Article

Some Identities on the Twisted q-Analogues of Catalan-Daehee Numbers and Polynomials

Dongkyu Lim (1)

check for updates
Citation: Lim, D. Some Identities on the Twisted q-Analogues of Catalan-Daehee Numbers and Polynomials. Axioms 2022, 11, 9. https:/ /doi.org/10.3390/ axioms11010009

Academic Editor: Serkan Araci

Received: 29 November 2021
Accepted: 20 December 2021
Published: 23 December 2021
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics Education, Andong National University, Andong 36729, Korea; dklim@anu.ac.kr

Abstract

In this paper, the author considers twisted q-analogues of Catalan-Daehee numbers and polynomials by using p-adic q-integral on \mathbb{Z}_{p}. We derive some explicit identities for those twisted numbers and polynomials related to various special numbers and polynomials.

Keywords: q-analogue of Catalan-Daehee numbers; q-analogue of Catalan-Daehee polynomials; p-adic q-integral on \mathbb{Z}_{p}; twisted q-analogue of Catalan-Daehee numbers; twisted q-analogue of Catalan-Daehee polynomials

MSC: 11B68; 11B83; 11S80

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} we denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_{p}. The p-adic norm $|\cdot|_{p}$ is normally defined $|p|_{p}=\frac{1}{p}$. Let q be an indeterminate in \mathbb{C}_{p} with $|1-q|_{p}<p^{-\frac{1}{p-1}}$. The q-analogue of x is defined by $[x]_{q}=\frac{1-q^{x}}{1-q}$. Note that $\lim _{q \rightarrow 1}[x]_{q}=x$.

Let $f(x)$ be a uniformly differentiable function on \mathbb{Z}_{p}. Then the p-adic q-integral on \mathbb{Z}_{p} is defined by [1-3]

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x) & =\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x) \mu_{q}\left(x+p^{N} \mathbb{Z}_{p}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x} . \tag{1}
\end{align*}
$$

From (1), we have

$$
\begin{equation*}
q \int_{\mathbb{Z}_{p}} f(x+1) d \mu_{q}(x)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)+(q-1) f(0)+\frac{q-1}{\log q} f^{\prime}(0) \tag{2}
\end{equation*}
$$

where $f^{\prime}(0)=\left.\frac{d f(x)}{d}\right|_{x=0}$.
For $n \in \mathbb{N}$, let T_{p} be the p-adic locally constant space defined by

$$
T_{p}=\bigcup_{n \geq 1} C_{p^{n}}=\lim _{n \rightarrow \infty} C_{p^{n}}
$$

where $C_{p^{n}}=\left\{w \mid w^{p^{n}}=1\right\}$ is the cyclic group of order p^{n}.
For $w \in T_{p}$, let us take $f(x)=w^{x} e^{x t}$. Then, by (1), we get

$$
\begin{equation*}
\frac{(q-1)+\frac{q-1}{\log q} t}{w q e^{t}-1}=\int_{\mathbb{Z}_{p}} w^{x} e^{x t} d \mu_{q}(x) \tag{3}
\end{equation*}
$$

Thus, by (3), we define the twisted q-Bernoulli numbers which are given by the generating function to be

$$
\begin{equation*}
\frac{(q-1)+\frac{q-1}{\log q} t}{q w e^{t}-1}=\sum_{n=0}^{\infty} B_{n, q, w} \frac{t^{n}}{n!} . \tag{4}
\end{equation*}
$$

From (4), we note that

$$
q w\left(B_{q, w}+1\right)^{n}-B_{n, q, w}=\left\{\begin{array}{cl}
q-1, & \text { if } n=0 \\
\frac{q-1}{\log q} & \text { if } n=1 \\
0 & \text { if } n \geq 1
\end{array}\right.
$$

with the usual convention about replacing $B_{q, w}^{n}$ by $B_{n, q, w}$.
From (2) and (4), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}} w^{x} x^{n} d \mu_{q}(x) \frac{t^{n}}{n!} & =\int_{\mathbb{Z}_{p}} w^{x} e^{x t} d \mu_{q}(x) \\
& =\frac{(q-1)+\frac{q-1}{\log q} t}{w q e^{t}-1}=\sum_{n=0}^{\infty} B_{n, q, w} \frac{t^{n}}{n!} \tag{5}
\end{align*}
$$

Thus, by (5), we get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} w^{x} x^{n} d \mu_{q}(x)=B_{n, q, w}, \quad(n \geq 0) . \tag{6}
\end{equation*}
$$

For $|t|_{p}<p^{-\frac{1}{p-1}}$, the twisted (λ, q)-Daehee polynomials are defined by generating function to be (cf. [4])

$$
\begin{equation*}
\sum_{n=0}^{\infty} D_{n, q, w}(x \mid \lambda) \frac{t^{n}}{n!}=\frac{2(q-1)+\lambda \frac{q-1}{\log q} \log (1+t)}{w q^{2}(1+t)^{\lambda}-1}(1+t)^{\lambda x} \tag{7}
\end{equation*}
$$

When $x=0, D_{n, q, w}(\lambda)=D_{n, q, w}(0 \mid \lambda)$ are called the twisted (λ, q)-Daehee numbers. In particular,

$$
D_{0, q, w}(1)=\frac{2(q-1)}{w q^{2}-1}
$$

The twisted Catalan-Daehee numbers are defined by [5]

$$
\begin{equation*}
\frac{\frac{1}{2} \log (1-4 t)}{w \sqrt{1-4 t}-1}=\sum_{n=0}^{\infty} d_{n, w} t^{n} \tag{8}
\end{equation*}
$$

If we take $w=1$ in the twisted Catalan-Daehee numbers, $d_{n}=d_{n, 1}$, are the Catalan-Daehee numbers in [6-8].

We note that

$$
\begin{equation*}
\sqrt{1+t}=\sum_{m=0}^{\infty}(-1)^{m-1}\binom{2 m}{m}\left(\frac{1}{4}\right)^{m}\left(\frac{1}{2 m-1}\right) t^{m} \tag{9}
\end{equation*}
$$

By replacing t by $-4 t$ in (9), we get

$$
\begin{equation*}
\sqrt{1-4 t}=1-2 \sum_{m=0}^{\infty}\binom{2 m}{m} \frac{1}{m+1} t^{m+1}=1-2 \sum_{m=0}^{\infty} C_{m} t^{m+1} \tag{10}
\end{equation*}
$$

where C_{m} is the Catalan number.

From (8) and (10), Dolgy et al. showed a relation between the Catalan-Daehee numbers and the Catalan numbers in [6];

$$
d_{n}=\left\{\begin{array}{cl}
1, & \text { if } n=0 \\
\frac{4^{n}}{n+1}-\sum_{m=0}^{n-1} \frac{4^{n-m-1}}{n-m} C_{m}, & \text { if } n \geq 1
\end{array}\right.
$$

Catalan-Daehee numbers and polynomials were introduced in [7] and considered the family of linear differential equations arising from the generating function of those numbers in order to derive some explicit identities involving Catalan-Daehee numbers and Catalan numbers. In [8], several properties and identities associated with Catalan-Daehee numbers and polynomials were derived by utilizing umbral calculus techniques. Dolgy et al. gave some new identities for those numbers and polynomials derived from p-adic Volkenborn integrals on \mathbb{Z}_{p} in [6]. Recently, Ma et al. introduced and studied q-analogues of the CatalanDaehee numbers and polynomials with the help of p-adic q-integral on \mathbb{Z}_{p} in [9]. The aim of this paper is to introduce q-analogues of the twisted Catalan-Daehee numbers and polynomials by using p-adic q-integral on \mathbb{Z}_{p}, and derive some explicit identities for those twisted numbers and polynomials related to various special numbers and polynomials.

2. The Twisted Q-Analogues of Catalan-Daehee Numbers

For $t \in \mathbb{C}_{p}$ with $|t|_{p}<p^{-\frac{1}{p-1}}$ and for $w \in T_{p}$, we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} w^{x}(1-4 t)^{\frac{x}{2}} d \mu_{q}(x)=\frac{q-1+\frac{q-1}{\log q} \frac{1}{2} \log (1-4 t)}{q w \sqrt{1-4 t}-1} \tag{11}
\end{equation*}
$$

In the view of (11), we define the twisted q-analogue of Catalan-Daehee numbers which are given by the generating function to be

$$
\begin{equation*}
\frac{q-1+\frac{q-1}{\log q} \frac{1}{2} \log (1-4 t)}{q w \sqrt{1-4 t}-1}=\sum_{n=0}^{\infty} d_{n, q, w} t^{n} . \tag{12}
\end{equation*}
$$

Note that $\lim _{q \rightarrow 1} d_{n, q, w}=d_{n, w},(n \geq 0)$, which is the twisted Catalan-Daehee numbers in [5].
From (7) and (12), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} d_{n, q, w} t^{n} & =\frac{1}{2}\left(\frac{2(q-1)+\frac{q-1}{\log q} \log (1-4 t)}{w^{2} q^{2}(1-4 t)-1}\right)(q w \sqrt{1-4 t}+1) \\
& =\frac{1}{2}\left(\sum_{l=0}^{\infty} 4^{l} D_{l, q, w^{2}}(1) \frac{(-t)^{l}}{l!}\right)\left(1+q w-2 q w \sum_{m=0}^{\infty} C_{m} t^{m+1}\right) \\
& =\frac{1+q w}{2} \sum_{n=0}^{\infty}(-4)^{n} \frac{D_{n, q, w}(1)}{n!} t^{n}-q w \sum_{n=1}^{\infty}\left(\sum_{m=0}^{n-1} \frac{(-4)^{n-m-1}}{(n-m-1)!} D_{n-m-1, q, w^{2}}(1) C_{m}\right) t^{n} \tag{13}\\
& =\frac{q^{2}-1}{w q^{2}-1}+\sum_{n=0}^{\infty} \frac{[2]_{q w}}{2}(-4)^{n} \frac{D_{n, q, w}(1)}{n!} t^{n}-q w \sum_{n=1}^{\infty}\left(\sum_{m=0}^{n-1} \frac{(-4)^{n-m-1}}{(n-m-1)!} D_{n-m-1, q, w^{2}}(1) C_{m}\right) t^{n} \\
& =\frac{q^{2}-1}{w q^{2}-1}+\sum_{n=1}^{\infty}\left(\frac{[2]_{q w}}{2} \frac{(-4)^{n}}{n!} D_{n, q, w^{2}}(1)-q w \sum_{m=0}^{n-1} \frac{(-4)^{n-m-1}}{(n-m-1)!} D_{n-m-1, q, w^{2}}(1) C_{m}\right) t^{n}
\end{align*}
$$

Therefore, by comparing the coefficients on the both sides of (13), we obtain the following theorem.

Theorem 1. For $n \geq 0$ and $w \in T_{p}$, we have

$$
d_{n, q, w}=\left\{\begin{array}{cl}
\frac{q^{2}-1}{w q^{2}-1}, & \text { if } n=0 \\
\frac{1+q w}{2} \frac{(-4)^{n}}{n!} D_{n, q, w^{2}}(1)-q w \sum_{m=0}^{n-1} \frac{(-4)^{n-m-1}}{(n-m-1)!} 2^{2 n-2 m-1} D_{n-m-1, q, w^{2}}(1) C_{m}, & \text { if } n \geq 1
\end{array}\right.
$$

Specially, $w=1$ and $q \rightarrow 1$, we have
Corollary 1 (Theorem 1, [6]). For $n \geq 0$, we have

$$
d_{n}=\left\{\begin{array}{cl}
1, & \text { if } n=0 \\
(-4)^{n} \frac{D_{n}(1)}{n!}-\sum_{m=0}^{n-1} \frac{(-4)^{n-m-1}}{(n-m-1)!} 2^{2 n-2 m-1} D_{n-m-1}(1) C_{m}, & \text { if } n \geq 1
\end{array}\right.
$$

Now, from (6) and (12), we observe that

$$
\begin{align*}
\sum_{n=0}^{\infty} d_{n, q, w} t^{n} & =\frac{q-1+\frac{q-1}{\log q} \frac{1}{2} \log (1-4 t)}{q w \sqrt{1-4 t}-1}=\int_{\mathbb{Z}_{p}} w^{x}(1-4 t)^{\frac{x}{2}} d \mu_{q}(x) \\
& =\sum_{m=0}^{\infty}\left(\frac{1}{2}\right)^{m} \frac{1}{m!}(\log (1-4 t))^{m} \int_{\mathbb{Z}_{p}} w^{x} x^{m} d \mu_{q}(x) \tag{14}\\
& =\sum_{m=0}^{\infty}\left(\frac{1}{2}\right)^{m} B_{m, q, w} \sum_{n=m}^{\infty} S_{1}(n, m) \frac{1}{n!}(-4 t)^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} 2^{2 n-m}(-1)^{n} B_{m, q, w} S_{1}(n, m)\right) \frac{t^{n}}{n!}
\end{align*}
$$

where $S_{1}(n, m),(n, m \geq 0)$ is the Stirling number of the first kind which is defined by [1-20]

$$
(x)_{n}=\sum_{l=0}^{n} S_{1}(n, l) x^{l}, \quad(n \geq 0)
$$

Here, $(x)_{0}=1,(x)_{n}=x(x-1) \cdots(x-n+1),(n \geq 1)$.
Therefore, by (14), we obtain the following theorem.
Theorem 2. For $n \geq 0$ and $w \in T_{p}$, we have

$$
(-1)^{n} d_{n, q, w}=\frac{1}{n!} \sum_{m=0}^{n} 2^{2 n-m} B_{m, q, w} S_{1}(n, m) .
$$

By binomial expansion, we get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} w^{x}(1-4 t)^{\frac{x}{2}} d \mu_{q}(x)=\sum_{n=0}^{\infty}(-4)^{n} \int_{\mathbb{Z}_{p}} w^{x}\binom{\frac{x}{2}}{n} d \mu_{q}(x) t^{n} \tag{15}
\end{equation*}
$$

From (12) and (15), we obtain the following corollary.
Corollary 2. For $n \geq 0$ and $w \in T_{p}$, we have

$$
\int_{\mathbb{Z}_{p}} w^{x}\binom{\frac{x}{2}}{n} d \mu_{q}(x)=(-1)^{n} 2^{-2 n} d_{n, q, w}=\frac{1}{n!} \sum_{m=0}^{n}\left(\frac{1}{2}\right)^{m} B_{m, q, w} S_{1}(n, m)
$$

For the case $w=1$ and $q \rightarrow 1$, we have the following.

Corollary 3 (Theorem 2, [6]). For $n \geq 0$, we have

$$
(-1)^{n} d_{n}=\frac{1}{n!} \sum_{m=0}^{n} 2^{2 n-m} B_{m} S_{1}(n, m)
$$

The twisted q-analogue of λ-Daehee polynomials are given by the p-adic q-integral on \mathbb{Z}_{p} to be

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} w^{y}(1+t)^{\lambda y+x} d \mu_{q}(y) & =\frac{(q-1)+\lambda \frac{q-1}{\log q} \log (1+t)}{q w(1+t)^{\lambda}-1}(1+t)^{x} \tag{16}\\
& =\sum_{n=0}^{\infty} \widetilde{D}_{n, q, w}(x \mid \lambda) \frac{t^{n}}{n!}
\end{align*}
$$

When $x=0, \widetilde{D}_{n, q, w}(\lambda)=\widetilde{D}_{n, q, w}(0 \mid \lambda)(n \geq 0)$ are called the twisted q-analogue of λ-Daehee numbers. Note that

$$
\widetilde{D}_{0, q, w}(\lambda)=\frac{q-1}{w q-1} .
$$

From (16), we note that

$$
\begin{align*}
\sum_{n=0}^{\infty}(-1)^{n} 4^{n} \widetilde{D}_{n, q, w}\left(\frac{1}{2}\right) \frac{t^{n}}{n!} & =\frac{q-1+\frac{1}{2} \frac{q-1}{\log q} \log (1-4 t)}{q w(1-4 t)^{\frac{1}{2}}-1} \tag{17}\\
& =\sum_{n=0}^{\infty} d_{n, q, w} t^{n}
\end{align*}
$$

Thus, by (17), we get

$$
d_{n, q, w}=(-1)^{n} \frac{4^{n}}{n!} \widetilde{D}_{n, q, w}\left(\frac{1}{2}\right), \quad(n \geq 0)
$$

Let us take $t=\frac{1}{4}\left(1-e^{2 t}\right)$ in (12). Then we have

$$
\begin{align*}
\sum_{k=0}^{\infty} d_{k, q, w}\left(\frac{1}{4}\right)^{k}\left(1-e^{2 t}\right)^{k} & =\frac{q-1+\frac{q-1}{\log q} t}{q w e^{t}-1}=\int_{\mathbb{Z}_{p}} w^{x} e^{x t} d \mu_{q}(x) \tag{18}\\
& =\sum_{n=0}^{\infty} B_{n, q, w} \frac{t^{n}}{n!}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\sum_{k=0}^{\infty} d_{k, q, w}(-1)^{k}\left(\frac{1}{4}\right)^{k}\left(e^{2 t}-1\right)^{k} & =\sum_{k=0}^{\infty}(-1)^{k} k!d_{k, q, w}\left(\frac{1}{4}\right)^{k} \frac{1}{k!}\left(e^{2 t}-1\right)^{k} \\
& =\sum_{k=0}^{\infty}(-1)^{k} k!d_{k, q, w} 2^{-2 k} \sum_{n=k}^{\infty} S_{2}(n, k) 2^{n} \frac{t^{n}}{n!} \tag{19}\\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(-1)^{k} k!d_{k, q, w} 2^{n-2 k} S_{2}(n, k)\right) \frac{t^{n}}{n!}
\end{align*}
$$

where $S_{2}(n, k)(n, k \geq 0)$ is the Stirling number of the second kind which is defined by

$$
x^{n}=\sum_{l=0}^{n} S_{2}(n, l)(x)_{l}, \quad(n \geq 0)
$$

Therefore, by (18) and (19), we obtain the following theorem.

Theorem 3. For $n \geq 0$, we have

$$
B_{n, q, w}=\sum_{k=0}^{n}(-1)^{k} S_{2}(n, k) 2^{n-2 k} k!d_{k, q, w} .
$$

Now, we observe that

$$
\int_{\mathbb{Z}_{p}} w^{y}(1-4 t)^{\frac{x+y}{2}} d \mu_{q}(y)=\frac{(q-1)+\frac{q-1}{\log q} \frac{1}{2} \log (1-4 t)}{w q \sqrt{1-4 t}-1}(1-4 t)^{\frac{x}{2}}
$$

We define the twisted Catalan-Daehee polynomials which are given by the generating function to be

$$
\begin{equation*}
\frac{q-1+\frac{q-1}{\log q} \frac{1}{2} \log (1-4 t)}{q w \sqrt{1-4 t}-1}(1-4 t)^{\frac{x}{2}}=\sum_{n=0}^{\infty} d_{n, q, w}(x) t^{n} . \tag{20}
\end{equation*}
$$

When $x=0, d_{n, q, w}=d_{n, q, w}(0)(n \geq 0)$ are the twisted Catalan-Daehee numbers in (12).
Note that

$$
\begin{align*}
(1-4 t)^{\frac{x}{2}} & =\sum_{l=0}^{\infty}\left(\frac{x}{2}\right)^{l} \frac{1}{l!}(\log (1-4 t))^{l}=\sum_{l=0}^{\infty}\left(\frac{x}{2}\right)^{l} \sum_{m=l}^{\infty} S_{1}(m, l)(-4)^{m} \frac{t^{m}}{m!} \\
& =\sum_{m=0}^{\infty}\left(\sum_{l=0}^{m} S_{1}(m, l) \frac{(-4)^{m}}{m!}\left(\frac{x}{2}\right)^{l}\right) t^{m} . \tag{21}
\end{align*}
$$

Thus, by (12), (20) and (21), we get

$$
\begin{align*}
\sum_{n=0}^{\infty} d_{n, q, w}(x) t^{n} & =\frac{q-1+\frac{q-1}{\log q} \frac{1}{2} \log (1-4 t)}{q w \sqrt{1-4 t}-1}(1-4 t)^{\frac{x}{2}} \\
& =\left(\sum_{k=0}^{\infty} d_{k, q, w} \frac{t^{k}}{k!}\right)\left(\sum_{m=0}^{\infty} \sum_{l=0}^{m} S_{1}(m, l) \frac{(-4)^{m}}{m!}\left(\frac{x}{2}\right)^{l}\right) t^{m} \tag{22}\\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} \sum_{l=0}^{m} S_{1}(m, l) \frac{(-4)^{m}}{m!} d_{n-m, q, w}\left(\frac{x}{2}\right)^{l}\right) t^{n}
\end{align*}
$$

By comparing the coefficients on the both sides (22), we obtain the following theorem.
Theorem 4. For $n \geq 0$, we have

$$
\begin{aligned}
d_{n, q, w}(x) & =\sum_{m=0}^{n} \sum_{l=0}^{m} S_{1}(m, l)(-1)^{m} \frac{2^{2 m-l}}{m!} d_{n-m, q, w} x^{l} \\
& =\sum_{l=0}^{n}\left(\sum_{m=l}^{n}(-1)^{m} \frac{2^{2 m-l}}{m!} S_{1}(m, l) d_{n-m, q, w}\right) x^{l} .
\end{aligned}
$$

For the case $w=1$ and $q \rightarrow 1$, we have the following.
Corollary 4 (Theorem 5, [6]). For $n \geq 0$, we have

$$
d_{n}(x)=\sum_{l=0}^{n}\left(\sum_{m=l}^{n}(-1)^{m} \frac{2^{2 m-l}}{m!} S_{1}(m, l) d_{n-m}\right) x^{l} .
$$

3. Conclusions

To summarize, we introduced twisted q-analogues of Catalan-Daehee numbers and polynomials and obtained several explicit expressions and identities related to them. We expressed the twisted q-analogues of Catalan-Daehee numbers in terms of the twisted
(λ, q)-Daehee numbers, and of the twisted q-Bernoulli numbers and Stirling numbers of the first kind in Theorems 1 and 2. We also derived an identity involving the twisted q Bernoulli numbers, twisted q-analogues of Catalan-Daehee numbers and Stirling numbers of the second kind in Theorem 3. In addition, we obtain an explicit expression for the twisted q-analogues of Catalan-Daehee polynomials which involve the twisted q-analogues of Catalan-Daehee numbers and Stirling numbers of the first kind in Theorem 4.

In recent years, many special numbers and polynomials have been studied by employing various methods, including: generating functions, p-adic analysis, combinatorial methods, umbral calculus, differential equations, probability theory and analytic number theory. We are now interested in continuing our research into the application of 'twisted' and ' q-analogue' versions of certain interesting special polynomials and numbers in the fields of physics, science, and engineering as well as mathematics.

Funding: The work of D. Lim was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) NRF-2021R1C1C1010902.

Data Availability Statement: Not applicable.
Acknowledgments: The author would like to thank the referees for their comments and suggestions which improved the original manuscript in its present form.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Kim, T. On a q-analogue of the p-adic log gamma functions and related integrals. J. Number Theory 1999, 76, 320-329. [CrossRef] 2. Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 9, 288-299.
2. Araci, S.; Acikgoz, M.; Kilicman A. Extended p-adic q-invariant integral on \mathbb{Z}_{p} associated with applications of umbral calculus. Adv. Differ. Equ. 2013, 2013, 96. [CrossRef]
3. Park, J.-W. On the λ-Daehee polynomials with q-parameter. J. Comput. Anal. Appl. 2016, 20, 11-20.
4. Lim, D. Some explicit expressions for twisted Catalan-Daehee numbers. Symmetry 2022, in press .
5. Dolgy, D.V.; Jang, G.-W.; Kim, D.S.; Kim, T. Explicit expressions for Catalan-Daehee numbers. Proc. Jangjeon Math. Soc. 2017, 20, 1-9.
6. Kim, T.; Kim, D.S. Differential equations associated with Catalan-Daehee numbers and their applications. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. 2016, 111, 1071-1081. [CrossRef]
7. Kim, T.; Kim, D.S. Some identities of Catalan-Daehee polynomials arising from umbral calculus. Appl. Comput. Math. 2017, 16, 177-189.
8. Ma, Y.; Kim, T.; Kim, D.S.; Lee, H. A study on q-analogues of Catalan-Daehee numbers and polynomials. arXiv 2021, arXiv:2105.12013v1.
9. Kim, D.S.; Kim, T. Daehee numbers and polynomials. Appl. Math. Sci. 2013, 7, 5969-5976. [CrossRef]
10. Kim, D.S.; Kim, T. A new approach to Catalan numbers using differential equations. Russ. J. Math. Phys. 2017, 24, 465-475. [CrossRef]
11. Kim, D.S.; Kim, T. Triple symmetric identities for w-Catalan polynomials. J. Korean Math. Soc. 2017, 54, 1243-1264.
12. Kim, T. An analogue of Bernoulli numbers and their applications. Rep. Fac. Sci. Engrg. Saga Univ. Math. 1994, 22 , 21-26.
13. Kim, T. A note on Catalan numbers associated with p-adic integral on \mathbb{Z}_{p}. Proc. Jangjeon Math. Soc. 2016, 19, 493-501.
14. Kim, T.; Kim, D.S.; Seo, J.-J. Symmetric identities for an analogue of Catalan polynomials. Proc. Jangjeon Math. Soc. 2016, 19, 515-521.
15. Kim, T.; Kim, D.S.; Seo, J.-J.; Kwon, H.-I. Differential equations associated with λ-Changhee polynomials. J. Nonlinear Sci. Appl. 2016, 9, 3098-3111. [CrossRef]
16. Ozden, H.; Cangul, I.N.; Simsek, Y. Remarks on q-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. (Kyungshang) 2009, 18, 41-48.
17. Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New type of degenerate Daehee polynomials of the second kind. Adv. Differ. Equ. 2020, 2020, 1-14. [CrossRef]
18. Simsek, Y. Analysis of the p-adic q-Volkenborn integrals: An approach to generalized Apostol-type special numbers and polynoimals and their applications. Cogent Math. 2016, 3, 1269393. [CrossRef]
19. Simsek, Y. Apostol type Daehee numbers and polynomials. Adv. Stud. Contemp. Math. 2016, 26, 555-566.
