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Abstract: An explainable artificial intelligence (XAI) agent is an autonomous agent that uses a
fundamental XAI model at its core to perceive its environment and suggests actions to be performed.
One of the significant challenges for these XAI agents is performing their operation efficiently, which
is governed by the underlying inference and optimization system. Along similar lines, an Explainable
Fuzzy AI Challenge (XFC 2022) competition was launched, whose principal objective was to develop
a fully autonomous and optimized XAI algorithm that could play the Python arcade game “Asteroid
Smasher”. This research first investigates inference models to implement an efficient (XAI) agent
using rule-based fuzzy systems. We also discuss the proposed approach (which won the competition)
to attain efficiency in the XAI algorithm. We have explored the potential of the widely used Mamdani-
and TSK-based fuzzy inference systems and investigated which model might have a more optimized
implementation. Even though the TSK-based model outperforms Mamdani in several applications,
no empirical evidence suggests this will also be applicable in implementing an XAI agent. The
experimentations are then performed to find a better-performing inference system in a fast-paced
environment. The thorough analysis recommends more robust and efficient TSK-based XAI agents
than Mamdani-based fuzzy inference systems.

Keywords: explainable AI; fuzzy systems; AI agents; Mamdani inference system; TSK; 03B52

MSC: 03B52

1. Introduction

An explainable artificial intelligence [1] (or XAI) is an artificial intelligence (AI) where
humans can easily understand and analyze the actions performed by the AI. The idea
behind using XAI is that the results given by AI models would be more acceptable to the
end-user if the results have an explanation in layman’s terms associated with them [2]. The
recent advances in machine learning algorithms can produce an AI that can learn, decide,
and act independently without any supervision. However, these AI systems cannot explain
their output and actions to human users [1]. It is challenging to apply these models to high-
stakes or government-regulated domains such as insurance, loans, mortgages, portfolio
rebalancing, power plant operations, etc. XAI provides much-needed explanations for AI
applications in such domains [3]. It tries to improve by providing reasoning behind the
decisions made by an AI system.

Recent research has shown that rule-based fuzzy systems work well in implementing
XAI models because fuzzy rules consist of words and IF–ELSE statements that contribute
to the overall explainability of the AI model [3,4]. Autonomous XAI agents can be built
using rule-based fuzzy systems that can work in a fast-paced environment. However, one
of the major concerns while implementing XAI agents using rule-based fuzzy systems
is the associated performance penalty. Along similar lines, an Explainable Fuzzy AI
Challenge (XFC 2022) competition was launched, whose principal objective was to develop
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a fully autonomous and optimized XAI algorithm that could play the Python arcade game
“Asteroid Smasher” [5]. In the game, a 2-dimensional spacecraft moves around in an
asteroid field, and the goal of the XAI agent is to terminate all the asteroids while avoiding
collision with them.

This paper introduces a computationally efficient and most explainable solution to the
competition, where we implement XAI agents using rule-based fuzzy systems. This recent
work motivated us to explore the feasibility and performance of such XAI implementations,
which use rule-based fuzzy inference systems at their core in a fast-paced environment [6,7].
Further, we wanted to explore which type-1 fuzzy inference system would be most efficient
and perform better for such explainable artificial intelligence implementations.

In this research work, we tried to answer the following questions

• Can an AI agent be implemented using the fuzzy inference system and later be
explained logically?

• Which type-1 fuzzy inference system is most computationally efficient and performs
better in such an implementation?

• How does such an inference system help to attain higher efficiency?
• Are the generated explanations sensible and understandable to the end-user?

To answer these research questions, we took the implementation of an explainable AI
system provided by the competition [5]. The game environment changes at 60 frames per
second; hence, the XAI agent needs to perform its calculation within that time. Simply, the
XAI agent code needs to complete its execution in less than 0.016 s to control the spacecraft
efficiently. Further, we compared and experimented with the two most popular type-1 fuzzy
inference systems, Mamdani and Takagi–Sugeno–Kang (TSK). We implemented the same
XAI agent using both Mamdani and TSK inference systems to perform a fair comparison.
We then benchmarked both implementations to determine which fuzzy inference system
performs better and is computationally efficient.

The major contribution of the manuscript is as follows:

1. An XAI agent to work in a fast-paced environment using fuzzy inference systems
is designed.

2. The objective is to find a computationally efficient and feasible way to implement
these XAI agents using rule-based fuzzy systems.

3. The actions of the agents are explained in IF–ELSE statements, which are easier for an
average user to understand without any technical expertise.

4. The proposed fuzzy-inference-systems-based XAI agent achieved an accuracy of 85.45%.

This paper is organized in the following way. Section 2 provides quick background
material for the related methodologies used in this competition. Section 3 provides a step-
by-step flow of the proposed approach, which includes the components of the competition
and the utilized methodology. The results are also compiled in this section. Section 4
concludes the paper by presenting a detailed discussion of the outcomes and future works.

2. Literature Survey

There have been no past works in this area apart from the XFC competition in 2021 [8].
However, we provide a short literature study for the ready reference of the readers, which will
also help them understand the methodologies behind the approaches used in the competition.

To start with, Mendel and Bonissone [3] have discussed why rule-based fuzzy inference
systems are suitable for XAI implementation. The authors further presented a way to
explain the output of rule-based fuzzy inference systems by taking an association of
antecedents of the rule-base. They stated that triangular or trapezoidal membership
functions for rule antecedents were more suitable for XAI implementation than Gaussian
membership functions because the former partitioned the state space more unambiguously
than the latter. Hagras [2] discussed the need for XAI and the efforts that are currently
being researched to realize XAI or Whitebox/Transparent models. He also discussed the
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feasibility of using Type-1 and Type-2 fuzzy inference systems to implement XAI because a
layman user can easily understand the output of such fuzzy inference systems.

Gunning and Aha [1] discussed the DARPA’s XAI program for developing and eval-
uating a wide variety of new ML techniques. The study included deep learning models,
learning explainable features, creating more structured and interpretable models, and
model induction techniques that can infer an explainable model from any black-box model.
Chimatapu et al. [9] studied several approaches to implementing XAI and compared them
in terms of accuracy and interpretability. They also proposed an alternate method of im-
plementing XAI using fuzzy rule-based systems, which use IF–ELSE rules and are easy
to understand for an average end-user. This alternate approach allows us to create AI
systems that have a good balance between accuracy and interpretability. Ferreyra et al. [10]
proposed a concise and incremental framework for developing XAI solutions in the telecom-
munication workforce allocation domain. They used type-2 fuzzy inference systems [11] to
model the decision-making process in the workforce allocation domain, particularly for
a goal-driven solution. The framework proposed also contained an intuitive explanatory
user interface to depict the developed application’s understanding.

Potie et al. [12] performed a case study on predicting lung cancer by implementing
XAI using evolutionary fuzzy systems; it combined the good degree of understanding,
comprehensibility, and explainability associated with fuzzy rule-based systems with the
potential of evolutionary algorithms as the optimization technique for improving fuzzy
rule-based systems. Experiments done by the author have shown that evolutionary fuzzy
systems can be a very feasible solution as they achieve the highest test accuracy and the best
explainable features. Kiani et al. [13] discussed the implementation of an XAI system using
a type-2 fuzzy inference system for analyzing the fNIRS dataset to get a better insight into
how a developing child’s brain responds to different stimuli. The authors chose the type-2
fuzzy inference system because of its unique ability to model uncertainty in the input data,
which was paramount in this work. Poli et al. [14] worked on semantic image annotation
by modeling the problem as a fuzzy constraint satisfaction problem [15]. The authors also
proposed an algorithm for semantic image annotation. The XAI system they developed
also gives explanations for each annotation that, according to the survey conducted by
them, are easy for an average end-user to understand.

As for the background of the 2021 competition, there was only a single agent and no
restriction on the execution time [8]. However, in the present competition [7], we have
multiple agents, and a time limit of 0.016 s is imposed. For each execution, if the controller
takes more time than this, the controller’s output is ignored. Further, in this study, we
discuss why rule-based fuzzy inference systems are optimal for implementing explainable
AI systems.

3. Proposed Approach, Competition Scenarios, and Outcomes

This section covers the step-by-step details of the competition framework and our
(winning) proposed approach to providing an efficient solution. The following procedure
is depicted in Figure 1.

Step 1: Agent Environment

At first, we explore and analyze the agent environment to determine what inputs the
environment provides and the actions the agent is allowed to perform. We use the Python
implementation of a classic arcade game called fuzzy asteroids [16].

A two-dimensional spacecraft moves in the game environment to avoid collisions with
numerous asteroids that appear. The asteroids have different shapes, sizes, and velocities.
The spacecraft also has a weapon that can shoot straight ahead. If the projectiles emitted
reach any target asteroids, they break into smaller pieces. The smallest asteroid pieces
disappear after being hit by a bullet. The environment is 800 pixels high by 1000 pixels
wide, with object wrapping enabled on the corners, i.e., a ship or asteroid that goes out of
the game screen space will come back into it from the opposite side.
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The agent environment provides the XAI agent with information about the ship and all
the asteroids currently in the agent environment. The agent can control the ship’s velocity,
the ship’s turning speed, and the ship’s gun to fire bullets. Tables 1–3 summarize the inputs
and available actions for the XAI agent.

Table 1. Available inputs for each asteroid on the screen.

Input Name Description

position Absolute position of the asteroid on the screen in a tuple (x-coordinate,
y-coordinate).

velocity Current velocity of the asteroids in a tuple (x-velocity, y-velocity) in
meters/second.

size The size of the asteroid.
angle The angle at which the asteroid is moving.
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Table 2. Available inputs for the ship.

Input Name Description

is_respawning Boolean variable, which tells if the ship is currently spawning or not.

position The absolute position of the ship on the screen in a tuple (x-coordinate,
y-coordinate).

velocity Current velocity of the ship in a tuple (x-velocity, y-velocity) in meters/second.
angle The angle at which the ship is moving.

Table 3. Available actions XAI agent can perform to control the ship.

Action Name Description and Possible Values

thrust The XAI agent can set this variable’s value to change the ship’s acceleration
between −480 and 480 to accelerate backward or forward, respectively.

turning_rate
The XAI agent can set this variable’s value to change the ship’s turning speed
between −180.0 and 180.0 to rotate the ship anti-clockwise or
clockwise, respectively.

shoot The XAI agent can call this method to make the ship shoot a bullet.

Step 2: Agent Design and Implementation

The next step is to design the architecture of the XAI agent. The main challenge in
designing the agent architecture would be to keep the XAI core separate as an independent
module so that we can swap the fuzzy inference system XAI cores easily while performing
the required experiments. We will be working independently on designing the XAI core
and agent controller to keep these two primary components of our XAI agent independent.
We will design the XAI core for a rule-based fuzzy inference system and then implement
the XAI core using both Mamdani and TSK fuzzy inference systems. Another crucial
component is to design and implement the agent controller such that it can treat the XAI
core like an independent module. The agent controller will give specific inputs to the XAI
core and then expect a particular output from the XAI core, which it will use to make
certain decisions regarding the functioning of the XAI agent.

To simplify, the XAI agent consists of two components (see Figure 2); the first com-
ponent is the XAI agent controller, and the second component is the XAI core. The XAI
agent controller component is responsible for interfacing with the environment and making
decisions based on the outputs of the XAI core. The XAI agent controller first gets the
inputs from the agent environment and performs the required calculations. It passes the
calculated values to the XAI core and returns the output from the XAI core. Then, it decides
on the actions to take based on the result of the XAI core. In the end, it conveys the steps to
be taken by the ship to the agent environment.
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The XAI core component is responsible for calculating the asteroid favorability values.
Asteroid favorability is a numeric value assigned to each asteroid in the agent environment
to signify the importance of targeting that particular asteroid by the XAI agent controller.
The higher the asteroid’s favorability, the more critical it is to target that asteroid at that
moment. The value of asteroid favorability depends on two factors in the following order
of importance:

1. How much of a threat does the asteroid currently pose to the ship?
2. How easy is it to target that particular asteroid at this moment?

XAI Agent Controller Design

Firstly, the agent controller uses the output of the XAI core to calculate which asteroid
is currently the best target in the agent environment. The agent controller gets all the inputs
from the agent environment and calculates the three inputs (see Table 4) for the XAI core to
function. After calculating the inputs needed, the agent controller passes the information
to the XAI core to obtain asteroid favorability. The controller selects the asteroid with the
maximum favorability as the target asteroid.

Table 4. XAI core inputs.

Input Description

asteroid distance The distance between the asteroid and the ship.
asteroid size The size of the asteroid.
asteroid orientation The asteroid’s orientation relative to the ship.

Then, the agent controller divides the agent environment into three zones to decide
the agent’s behavior (see Figure 3). The first zone (depicted in red) is the threat zone; if
an asteroid is in the threat zone, the agent goes into defensive mode and tries to either
shoot down the closest asteroid or move away from the closest asteroid. The second zone
(depicted in yellow) is the targeting zone; if an asteroid is in the targeting zone, the agent
goes into attack mode, selects the best asteroid to target, and shoots it down. The third
zone (depicted in green) is the “search and destroy” zone; if an asteroid is in this zone, the
agent goes into “search and destroy” mode and moves towards the best asteroid to target
and shoots it down.

After finding out which asteroid is best to target and the behavior the agent needs to
perform, the agent controller follows Algorithm 1 to decide on what actions to perform
when the agent is in defensive mode, attacking mode, or “search and destroy” mode.

XAI Core Design and Implementation using Rule-Based Fuzzy Inference Systems

The XAI core (see Figure 4) takes three inputs, as shown in Table 4. The output of the
XAI core is the asteroid favorability value that the agent controller uses. The process of
calculating the asteroid favorability is not specified in the XAI core design, and it is decided
while implementing the XAI core. The fuzzy inference system (see Figure 5) takes three
inputs, as specified in the XAI core design. First, it fuzzifies the input values into their
respective fuzzy sets (see Table 5) and uses their respective membership functions (see
Figures 6–8).
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Algorithm 1: Decide Agent’s Action

Input: agent_mode, target_asteroid
Output: action

1 if agent_mode = defensive then
2 if agent is facing the target_asteroid then
3 action← fire bullet
4 end
5 else
6 action←move away from the target_asteroid
7 end
8 end
9 else if agent_mode = attacking then
10 if ship is facing the target_asteroid then
11 action← fire bullet
12 end
13 else
14 action← turn towards the target_asteroid
15 end
16 end
17 else if agent_mode = search and destroy then
18 if ship is facing the target_asteroid then
19 action←move towards the target_asteroid
20 end
21 else
22 action← turn towards the target_asteroid
23 end
24 end
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Trapezoidal and triangular (a special case of trapezoidal membership function) func-
tions have been widely used in the literature for XAI implementation. They partition
the state space more unambiguously than any other membership function [6]. Therefore,
for our current implementation, we have used triangular membership functions. After
conducting several experiments empirically, we identified the following rule-base to be the
most efficient for our XAI core implementation using rule-based fuzzy inference systems.

1. IF (asteroid_size IS small) THEN (favorability IS high)
2. IF (asteroid_size IS medium) THEN (favorability IS medium)
3. IF (asteroid_size IS large) THEN (favorability IS low)
4. IF (asteroid_orientation IS insight) THEN (favorability IS high)
5. IF (asteroid_orientation IS normal) THEN (favorability IS medium)
6. IF (asteroid_orientation IS outofsight) THEN (favorability IS low)
7. IF (asteroid_distance IS near) THEN (favorability IS high)
8. IF (asteroid_distance IS close) THEN (favorability IS medium)
9. IF (asteroi_distance IS far) THEN (favorability IS low).

The first three rules are for asteroid size. If we hit a giant asteroid, it will split into
multiple asteroids, increasing the number of asteroids in the agent environment. When the
number of asteroids increases in the agent environment, the agent takes more time for its
execution, reducing our computational performance. Hence, it is better to favor the smaller
asteroids first and the large asteroids last.

The following three rules deal with asteroid orientation relative to the ship, i.e., how
much we need to rotate our ship to face the ship’s gun towards the asteroid. Therefore, it
makes sense to favor the asteroid that is in sight (requires less rotation) first and the one
that is out of sight (requires more rotation) last.
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The last three rules deal with the asteroid’s distance from the ship. An asteroid near
the ship poses a more significant threat than one that is far away; therefore, it makes sense
to favor the asteroid that is near first and the asteroid that is far last.

The fuzzy inference system calculates the asteroid favorability output by applying the
fuzzy rule base to the input values. The output values are different for Mamdani and TSK
inference systems. In Mamdani, the output is a fuzzy variable with defined membership
functions (see Figure 9); in TSK, the output values are real numbers, as defined in Table 6.
The Mamdani output calculation requires defuzzification on the fuzzy output value to
get a real value. We use the center of area defuzzification method to get a concrete value
between 1 and 10 for asteroid favorability. In the case of TSK, we calculate the output by
taking a weighted average of the consequent of each rule, which is a real value by default;
hence, no defuzzification is required.
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Table 6. Asteroid favorability output for Mamdani and TSK inference systems.

Asteroid Favorability Mamdani Output Fuzzy Set TSK Output Value

Low Triangular function (1, 1, 5) 1
Medium Triangular function (1, 5, 10) 5
High Triangular function (5, 10, 10) 10

Step 3: Benchmarking FIS’s core performance

For the next step, we will benchmark the performance of the Mamdani and TSK
XAI cores independent of the agent controller to find empirical evidence of which imple-
mentation is more computationally efficient for such implementations using Algorithm 2.
Figure 10 shows the benchmark result, and clearly, TSK outperforms Mamdani in terms of
execution time.
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Algorithm 2: XAI Core Execution Time Benchmark

Input: xai_core, N
Output: execution_time_metrics

1 i← 1
2 execution_time_metrics← new array()
3 while i < N do
4 xai_core_input_vector← generate_random_inputs(i)
5 t1← time.now()
6 result← xai_core.evaluate(xai_core_input_vector)
7 evaluation_time← time.now() − t1
8 execution_time_metrics.append((i, evaluation_time))
9 end
10 return execution_time_metrics

Algorithm 3: XAI Core Noise Benchmark

Input: xai_core, N
Output: noisy_metrics

1 variances← [0.00001, 0.0001, 0.001, 0.01, 0.1, 1]
2 noisy_metrics← new array()
3 for variance in variances do
4 xai_core_input_vector← generate_random_inputs(N)
5 original_outputs← xai_core.evaluate(xai_core_input_vector)
6 noise← generate_random_noise(mean = 0, variance = variance, shape =
xai_core_input_vector.shape)
7 noisy_input_vector← xai_core_input_vector + noise
8 noisy_outputs← xai_core.evaluate(noisy_input_vector)
9 mean_squared_error←
calculate_mean_squared_error(original_outputs, noisy_outputs)
10 noisy_metrics.append(variance, mean_squared_error)
11 end
12 return noisy_metrics
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Step 4: Integrate Agent XAI core and controller and benchmarking

In the next step, we will integrate the XAI core and agent controller such that the
XAI cores are easily swappable for easy experimentation. We will then run benchmarks to
evaluate agent performance for Mamdani and TSK implementations of XAI cores using
Algorithm 3.

This benchmark was to identify which fuzzy inference system performs better when
there is noise in the input data. Figure 11 shows the benchmark results, and here, both
Mamdani and TSK fuzzy inference system XAI core implementations have a mean squared
error of less than 10−1. However, when the variance reaches 1, TSK output values changes
by a significant factor, showing that TSK is sensitive when the input values are out of the
noisy range. It depicts an actual change in the input values, which is a good thing for us
as the change of 1 in the asteroid size input should be able to create a big difference in
favorability value.

Axioms 2022, 11, x FOR PEER REVIEW 12 of 15 
 

 

Figure 11. Mamdani vs. TSK noise benchmark. 

We wanted to benchmark the agent’s performance in the environment after integrat-

ing the XAI core implemented using rule-based fuzzy inference systems with the agent 

controller. We benchmarked the agent’s performance using Algorithm 4 with both TSK 

and Mamdani XAI core implementations. The metrics obtained by this benchmark are 

summarized in Table 7. Clearly, in this benchmark, the TSK fuzzy-inference-system-based 

XAI core implementation outperforms the Mamdani fuzzy-inference-system-based XAI 

core implementation. 

Algorithm 4: XAI Agent Benchmark using a given XAI core 

Input: xai_core 

Output: agent_performance_metrics 

1 scores ← new array() 

2 scenarios ← get_predefined_scenarios() 

3 N ← scenarios.length 

4 execution_time_metrics ← new array() 

5 xai_agent ← new agent(core = xai_core) 

6 for i ← 0, i < N, i + + do 

7  environment ← new environment(scenario = scenarios[i], agent = xai_agent) 

8  agent_score ← environment.run() 

9  scores.append(agent_score) 

10 end 

11 agent_performance_metrics ← summarize_scores(scores) 

12 return agent_performance_metrics 

Table 7. Mamdani vs. TSK agent performance. 

Performance Metric 
Mamdani-Based  

XAI Agent 
TSK-Based XAI Agent 

Number of deaths 76 43 

Number of asteroids destroyed 227 8427 

Number of bullets fired 322 110313 

Average accuracy 57.27% 85.45% 

Average execution time 0.0510 s 0.0016 s 

Figure 11. Mamdani vs. TSK noise benchmark.

We wanted to benchmark the agent’s performance in the environment after integrat-
ing the XAI core implemented using rule-based fuzzy inference systems with the agent
controller. We benchmarked the agent’s performance using Algorithm 4 with both TSK
and Mamdani XAI core implementations. The metrics obtained by this benchmark are
summarized in Table 7. Clearly, in this benchmark, the TSK fuzzy-inference-system-based
XAI core implementation outperforms the Mamdani fuzzy-inference-system-based XAI
core implementation.

Table 7. Mamdani vs. TSK agent performance.

Performance Metric Mamdani-Based
XAI Agent TSK-Based XAI Agent

Number of deaths 76 43
Number of asteroids
destroyed 227 8427

Number of bullets fired 322 110,313
Average accuracy 57.27% 85.45%
Average execution time 0.0510 s 0.0016 s
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Algorithm 4: XAI Agent Benchmark using a given XAI core

Input: xai_core
Output: agent_performance_metrics

1 scores← new array()
2 scenarios← get_predefined_scenarios()
3 N← scenarios.length
4 execution_time_metrics← new array()
5 xai_agent← new agent(core = xai_core)
6 for i← 0, i < N, i + + do
7 environment← new environment(scenario = scenarios[i], agent = xai_agent)
8 agent_score← environment.run()
9 scores.append(agent_score)
10 end
11 agent_performance_metrics← summarize_scores(scores)
12 return agent_performance_metrics

Based on our results and game performance, the proposed approach has been awarded
the most computationally efficient and explainable solution in the XFC 2022 competition.
The results of the competition were presented at the 2022 North American Fuzzy Informa-
tion Processing Society Conference [17]. The results are available to the readers online [18].

4. Discussion, Conclusion, and Future Work

In this work, we have designed an XAI agent to work in a fast-paced environment
using both Mamdani and TSK fuzzy inference systems at its XAI core to prove the feasibility
of using rule-based fuzzy systems for XAI agent implementations. We further conducted
experiments to gather empirical evidence to determine which type-1 fuzzy inference system
performs better in a fast-paced environment. The Mamdani fuzzy inference system output
calculation process contains an extra step for the defuzzification of the output values from
the fuzzy output. The defuzzification process includes complex mathematical operations
and is very time-consuming even for computers to perform. In the TSK output calculation
process, there is no need for the defuzzification step, which gives an edge to TSK in terms
of computational efficiency. Due to this extra edge in computational efficiency, the TSK-
based XAI core implementation performs marginally better than the Mamdani-based XAI
core implementation.

For each execution during the gameplay, the XAI agent outputs timestamped explana-
tions for the action it chooses (see Figure 12). The output of the XAI core is the favorability
value governed by the set of rules currently being applied for the calculations. In Figure 12,
we can see the applicability or firing rate of each rule currently applicable in calculating the
favorability value. For example, consider the output “Targeting asteroid at (752.34, 486.60)
because of rules: [‘Rule 1’: 1.0, ‘Rule 4’: 0.48, ‘Rule 8’: 0.86, ‘Rule 9’: 0.14]”. Here, this output
tells us that Rule 1 was 100% applicable, Rule 4 was 0.48% applicable, Rule 8 was 86%
applicable, and Rule 9 was 14% applicable. Now, cross-referring the rule-base in Section 3,
we can understand the decision taken by the XAI module to target this asteroid. With
the timestamped recording of the gameplay and these timestamped explanations, anyone
can analyze the explanations and find out exactly why the agent decided to act at any
given time. The explanation behind choosing a target asteroid is explained in terms of the
applicability of each rule from the fuzzy rule base, which is just a set of IF–ELSE statements
and is easy for an average user to understand without any technical expertise required.
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Further, the experiments showed that the TSK-based XAI agent performed 30 times
better than the Mamdani-based XAI agent in computational efficiency. Regarding the
agent’s performance, the TSK-based XAI agent had an accuracy of 85.45%, while the
Mamdani-based XAI agent had an accuracy of 57.27%. The number of deaths for the TSK-
based XAI agent was 43. In contrast, the Mamdani-based XAI agent died 75 times. The TSK-
based XAI agent was able to destroy 8427 asteroids, while the Mamdani-based XAI agent
could only destroy 227 asteroids. The empirical evidence that we have gathered shows that
it is better to use TSK fuzzy inference systems for rule-based XAI core implementations
whenever the XAI application requires time-critical execution and better performance
simultaneously. We further show that the actions taken by the XAI agent using a rule-based
fuzzy inference system at its XAI core implementation could easily be explained in plain
English using IF–ELSE rules. It is easier for an average user to understand without any
technical expertise as a prerequisite.

This work faced several challenges that are to be considered during implementation.
One of the major challenges was writing efficient code so that it would not become a
bottleneck for the XAI system. Further, it was essential to design the XAI module flexibly so
that we could plug and play different implementations of the XAI and perform benchmarks
on them. In addition, it was also challenging to maintain consistency between the interface
of the XAI module and the rest of the controller so that XAI implementations would follow
the guidelines for the interface.

To conclude, this work helps those new to explainable AI and fuzzy inference systems
to understand the concepts in a fun, hands-on learning manner. Further, the experimental
approach that we have used can be used as a baseline to compare the efficiency and
performance of various XAI agent implementations and find empirical evidence of which
XAI implementation performs better.

In this research work (based on competition), we have only explored rule-based fuzzy
inference system XAI core implementations. However, the proposed experimental approach
and benchmarking algorithms can be used to perform experiments to compare rule-based
fuzzy inference system XAI core implementations with any other XAI core implementation
to find out which implementation is best in terms of performance and explainability.

In the outcome of this study, the XAI explanations are only text-based. These expla-
nations can be extended further to show visual explanations in real-time for the agent’s
actions, which will further add to the explainability of the agent as visual explanations are
much easier to analyze than textual explanations for an average human being.
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