uniformly convex (in short, UCW-hyperbolic
space) if for ε ∈ (0, 2] and any t > 0, there exists a δ ∈ (0, 1] in such a way that

Γ(σ, z) ≤ t

Γ(ς, z) ≤ t

Γ(σ, ς) ≥ εt

⇒ Γ
(

1
2

σ⊕ 1
2

ς, z
)
≤ (1− δ)t

for all σ, ς, z ∈ Υ.

Remark 2. Leuştean [16] proved that complete CAT(0) spaces are complete uniformly convex
hyperbolic spaces (or UCW-hyperbolic spaces).
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Let {σn} be a bounded sequence in a hyperbolic space (Υ, Γ, W) and C a nonempty
subset of Υ. A functional r( . , {σn}) : Υ→ [0,+∞) can be defined as follows:

r(ς, {σn}) = lim sup
n→+∞

Γ(ς, σn).

The asymptotic radius of {σn} with respect to C is described as

r(C, {σn}) = inf{r(ς, {σn}) : ς ∈ C}.

A point σ in C is called as an asymptotic center of {σn} with respect to C if

r(σ, {σn}) = r(C, {σn}).

A(C, {σn}) is denoted as the set of all asymptotic centers of {σn} with respect to C.

Definition 3 ([28]). Let {σn} be a bounded sequence in a W hyperbolic space (Υ, Γ). The sequence
{σn} ∆-converges to σ if σ is the unique asymptotic center for every subsequence {ρn} of {σn}.

Let (Υ, Γ) be a W hyperbolic space and C ⊂ Υ such that C 6= ∅. A sequence {σn} in Υ
is said to be Fejér monotone with respect to C if

Γ(σ†, σn+1) ≤ Γ(σ†, σn), for all n ≥ 0, for all σ† ∈ C.

A mapping Ψ : Υ → Υ is nonexpansive if Γ(Ψ(σ), Ψ(ς)) ≤ Γ(σ, ς), for all σ, ς ∈ Υ. We
denote F(Ψ) := {σ ∈ Υ : Ψ(σ) = σ}.

Definition 4 ([29]). A mapping Ψ : C → C with F(Ψ) 6= ∅ satisfies Condition (I), if there exists
a function f : [0,+∞)→ [0,+∞) with the following conditions:

1. f (r) > 0 for r ∈ (0,+∞) and f (0) = 0.
2. Γ(σ, Ψ(σ)) ≥ f (Γ(σ, F(Ψ))) for all σ ∈ C,

where Γ(σ, F(Ψ)) = inf{Γ(σ, ς) : ς ∈ F(Ψ)}.

Definition 5. Let (Υ, Γ) be a metric space, and C ⊂ Υ such that C 6= ∅. A mapping Ψ : C → C
is compact if Ψ(C) has a compact closure.

Proposition 1 ([16]). Let (Υ, Γ, W) be a complete UCW-hyperbolic space, C ⊂ Υ such that C 6= ∅,
and C be closed convex. If a sequence {σn} in Υ is bounded, then {σn} has a unique asymptotic
center with respect to C.

Lemma 1 ([16]). Let {σn} be a bounded sequence in (Υ, Γ, W), and A(C, {σn}) = {z}. Let
{rn} and {sn} be two sequences in R such that rn ∈ [0,+∞) for all n ∈ N, lim sup rn ≤ 1 and
lim sup sn ≤ 0. Suppose that ς ∈ C, and there exist m, N ∈ N such that

Γ(ς, σn+m) ≤ rnΓ(z, σn) + sn, for all n ≥ N.

Then, ς = z.

Lemma 2 ([18]). Let (Υ, Γ, W) be a W-hyperbolic space, C ⊂ Υ such that C 6= ∅. If {σn} is Fejér
monotone with respect to C, A(C, {σn}) = {σ}, and A(Υ, {ρn}) ⊆ C for every subsequence {ρn}
of {σn}. Then, the sequence {σn} ∆-converges to σ ∈ C.

The following Lemma is motivated by [16] (Lemma 2.1):
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Lemma 3 ([17]). Let (Υ, Γ, W) be a complete UCW-hyperbolic space. Let w ∈ Υ and {αn} be a
sequence such that 0 < α ≤ αn ≤ β < 1. If {σn} and {ςn} are sequences in Υ such that for some
r ≥ 0, we have

lim sup
n→+∞

Γ(σn, w) ≤ r, lim sup
n→+∞

Γ(ςn, w) ≤ r and lim
n→+∞

Γ(αnςn ⊕ (1− αn)σn, w) = r.

Then, lim
n→+∞

Γ(ςn, σn) = 0.

3. Main Results

In [25], Shukla et al. considered the following iterative method (known as GPM). Let
B be a Banach space and C ⊂ B such that C 6= ∅, and C is convex. Let Ψ : C → C be
a mapping. {

σ1 = σ ∈ C
σn+1 = Ψk{(1− αn)σn + αnΨ(σn)}, n ∈ N,

(1)

where {αn} is a sequence in [0, 1], and k is a fixed natural number.

In the setting of geodesic space, the above method can be defined. Let (Υ, Γ, W) be
a W-hyperbolic space and C ⊂ Υ such that C 6= ∅, and C is convex. Let Ψ : C → C be
a mapping. {

σ1 = σ ∈ C
σn+1 = Ψk{(1− αn)σn ⊕ αnΨ(σn)}, n ∈ N,

(2)

where k is a fixed natural number, and {αn} is a sequence in [0, 1].

Lemma 4. Let (Υ, Γ, W) be a complete UCW-hyperbolic space and C ⊂ Υ such that C 6= ∅, C be
closed convex. Let Ψ : C → C be a nonexpansive mapping with F(Ψ) 6= ∅. For a given σ1 ∈ C and
αn ∈ [α, β] with α, β ∈ (0, 1), the sequence {σn} is defined by (2). Then, the following results hold.

(1) lim
n→+∞

Γ(σn, σ†) exists for all σ† ∈ F(Ψ).

(2) lim
n→+∞

Γ(σn, Ψ(σn)) = 0.

Proof. Let σ† ∈ F(Ψ) and from (W1), we have

Γ(σn+1, σ†) = Γ(Ψk{(1− αn)σn ⊕ αnΨ(σn)}, σ†)

≤ Γ((1− αn)σn ⊕ αnΨ(σn), σ†)

≤ (1− αn)Γ(σn, σ†) + αnΓ(Ψ(σn), σ†)

≤ (1− αn)Γ(σn, σ†) + αnΓ(σn, σ†)

= Γ(σn, σ†).

Thus, the sequence {Γ(σn, σ†)} is monotone nonincreasing. Hence, lim
n→+∞

Γ(σn, σ†) exists.

Let
lim

n→+∞
Γ(σn, σ†) = h > 0. (3)

By the nonexpansiveness of Ψ,

lim
n→+∞

Γ(Ψ(σn), σ†) ≤ h. (4)
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From (3),

h = lim
n→+∞

Γ(σn+1, σ†) = lim sup
n→+∞

Γ(Ψk{(1− αn)σn ⊕ αnΨ(σn)}, σ†)

≤ lim sup
n→+∞

Γ((1− αn)σn ⊕ αnΨ(σn), σ†)

≤ lim
n→+∞

Γ(σn, σ†) = h.

Therefore,
lim

n→+∞
Γ((1− αn)σn ⊕ αnΨ(σn), σ†) = h. (5)

From (3)–(5) and Lemma 3,
lim

n→+∞
Γ(σn, Ψ(σn)) = 0. (6)

Theorem 1. Let Υ, C, Ψ, and {σn} be the same as in Lemma 4. Then, the sequence {σn}
∆-converges to a point in F(Ψ).

Proof. In view of Lemma 4, the sequence {Γ(σn, z†)} is monotone nonincreasing for all
z† ∈ F(Ψ). The sequence {σn} is Fejér monotone with respect to F(Ψ). It is noted that
F(Ψ) is closed and convex [18]. From Proposition 1, the sequence {σn} has a unique
asymptotic center w† with respect to F(Ψ). Suppose {ρn} is a subsequence of {σn}, then
from Proposition 1, {ρn} has a unique asymptotic center ρ† with respect to F(Ψ). Now,

Γ(ρn, Ψ(ρ†)) ≤ Γ(Ψ(ρn), Ψ(ρ†)) + Γ(Ψ(ρn), ρn)

≤ Γ(ρn, ρ†) + Γ(Ψ(ρn), ρn)

From (6) and Lemma 1, it follows that Ψ(ρ†) = ρ†. From Lemma 2, the sequence {σn}
∆-converges to a point in F(Ψ).

Theorem 2. Let Υ, C, Ψ, and {σn} be same as in Lemma 4. If the mapping Ψ has condition (I),
then the sequence {σn} strongly converges to a point in F(Ψ).

Proof. By Lemma 4, the sequences {Γ(σn, z†)} are monotone nonincreasing for all z† ∈ F(Ψ).
Thus, the sequence {Γ(σn, F(Ψ))} is monotone nonincreasing. Hence, lim

n→+∞
Γ(σn, F(Ψ))

exist. From Lemma 4,

lim
n→+∞

Γ(σn, Ψ(σn)) = 0. (7)

Since Ψ satisfies condition (I),

Γ(σn, Ψ(σn)) ≥ f (Γ(σn, F(Ψ))).

From (7), lim
n→+∞

f (Γ(σn, F(Ψ))) = 0, and

lim
n→+∞

Γ(σn, F(Ψ)) = 0. (8)

Now, one can verify that the sequence {σn} is Cauchy. For a given ε > 0, from (8), there
exists a n0 ∈ N such that for all n ≥ n0

Γ(σn, F(Ψ)) <
ε

4

and
inf{Γ(σn0 , z†) : z† ∈ F(Ψ)} < ε

4
,
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and there exists z† ∈ F(Ψ) such that

Γ(σn0 , z†) <
ε

2
.

Therefore, for all m, n ≥ n0,

Γ(σn+m, σn) ≤ Γ(σn+m, z†) + Γ(z†, σn) ≤ 2Γ(σn0 , z†) < 2
ε

2
= ε,

and the sequence {σn} is Cauchy. By the closedness of the set C of Υ, the sequence {σn}
converges to a point σ† ∈ C. Now,

Γ(σ†, Ψ(σ†)) ≤ Γ(σ†, σn) + Γ(σn, Ψ(σn)) + Γ(Ψ(σn), Ψ(σ†))

≤ 2Γ(σ†, σn) + Γ(σn, Ψ(σn))

from (7), σ† = Ψ(σ†). Thus, the sequence {σn} strongly converges to a point in F(Ψ).

Remark 3. Theorem 2 is an immediate generalization of [25] (Theorem 5) from the setting of
Banach spaces to hyperbolic spaces.

Theorem 3. Let (Υ, Γ, W) be a complete UCW-hyperbolic space. Let C, Ψ, and {σn} be the same
as in Lemma 4. If Ψ is a compact mapping, then the sequence {σn} strongly converges to a point in
F(Ψ).

Proof. In view of Lemma 4, the sequence {σn} is bounded. From Lemma 4,

lim
n→+∞

Γ(σn, Ψ(σn)) = 0. (9)

From the definition of compact mapping, the range of C under Ψ is contained in a compact
set. Therefore, there is a subsequence {Ψ(σnj)} of {Ψ(σn)} that strongly converges to
σ† ∈ C. In view of (9), this implies that the subsequence {σnj} strongly converges to σ†.
Mapping Ψ is nonexpansive, and by the triangle inequality,

Γ(σnj , Ψ(σ†)) ≤ Γ(σnj , Ψ(σnj)) + Γ(Ψ(σnj), Ψ(σ†))

≤ Γ(σnj , Ψ(σnj)) + Γ(σnj , σ†).

Therefore, subsequence {σnj} strongly converges to Ψ(σ†), which implies that Ψ(σ†) = σ†.
Since lim

n→+∞
Γ(σn, σ†) exists, the sequence {σn} strongly converges to a point in F(Ψ).

4. Solution of a Constrained Minimization Problem

Let (Υ, Γ) be a complete CAT(0) space and ζ : Υ → (−∞,+∞] a proper lower semi-
continuous and convex function. We present a theorem to find the minimizers of ζ, which
is the solution of the following minimization problem

min
σ∈Υ

ζ(σ). (10)

We take
argminς∈Υζ(σ) = {σ ∈ Υ : ζ(σ) ≤ ζ(ς), for all ς ∈ Υ}

as the set of minimizers of ζ.

Proposition 2 ([18]). Let r > 0 and Jr be a resolvent associated with ζ. Then, F(Jr) =
argminς∈Υζ(σ).
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Theorem 4. Suppose that the function ζ has a minimizer. Then, for all r > 0, given σ1 ∈ C, k is a
fixed natural number and αn ∈ [α, β] with α, β ∈ (0, 1), and the sequence {σn} is defined by

σn+1 = Jk
r {(1− αn)σn ⊕ αn Jr(σn)}, n ∈ N.

Then, {σn} ∆-converges to some point in Υ, which is a minimizer of ζ.

Proof. It can be easily seen that Jr (a resolvent associated with ζ) is a nonexpansive map-
ping. Therefore, the conclusion directly follows from Theorem 1.

5. A Zero of a Monotone Operator

Let (Υ, Γ) be a complete CAT(0) space having dual space Υ∗. Let A : Υ → 2Υ∗ be an
operator with domain D(A) := {σ ∈ Υ : A(σ) 6= ∅}, it is monotone if and only if

〈σ∗ − ς∗,−→ςσ〉 ≥ 0, for all σ, ς ∈ D(A), σ 6= ς, σ∗ ∈ A(σ), ς∗ ∈ A(ς).

The monotone operator A is maximal if there exists no monotone operator B such that
gra(B) properly contains gra(A). Finding the solution of the following problem is pivotal
in monotone operator theory.

Find σ ∈ D(A), such that 0 ∈ A(σ). (11)

The solution of the above problem is a solution of an equilibrium point of an evolution
equation. Moreover, the solution of (11) is equivalent to the solution of variational inequality
associated to the monotone operator, see [4,7]. Let λ > 0, the resolvent of operator A of
order λ is the set-valued mapping Jλ : Υ→ 2Υ defined by Jλ(σ) := {z ∈ Υ|

[
1
λ
−→zσ
]
∈ A(z)},

see [6]. A monotone operator A : Υ→ 2Υ∗ on a complete CAT(0) space satisfies the range
condition if for every λ > 0, D(Jλ) = Υ.

Lemma 5 ([6]). Let X be a CAT(0) space and Jλ be the resolvent of the operator A of order λ. We
have the following:

(i) If A is monotone with λ ≤ µ, then Γ(σ, Jλ(σ)) ≤ 2Γ(σ, Jµ(σ)).
(ii) For any λ > 0, F(Jλ) = A−1(0).

Now, we present the following result:

Theorem 5. Let Υ be a complete CAT(0) space with dual Υ∗ and A : Υ → 2Υ∗ be a monotone
operator that satisfies the range condition and A−1(0) 6= ∅, where 0 ∈ Υ∗. Let {cn} be a sequence
of positive real numbers such that 0 < c ≤ cn, for all n ∈ N, and {αn} is a sequence in [α, β] with
α, β ∈ (0, 1). For a fixed k ∈ N, given σ1 ∈ Υ, the sequence {σn} is defined as

σn+1 = Jk
cn{(1− αn)σn + αn Jcn(σn)}, n ∈ N.

Then, the sequence4-converges to a point σ† ∈ A−1(0).

Proof. Let σ† ∈ A−1(0). From (W1), we have

Γ(σn+1, σ†) = Γ(Jk
cn{(1− αn)σn ⊕ αn Jcn(σn)}, σ†)

≤ Γ((1− αn)σn ⊕ αn Jcn(σn), σ†)

≤ (1− αn)Γ(σn, σ†) + αnΓ(Jcn(σn), σ†)

≤ (1− αn)Γ(σn, σ†) + αnΓ(σn, σ†)

= Γ(σn, σ†).
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Thus, {σn} is bounded, and lim
n→+∞

Γ(σn, σ†) exists. Let

lim
n→+∞

Γ(σn, σ†) = r > 0. (12)

By the nonexpansiveness of Jcn ,

lim
n→+∞

Γ(Jcn(σn), σ†) ≤ r. (13)

From (12),

r = lim
n→+∞

Γ(σn+1, σ†) = lim sup
n→+∞

Γ(Jk
cn{(1− αn)σn ⊕ αn Jcn(σn)}, σ†)

≤ lim sup
n→+∞

Γ((1− αn)σn ⊕ αn Jcn(σn), σ†)

≤ lim
n→+∞

Γ(σn, σ†) = r.

Therefore,
lim

n→+∞
Γ((1− αn)σn ⊕ αn Jcn(σn), σ†) = r. (14)

From (12)–(14) and Lemma 3,

lim
n→+∞

Γ(σn, Jcn(σn)) = 0.

By Lemma 5,
Γ(σn, Jc(σn)) ≤ 2Γ(σn, Jcn(σn)). (15)

The sequence {Γ(σn, σ†)} is monotone nonincreasing, and the sequence {σn} is Fejér
monotone with respect to A−1(0). From Proposition 1, the sequence {σn} has a unique
asymptotic center w† with respect to A−1(0). Suppose {ρn} is a subsequence of {σn}. Then,
{ρn} has a unique asymptotic center ρ† with respect to A−1(0). Now,

Γ(ρn, Jc(ρ
†)) ≤ Γ(Jc(ρn), Jc(ρ

†)) + Γ(Jc(ρn), ρn)

≤ Γ(ρn, ρ†) + Γ(Jc(ρn), ρn).

From (15) and Lemma 1, it follows that Jc(ρ†) = ρ†. From Lemma 2, the sequence {σn}
∆-converges to a point in A−1(0).
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