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Abstract: In this paper, the author considers twisted q-analogues of Catalan-Daehee numbers and
polynomials by using p-adic q-integral on Zp. We derive some explicit identities for those twisted
numbers and polynomials related to various special numbers and polynomials.
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp,Qp and Cp we denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
algebraic closure of Qp. The p-adic norm | · |p is normally defined |p|p = 1

p . Let q be an

indeterminate in Cp with |1− q|p < p−
1

p−1 . The q-analogue of x is defined by [x]q =
1− qx

1− q
.

Note that lim
q→1

[x]q = x.

Let f (x) be a uniformly differentiable function on Zp. Then the p-adic q-integral on
Zp is defined by [1–3]

∫
Zp

f (x)dµq(x) = lim
N→∞

pN−1

∑
x=0

f (x)µq(x + pNZp)

= lim
N→∞

1
[pN ]q

pN−1

∑
x=0

f (x)qx.

(1)

From (1), we have

q
∫
Zp

f (x + 1)dµq(x) =
∫
Zp

f (x)dµq(x) + (q− 1) f (0) +
q− 1
log q

f ′(0), (2)

where f ′(0) = d f (x)
d

∣∣
x=0.

For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp =
⋃

n≥1

Cpn = lim
n→∞

Cpn ,

where Cpn = {w|wpn
= 1} is the cyclic group of order pn.

For w ∈ Tp, let us take f (x) = wxext. Then, by (1), we get

(q− 1) + q−1
log q t

wqet − 1
=
∫
Zp

wxextdµq(x) (3)
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Thus, by (3), we define the twisted q-Bernoulli numbers which are given by the
generating function to be

(q− 1) + q−1
log q t

qwet − 1
=

∞

∑
n=0

Bn,q,w
tn

n!
. (4)

From (4), we note that

qw(Bq,w + 1)n − Bn,q,w =


q− 1, if n = 0
q− 1
log q

if n = 1,

0 if n ≥ 1,

with the usual convention about replacing Bn
q,w by Bn,q,w.

From (2) and (4), we have

∞

∑
n=0

∫
Zp

wxxndµq(x)
tn

n!
=
∫
Zp

wxextdµq(x)

=
(q− 1) + q−1

log q t

wqet − 1
=

∞

∑
n=0

Bn,q,w
tn

n!
.

(5)

Thus, by (5), we get ∫
Zp

wxxndµq(x) = Bn,q,w, (n ≥ 0). (6)

For |t|p < p−
1

p−1 , the twisted (λ, q)-Daehee polynomials are defined by generating
function to be (cf. [4])

∞

∑
n=0

Dn,q,w(x|λ) tn

n!
=

2(q− 1) + λ
q−1
log q log(1 + t)

wq2(1 + t)λ − 1
(1 + t)λx. (7)

When x = 0, Dn,q,w(λ) = Dn,q,w(0|λ) are called the twisted (λ, q)-Daehee numbers. In
particular,

D0,q,w(1) =
2(q− 1)
wq2 − 1

.

The twisted Catalan-Daehee numbers are defined by [5]

1
2 log(1− 4t)

w
√

1− 4t− 1
=

∞

∑
n=0

dn,wtn. (8)

If we take w = 1 in the twisted Catalan-Daehee numbers, dn = dn,1, are the Catalan-Daehee
numbers in [6–8].

We note that

√
1 + t =

∞

∑
m=0

(−1)m−1
(

2m
m

)(
1
4

)m( 1
2m− 1

)
tm. (9)

By replacing t by −4t in (9), we get

√
1− 4t = 1− 2

∞

∑
m=0

(
2m
m

)
1

m + 1
tm+1 = 1− 2

∞

∑
m=0

Cmtm+1, (10)

where Cm is the Catalan number.



Axioms 2022, 11, 9 3 of 7

From (8) and (10), Dolgy et al. showed a relation between the Catalan-Daehee numbers
and the Catalan numbers in [6];

dn =


1, if n = 0

4n

n + 1
−

n−1

∑
m=0

4n−m−1

n−m
Cm, if n ≥ 1.

Catalan-Daehee numbers and polynomials were introduced in [7] and considered the
family of linear differential equations arising from the generating function of those numbers
in order to derive some explicit identities involving Catalan-Daehee numbers and Catalan
numbers. In [8], several properties and identities associated with Catalan-Daehee numbers
and polynomials were derived by utilizing umbral calculus techniques. Dolgy et al. gave
some new identities for those numbers and polynomials derived from p-adic Volkenborn
integrals on Zp in [6]. Recently, Ma et al. introduced and studied q-analogues of the Catalan-
Daehee numbers and polynomials with the help of p-adic q-integral on Zp in [9]. The aim
of this paper is to introduce q-analogues of the twisted Catalan-Daehee numbers and
polynomials by using p-adic q-integral on Zp, and derive some explicit identities for those
twisted numbers and polynomials related to various special numbers and polynomials.

2. The Twisted Q-Analogues of Catalan-Daehee Numbers

For t ∈ Cp with |t|p < p−
1

p−1 and for w ∈ Tp, we have

∫
Zp

wx(1− 4t)
x
2 dµq(x) =

q− 1 + q−1
log q

1
2 log(1− 4t)

qw
√

1− 4t− 1
. (11)

In the view of (11), we define the twisted q-analogue of Catalan-Daehee numbers which
are given by the generating function to be

q− 1 + q−1
log q

1
2 log(1− 4t)

qw
√

1− 4t− 1
=

∞

∑
n=0

dn,q,wtn. (12)

Note that lim
q→1

dn,q,w = dn,w, (n ≥ 0), which is the twisted Catalan-Daehee numbers in [5].

From (7) and (12), we have

∞

∑
n=0

dn,q,wtn =
1
2

(2(q− 1) + q−1
log q log(1− 4t)

w2q2(1− 4t)− 1

)(
qw
√

1− 4t + 1
)

=
1
2

( ∞

∑
l=0

4l Dl,q,w2(1)
(−t)l

l!

)(
1 + qw− 2qw

∞

∑
m=0

Cmtm+1
)

=
1 + qw

2

∞

∑
n=0

(−4)n Dn,q,w(1)
n!

tn − qw
∞

∑
n=1

( n−1

∑
m=0

(−4)n−m−1

(n−m− 1)!
Dn−m−1,q,w2(1)Cm

)
tn

=
q2 − 1

wq2 − 1
+

∞

∑
n=0

[2]qw

2
(−4)n Dn,q,w(1)

n!
tn − qw

∞

∑
n=1

( n−1

∑
m=0

(−4)n−m−1

(n−m− 1)!
Dn−m−1,q,w2(1)Cm

)
tn

=
q2 − 1

wq2 − 1
+

∞

∑
n=1

(
[2]qw

2
(−4)n

n!
Dn,q,w2(1)− qw

n−1

∑
m=0

(−4)n−m−1

(n−m− 1)!
Dn−m−1,q,w2(1)Cm

)
tn.

(13)

Therefore, by comparing the coefficients on the both sides of (13), we obtain the following
theorem.
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Theorem 1. For n ≥ 0 and w ∈ Tp, we have

dn,q,w =


q2 − 1

wq2 − 1
, if n = 0,

1 + qw
2

(−4)n

n!
Dn,q,w2(1)− qw

n−1

∑
m=0

(−4)n−m−1

(n−m− 1)!
22n−2m−1Dn−m−1,q,w2(1)Cm, if n ≥ 1.

Specially, w = 1 and q→ 1, we have

Corollary 1 (Theorem 1, [6]). For n ≥ 0, we have

dn =


1, if n = 0,

(−4)n Dn(1)
n!

−
n−1

∑
m=0

(−4)n−m−1

(n−m− 1)!
22n−2m−1Dn−m−1(1)Cm, if n ≥ 1.

Now, from (6) and (12), we observe that

∞

∑
n=0

dn,q,wtn =
q− 1 + q−1

log q
1
2 log(1− 4t)

qw
√

1− 4t− 1
=
∫
Zp

wx(1− 4t)
x
2 dµq(x)

=
∞

∑
m=0

(
1
2

)m 1
m!
(

log(1− 4t)
)m
∫
Zp

wxxmdµq(x)

=
∞

∑
m=0

(
1
2

)m

Bm,q,w

∞

∑
n=m

S1(n, m)
1
n!
(−4t)n

=
∞

∑
n=0

( n

∑
m=0

22n−m(−1)nBm,q,wS1(n, m)

)
tn

n!
,

(14)

where S1(n, m), (n, m ≥ 0) is the Stirling number of the first kind which is defined by [1–20]

(x)n =
n

∑
l=0

S1(n, l)xl , (n ≥ 0).

Here, (x)0 = 1, (x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1).
Therefore, by (14), we obtain the following theorem.

Theorem 2. For n ≥ 0 and w ∈ Tp, we have

(−1)ndn,q,w =
1
n!

n

∑
m=0

22n−mBm,q,wS1(n, m).

By binomial expansion, we get

∫
Zp

wx(1− 4t)
x
2 dµq(x) =

∞

∑
n=0

(−4)n
∫
Zp

wx
( x

2
n

)
dµq(x)tn. (15)

From (12) and (15), we obtain the following corollary.

Corollary 2. For n ≥ 0 and w ∈ Tp, we have

∫
Zp

wx
( x

2
n

)
dµq(x) = (−1)n2−2ndn,q,w =

1
n!

n

∑
m=0

(
1
2

)m

Bm,q,wS1(n, m).

For the case w = 1 and q→ 1, we have the following.
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Corollary 3 (Theorem 2, [6]). For n ≥ 0, we have

(−1)ndn =
1
n!

n

∑
m=0

22n−mBmS1(n, m).

The twisted q-analogue of λ-Daehee polynomials are given by the p-adic q-integral on
Zp to be ∫

Zp
wy(1 + t)λy+xdµq(y) =

(q− 1) + λ
q−1
log q log(1 + t)

qw(1 + t)λ − 1
(1 + t)x

=
∞

∑
n=0

D̃n,q,w(x|λ) tn

n!
.

(16)

When x = 0, D̃n,q,w(λ) = D̃n,q,w(0|λ) (n ≥ 0) are called the twisted q-analogue of λ-Daehee
numbers. Note that

D̃0,q,w(λ) =
q− 1

wq− 1
.

From (16), we note that

∞

∑
n=0

(−1)n4nD̃n,q,w

(
1
2

)
tn

n!
=

q− 1 + 1
2

q−1
log q log(1− 4t)

qw(1− 4t)
1
2 − 1

=
∞

∑
n=0

dn,q,wtn.

(17)

Thus, by (17), we get

dn,q,w = (−1)n 4n

n!
D̃n,q,w

(
1
2

)
, (n ≥ 0).

Let us take t = 1
4 (1− e2t) in (12). Then we have

∞

∑
k=0

dk,q,w

(
1
4

)k

(1− e2t)k =
q− 1 + q−1

log q t

qwet − 1
=
∫
Zp

wxextdµq(x)

=
∞

∑
n=0

Bn,q,w
tn

n!
.

(18)

On the other hand,

∞

∑
k=0

dk,q,w(−1)k
(

1
4

)k

(e2t − 1)k =
∞

∑
k=0

(−1)kk!dk,q,w

(
1
4

)k 1
k!
(
e2t − 1

)k

=
∞

∑
k=0

(−1)kk!dk,q,w2−2k
∞

∑
n=k

S2(n, k)2n tn

n!

=
∞

∑
n=0

( n

∑
k=0

(−1)kk!dk,q,w2n−2kS2(n, k)
)

tn

n!
,

(19)

where S2(n, k) (n, k ≥ 0) is the Stirling number of the second kind which is defined by

xn =
n

∑
l=0

S2(n, l)(x)l , (n ≥ 0).

Therefore, by (18) and (19), we obtain the following theorem.
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Theorem 3. For n ≥ 0, we have

Bn,q,w =
n

∑
k=0

(−1)kS2(n, k)2n−2kk!dk,q,w.

Now, we observe that

∫
Zp

wy(1− 4t)
x+y

2 dµq(y) =
(q− 1) + q−1

log q
1
2 log(1− 4t)

wq
√

1− 4t− 1
(1− 4t)

x
2 .

We define the twisted Catalan-Daehee polynomials which are given by the generating
function to be

q− 1 + q−1
log q

1
2 log(1− 4t)

qw
√

1− 4t− 1
(1− 4t)

x
2 =

∞

∑
n=0

dn,q,w(x)tn. (20)

When x = 0, dn,q,w = dn,q,w(0) (n ≥ 0) are the twisted Catalan-Daehee numbers in (12).
Note that

(1− 4t)
x
2 =

∞

∑
l=0

(
x
2

)l 1
l!
(

log(1− 4t)
)l

=
∞

∑
l=0

(
x
2

)l ∞

∑
m=l

S1(m, l)(−4)m tm

m!

=
∞

∑
m=0

( m

∑
l=0

S1(m, l)
(−4)m

m!

(
x
2

)l)
tm.

(21)

Thus, by (12), (20) and (21), we get

∞

∑
n=0

dn,q,w(x)tn =
q− 1 + q−1

log q
1
2 log(1− 4t)

qw
√

1− 4t− 1
(1− 4t)

x
2

=

( ∞

∑
k=0

dk,q,w
tk

k!

)( ∞

∑
m=0

m

∑
l=0

S1(m, l)
(−4)m

m!

(
x
2

)l)
tm

=
∞

∑
n=0

( n

∑
m=0

m

∑
l=0

S1(m, l)
(−4)m

m!
dn−m,q,w

(
x
2

)l)
tn.

(22)

By comparing the coefficients on the both sides (22), we obtain the following theorem.

Theorem 4. For n ≥ 0, we have

dn,q,w(x) =
n

∑
m=0

m

∑
l=0

S1(m, l)(−1)m 22m−l

m!
dn−m,q,wxl

=
n

∑
l=0

( n

∑
m=l

(−1)m 22m−l

m!
S1(m, l)dn−m,q,w

)
xl .

For the case w = 1 and q→ 1, we have the following.

Corollary 4 (Theorem 5, [6]). For n ≥ 0, we have

dn(x) =
n

∑
l=0

(
n

∑
m=l

(−1)m 22m−l

m!
S1(m, l)dn−m

)
xl .

3. Conclusions

To summarize, we introduced twisted q-analogues of Catalan-Daehee numbers and
polynomials and obtained several explicit expressions and identities related to them. We
expressed the twisted q-analogues of Catalan-Daehee numbers in terms of the twisted
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(λ, q)-Daehee numbers, and of the twisted q-Bernoulli numbers and Stirling numbers of
the first kind in Theorems 1 and 2. We also derived an identity involving the twisted q-
Bernoulli numbers, twisted q-analogues of Catalan-Daehee numbers and Stirling numbers
of the second kind in Theorem 3. In addition, we obtain an explicit expression for the
twisted q-analogues of Catalan-Daehee polynomials which involve the twisted q-analogues
of Catalan-Daehee numbers and Stirling numbers of the first kind in Theorem 4.

In recent years, many special numbers and polynomials have been studied by em-
ploying various methods, including: generating functions, p-adic analysis, combinatorial
methods, umbral calculus, differential equations, probability theory and analytic number
theory. We are now interested in continuing our research into the application of ‘twisted’
and ‘q-analogue’ versions of certain interesting special polynomials and numbers in the
fields of physics, science, and engineering as well as mathematics.
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