
����������
�������

Citation: Ciobanu, G. A Hypergraph

Model for Communication Patterns.

Axioms 2022, 11, 8. https://doi.org/

10.3390/axioms11010008

Academic Editor: Cristian S. Calude

Received: 30 October 2021

Accepted: 2 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A Hypergraph Model for Communication Patterns

Gabriel Ciobanu

Faculty of Computer Science, Alexandru Ioan Cuza University, 700506 Iasi, Romania; gabriel@info.uaic.ro
† In Memoriam Solomon Marcus (1925–2016).

Abstract: The article deals with interaction in concurrent systems. A calculus able to express specific
communication patterns is defined, together with its abstract control structures. A hypergraph model
for these structures is presented. The hypergraphs are able to properly express the communication
patterns, providing a fully abstract model for the pattern calculus. It is also proved that the hy-
pergraph model preserves the operational reductions of processes from pattern calculus and of the
actions from the control structures.

Keywords: process calculus; communication patterns; control structures; hypergraph model

1. Introduction

Mathematics has sometimes been called a ‘science of patterns’ [1], meaning that
patterns are at the heart of mathematics. The nice description of mathematics as the
“study of patterns” was given by G.H. Hardy in his book A Mathematician’s Apology: “A
mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made with ideas”. Essentially, patterns are
regularities that we can perceive. Regarding the skilful ability of applying a pattern to
multiple contexts, Solomon Marcus was a wonderful example of applying knowledge
patterns to surprising contexts.

Since mathematics and technology have developed a fruitful relationship over past few
decades, patterns have been investigated recently in modern fields. New communication
technologies have changed the computing landscape, and the Internet is now a platform
for large scale distributed programming. Nowadays, we deal with global computation
based on multiple interactions with the environment (instead of isolated systems). Con-
currency is essential now in computer science; web servers handle multiple simultaneous
clients, and cloud servers allow several simultaneous applications and users. Message-
passing represents a way in which concurrent processes communicate (a process is an
instance of a running program). In software architecture, a messaging pattern describes
how two different processes communicate with each other. In telecommunications, a mes-
sage exchange pattern describes the messages required by a communications protocol or
the message flow between parties involved in communication. For example, when navi-
gating on Internet (representing the channel), a web browser (the communicating party)
uses the communication protocol HTTP to request a web page from the server (another
communicating party). In general, the interaction between clients and servers follows a
specific communication pattern: the client sends a request, the server returns a response,
and so on. Such an exchange of messages is only an example of communication patterns.
More complicated behaviours appear due to the concurrent interaction of communicating
processes; this complexity reveal the necessity to find new ways to describe and build up
concurrent systems. The communicating parties in such a concurrent system should have a
common language to communicate; moreover, they should follow the rules defined in a
communications protocol. There exits already a calculus able to express communication
patterns called join calculus; it is used as a basis for some programming languages (JoCaml
and Cω), but also as a basis for libraries (embedded in C#, F# and Scala). This calculus
is based on ‘join patterns’, namely rules describing how a certain combination of values

Axioms 2022, 11, 8. https://doi.org/10.3390/axioms11010008 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11010008
https://doi.org/10.3390/axioms11010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-8166-9456
https://doi.org/10.3390/axioms11010008
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11010008?type=check_update&version=5

Axioms 2022, 11, 8 2 of 17

sent through multiple channels triggers a specific reaction and removes the values from
the communication channels. Interaction in such a calculus is provided by sharing the
communication channels names.

We introduce the pattern calculus as a weak version of join calculus. After presenting
the control structures for pattern calculus, we provide a hypergraph model of these struc-
tures. The hypergraphs are able to express properly the communication patterns described
by the pattern calculus. It is proved that the hypergraph model is fully abstract for the
calculus; a model is fully abstract if all observationally equivalent processes represent the
same object in the model, meaning also that processes with different behaviour are not
mapped to the same hypergraph. Furthermore, there is a correspondence between the
dynamics of the processes of the calculus and their hypergraph representation.

2. Pattern Calculus

The pattern calculus is inspired by the join calculus [2], a calculus proposed to underlie
programming languages for distributed systems. A presentation of the join calculus can
also be found in [3]. The specific construction of the new calculus is the definition of
communication channels: def u〈y〉 . P in Q. To elucidate the simplicity of this syntactical
construction, let us say that it could be expressed in the π-calculus [4] by using several
syntactical constructions: def u〈y〉 . P in Q = νu.(!u(y).P | Q).

The syntax of the pattern calculus is defined by using a countable set X of names
ranging over u, v, x, . . ., together with ũ, ṽ, x̃, ỹ . . . ranging over finite strings of names.
We use P, Q, R, . . . ranging over the set of processes. The set P of processes contains an
empty process 0, as well as an output message u〈v〉 sending v by using a channel u. The
process P | Q describes the parallel composition of processes P and Q. The communication
between processes is achieved by the channel definition def u〈v〉 . P in Q indicating that the
interaction of processes P and Q is realized by the channel u (which is created only for the
communication between them).

Definition 1. The processes of our calculus are defined by the following syntax:

P ::= 0 | u〈v〉 | P | Q | def u〈v〉 . P in Q .

In def u〈v〉 . P in Q, both u and v are bound. The scope of v is P, while the scope of u
is given by the whole definition. It is worth noting that only this definition binds names.
The free names are defined inductively by fn(0) = ∅, fn(u〈v〉) = {u, v}, fn(P | Q) =
fn(P) ∪ fn(Q), and fn(def u〈v〉 . P in Q) = (fn(Q) ∪ (fn(P)− {v}))− {u}.

A substitution {y/x}P replaces all the free occurrences of name x in P by name y;
name-capture is avoided by using the α-conversion (defined in the standard way).

Definition 2. A structural congruence ≡ ⊆ P × P is defined as the smallest congruence
satisfying the following axioms:

• def u〈v〉 . P in Q ≡ def u〈t〉 . {t/v}P in Q, if t 6∈ fn(P)
• def u〈v〉 . P in Q ≡ def w〈v〉 . {w/u}P in {w/u}Q if v 6∈ {u, w} and w 6∈ fn(P | Q)
• Q1 | def u〈v〉 . P in Q2 ≡ def u〈v〉 . P in (Q1 | Q2) if u 6∈ fn(Q1)
• def u〈v〉 . P1 in def w〈t〉 . P2 in Q ≡ def w〈t〉 . P2 in def u〈v〉 . P1 in Q

if u 6= w, u 6∈ fn(P2), and w 6∈ fn(P1)
• P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R).

The evolution of the processes is given by a reduction relation→ .
For the specific construct def u〈y〉 . P in Q, the reduction is described mainly by:

def u〈y〉 . P in Q | u〈v〉 → def u〈y〉 . P in Q | {v/y}P.
More exactly, process Q can send a name v along the channel u, while process P waits

at the other end of channel u to receive certain channel names. When the name v is received,
process Q continues its execution in parallel with process P in which all free occurrences

Axioms 2022, 11, 8 3 of 17

of y are replaced by v, i.e., {v/y}P. Then, channel u remains open to receive other names.
The formal definition is given below.

Definition 3. The reduction relation→⊆ P ×P is defined as the smallest relation satisfying:

r1: def u1〈v1〉 . Q1 in def u2〈v2〉 . Q2 in . . . def un〈vn〉 . Qn in (P | ui〈v〉)→
def u1〈v1〉 . Q1 in def u2〈v2〉 . Q2 in . . . def un〈vn〉 . Qn in (P | {v/vi}Qi)

if {ui+1, . . . , un} ∩ (fn(Qi) ∪ {ui}) = ∅ with i ∈ [n] and n ≥ 1

r2:
P1 → P2

def u〈v〉 . Q in P1 → def u〈v〉 . Q in P2

r3:
P1 ≡ Q1, Q1 → Q2 and Q2 ≡ P2

P1 → P2
.

It is worth noting that there is no rule for parallel composition in the definition of
this reduction. The following (easy-to-prove) results show that such a rule for parallel
composition is just a consequence.

Lemma 1. Considering any substitution σ = {x/y},
P ≡ Q implies σP ≡ σQ, and P1 → P2 implies σP1 → σP2.

Proposition 1. P1 → P2 implies Q | P1 → Q | P2.

3. Hypergraphs

In the theory of distributed systems, Petri nets [5] and π-nets [6] provide both algebraic
and graphical descriptions for concurrent systems. Compared to Petri nets, our hypergraph
model for pattern calculus has a flexible structure; compared to π-nets, the hypergraph
model is simpler, but still able to describe a large class of processes.

Following [7], we present the definitions for hypergraphs and some standard related
notions such as isomorphism and contractions (on nodes and on edges). For a set S of
hyperedges and a set V of vertices, it is defined an incidence relation E ⊆ S× V. A rooted
hypergraph is a tuple H = 〈S, V, E, s〉, where s ∈ S is the root hyperedge. For a hypergraph H,
we use the notations SH , VH , EH and sH .

The graphical presentation of a hypergraph H is provided by:

- A hyperedge t represented as an oval with its name t outside.
- A vertex v represented as a point having the name v .
- An element (t, v) of the incidence relation represented as lines from the hyperedge t

to the vertex v; “v lies on t” whenever (t, v) ∈ EH .
- The root indicated by an arrow pointing to the hyperedge sH .

Example 1. Considering a hypergraph with SH = {s, t, t′}, VH = {v, w, w′}, EH = {(s, v),
(t, v), (t, w), (t′, v), (t′, w′)} and sH = {t}, various graphical representations are depicted in
Figure 1. The left representation uses only lines of non-zero length, while the right one uses only
lines of zero length. The representation in the middle is a compromise (between lengths) to provide a
reasonable picture.

v

t’

v
t’v

t’

s

t
t

s

s

t

w w’

w w’

w w’

Figure 1. Graphical representations of a hypergraph.

For a given rooted hypergraph H and a nonempty subset W ⊆ VH of nodes, a
contraction on vertices is specified by the hypergraph H/W with the same root hyperedge

Axioms 2022, 11, 8 4 of 17

(sH/W = sH), the same hyperedges (SH/W = SH), but with VH/W = (VH \W) ∪ {v} for a
fresh v 6∈ VH and EH/W = (EH \ SH ×W) ∪ { (t, v) | {t} ×W ∩ EH 6= ∅ }.

For a given rooted hypergraph H and a nonempty subset T ⊆ SH of hyperedges, a
contraction on hyperedges is specified by the hypergraph H/T with the same set of vertices
(VH/T = VH), but with SH/T = (SH \ T) ∪ {t} for a fresh t 6∈ SH , and EH/T = (EH \ T ×
VH) ∪ { (t, v) | T × {v} ∩ EH 6= ∅ }. Regarding the root hyperedge sH/T , if sH ∈ T then
sH/T = t, otherwise it remains the same sH .

Example 2. Considering two vertices v, w ∈ VH , we denote by Hv=w the contraction on vertices
in H/{v, w}. For two hyperedges s, t ∈ SH , we denote by Hs=t the contraction on hyperedges in
H/{s, t}. For the hypergraph H used in the previous example, the contraction on vertices Hw=w′

and the contraction on hyperedges Ht=t′ are depicted in Figure 2.

v

t’

s

t

v’

s

s’

w w’

v

Figure 2. A contraction on vertices (left), and a contraction on hyperedges (right).

The isomorphism between two hypergraphs H and H′ is defined by two bijections
φS : SH → SH′ and φV : VH → VH′ which satisfy φS(sH) = sH′ and (s, v) ∈ EH if and
only if (φS(s), φV(v)) ∈ EH′ for all s ∈ SH and v ∈ VH . In such a situation, we say that
hypergraphs H and H′ are isomorphic (denoted by H = H′).

The isomorphism relation is an equivalence over hypergraphs. The names of hy-
peredges and vertices do not play any role in the isomorphism of hypergraphs. For the
graphical representation of an equivalence class, it can be used any hypergraph (after
removing the names of hyperedges and vertices).

4. Control Structure for Pattern Calculus

Milner proposed the control structures and action calculi as a unifying framework for
the models of concurrent systems in [8]. A control structure defines the static aspects of
a process calculus, while the corresponding action calculus describes various models of
interactive behaviours. Regarding the behaviour, distinct action calculi differ only in their
generators (called controls). Thus, the previously mentioned Petri nets and π-nets, as well
as our hypergraph model, differ only in their generators. Analyzing these generators, it
is possible to compare and classify the formal models for concurrent systems. Moreover,
by selecting some specific generators, it is possible to combine existing models in order to
obtain a new desired model.

The control structures presented here follow the definitions of [9]. Essentially, a control
structure is defined by a set of terms, an equational theory, and a reduction relation over
terms. This fact is condensed in the following expression:

ControlStructure = Actions + EquationalTheory + Reaction.

From an algebraic viewpoint, a control structure is a symmetric strict monoidal cate-
gory with an additional structure [10]. The morphisms of the symmetric strict monoidal
category correspond to the terms of the control structure; they are denoted by a, b, c, . . . and
called actions.

The control structure uses an enumerable set X of names together with a signature
(P,K) in which P is a set of prime arities and K is a set of control operators. Every name
x ∈ X has a prime arity p ∈ P, and this is denoted by x : p. Each control K ∈ K has an arity
rule. In addition to the specific control operators, every control structure contains a datum

Axioms 2022, 11, 8 5 of 17

operator 〈x〉 : ε→ p (where x : p) and a discard operator ωp : p→ ε, as well as an abstractor
operator abx a : p⊗m→ p⊗ n (where x : p and a : m→ n). The equational theory is the
same for all control structures. To express the evolution, a set R of reaction rules is used;
reaction rules are ordered pairs of terms with the same arity.

Each action a possesses a surface surf(a) = {x ∈ X | ∃p.x : p and abx a 6= idp ⊗ a}.
The equality = between actions is valid whenever the equation a = b could be proved

by using the axioms of the control structure; otherwise a 6= b.
We present here some results used later in the proofs of our results.

Proposition 2. The following properties hold in any control structure:

surf(〈x〉) ⊆ {x} surf(ω) = ∅ surf(a⊗ b) ⊆ surf(a) ∪ surf(b).

The following properties hold in any control structure, whenever x 6∈ surf(c):

surf(id) = ∅ surf(p) = ∅ surf(a · b) ⊆ surf(a) ∪ surf(b).

Additionally,
1. pn,ε = idn
2. a⊗ b = b⊗ a (a, b : ε→ ε)
3. (x)(c · b) = (idp ⊗ c) · (x)b (x : p)
4. (x)(c⊗ b) = c⊗ (x)b (c : ε→ n)
5. (x)(a⊗ c) = (x)a⊗ c
6. (z)(y)a = (pp,q ⊗ idm) · (y)(z)a (z : p, y : q, a : m→ n)

Proposition 3. The following properties are provable in any control structure:
1. [x/y](a · b) = [x/y]a · [x/y]b;
2. [x/y](a⊗ b) = [x/y]a⊗ [x/y]b;
3. [x/y](z)a = (z)[x/y]a if z 6∈ {x, y};
4. [x/y](x)a = (w)[x/y][w/x]a if w 6∈ surf(a) ∪ {x, y} and x 6= y.

We define the control structure for our pattern calculus, emphasizing on its actions.
We also present a graphical representation for its processes. The monoid (N,+, 0) of the
natural numbers provides the arity monoid of the control structure, with m, n, k, . . . ranging
over natural numbers, and [n] = {1, 2, . . . , n} denoting the first n natural numbers. The
(unique) prime arity 1 is associated with each name x ∈ X . For a number k and a function
f : [n]→ Y, we define k⊕ f : {k + 1, . . . k + n} → Y by (k⊕ f)(i) = f (i− k). Following [9],
the control structure is defined over the set X = {zi | i ∈ N} of names using x, y, u, . . . as
meta-variables.

Regarding the actions of the control structure for our calculus, they are given by
enriched hypergraphs called shortly pattern nets. An action a = (H, Σ) with arity m→ n is
given by a hypergraph H together with its decoration Σ = 〈I, O, λ, τ, µ〉 consisting of:

- An input function given by an injective function I : [m]→ VH ;
- An output function given by a function O : [n]→ VH ;
- A label function given by an injective function λ : Z → VH , where Z ⊆ X ;
- A transition relation τ ⊆ VH ×VH ;
- A resource function µ : SH → NVH×VH .

We can look at these functions as multisets over SH ×VH ×VH . We denote by {x, y, y}
a multiset µ over {x, y, z} such that µ(x) = 1, µ(y) = 2 and µ(z) = 0; we use the standard
multiset operations over these functions: (],−, . . .).

We extend in a straightforward way the isomorphism and contraction introduced
for hypergraphs. Considering ai = (Hi, Σi) with Σi = 〈Ii, Oi, λi, τi, µi〉 (i ∈ [2]), the
nets a1 and a2 are isomorphic if there is a hypergraph isomorphism (φS, φV) between H1
and H2 such that φV ◦ I1 = I2, φV ◦ O1 = O2, φV ◦ λ1 = λ2, and (v, v′) ∈ τ1 if and only if

Axioms 2022, 11, 8 6 of 17

(φV(v), φV(v′)) ∈ τ2, together with µ1(s, v, v′) = µ2(φS(s), φV(v), φV(v′)) for all s ∈ SH1

and v, v′ ∈ VH1 .

For the graphical representations of the pattern nets, let us consider a generic net
a = (H, Σ) with Σ = 〈I, O, λ, τ, µ〉; the hypergraph H is presented by assuming that its
lines are of length zero (see Figure 1):

- Whenever I(i) = v, O(k) = v′ and λ(x) = w, an input label (i) is assigned to vertex v,
an output label 〈k〉 to vertex v′, and a name label x to vertex w;

- Whenever (v, v′) ∈ τ, an arc is drawn outside any oval from vertex v to vertex v′;
- Whenever µ(s, v, v′) > 0, v and v′ lie on the same hyperedge s: (s, v), (s, v′) ∈ EH ;

more exactly, whenever µ(s, v, v′) = k > 0, we have k arcs inside the oval s from vertex
v to vertex v′.

As for hypergraphs, isomorphic nets are not distinguished. The names of vertices and
hyperedges do not play any role in the isomorphic nets, and so the graphical representation
of an isomorphic (equivalence) class of pattern nets is given by any net of the class after
removing the names of vertices and hyperedges.

The control structure operators for our pattern nets are:
- datum 〈x〉γ = (H, Σ) : 0→ 1 defined by
H = 〈{s}, {v}, {(s, v)}, s〉 and
Σ = 〈∅, {1 7→ v}, {x 7→ v}, ∅, ∅〉

x

<1>

- discard ωγ = (H, Σ) : 1→ 0 defined by
H = 〈{s}, {v}, {(s, v)}, s〉 and
Σ = 〈{1 7→ v}, ∅, ∅, ∅, ∅〉

(1)

The three controls generating the pattern nets are:
– νγ = (H, Σ) : 0→ 1 defined by
H = 〈{s}, {v}, {(s, v)}, s〉 and
Σ = 〈∅, {1 7→ v}, ∅, ∅, ∅〉 <1>

– outγ = (H, Σ) : 2→ 0 defined by
H = 〈{s}, {v, v′}, {(s, v), (s, v′)}, s〉 and
Σ = 〈∅, {1 7→ v, 2 7→ v′}, ∅, ∅, {(s, v′, v)}〉

<2>

<1>

– If a = (H, Σ) : 1→ 0 and Σ = 〈I, O, λ, τ, µ〉, then
defγ a = (H′, Σ′) : 1→ 0, where

H′ = 〈SH ∪ {t}, VH ∪ {v}, EH ∪ {(t, v)}, t〉, for fresh
t 6∈ SH and v 6∈ VH , and
Σ′ = 〈{1 7→ v}, O, λ, τ ∪ {(v, I(1))}, µ〉.

The equational theory is defined by the following operators.
Let us consider the nets ai = (Hi, Σi) with Σi = 〈Ii, Oi, λi, τi, µi〉 and λi : Zi → VHi ,

where i ∈ [2]. Without loss of generality, we consider sH1 = sH2 = s. (SH1 − {sH1}) ∩
(SH2 − {sH2}) = ∅ and λ1(z) = λ2(z) ∀z ∈ Z1 ∩ Z2, as well as (VH1 − λ1(Z1 ∩ Z2)) ∩
(VH2 − λ2(Z1 ∩ Z2)) = ∅.

– Identity idγ
m = (H, Σ) : m→ m defined by

H = 〈{s}, {vi|i ∈ [m]}, {(s, vi)|i ∈ [m]}, s〉 and
Σ = 〈{i 7→ vi|i ∈ [m]}, {i 7→ vi|i ∈ [m]}, ∅, ∅, ∅〉

(m) <m>. . .<1>(1)

– Symmetry pγ
m,n = (H, Σ) : m + n→ n + m defined by

H = 〈{s}, {vi|i ∈ [m + n]}, {(s, vi)|i ∈ [m + n]}, s〉
Σ = 〈{i 7→ vi|i ∈ [m + n]}, {i 7→ vm+i|i ∈ [n]} ∪
{n + i 7→ vi|i ∈ [m]}, ∅, ∅, ∅〉

(1) <n+1> . . . (m) <n+m>

. . . (m+n) <n>(m+1) <1>

– Tensorial product a1 ⊗ a2 : m + k → n + l of two nets a1 : m → n and a2 : k → l is
obtained by combining them as follows: in a2, the input labels are incremented by m and
the output labels are incremented by n; then overlap the two roots and the vertices of a1
and of a2 with the same name. Formally, a1 ⊗ a2 = (H, Σ), where

H = 〈SH1 ∪ SH2 , VH1 ∪VH2 , EH1 ∪ EH2 , s〉 and

Axioms 2022, 11, 8 7 of 17

Σ = 〈I1 ∪m⊕ I2, O1 ∪ n⊕ O2, λ1 ∪ λ2, τ1 ∪ τ2, µ1] µ2〉.

– Composition a1 · a2 : m → k of two nets a1 : m → n and a2 : n → k is obtained by
combining them as follows: overlap the two roots and vertices of a1 and a2 with the same
name; for every i ∈ [n], overlap the vertex labelled 〈i〉 in a1 with the vertex labelled (i)
in a2, and then remove the labels (i) and 〈i〉.

Formally, a1 · a2 = (H, Σ)O1(1)=I2(1),...,O1(n)=I2(n), where

H = 〈SH1 ∪ SH2 , VH1 ∪VH2 , EH1 ∪ EH2 , s〉 and

Σ = 〈I1, O2, λ1 ∪ λ2, τ1 ∪ τ2, µ1] µ2〉.

– Abstractor. Let us consider a net a = (H, Σ) : m→ n with Σ = 〈I, O, λ, τ, µ〉.
Then abγ

x a : 1 + m → 1 + n is obtained from a in the following steps: increment all
the input and output labels by 1; assign both the input label (1) and the output label 〈1〉 to
vertex x, and then remove the label x. Formally, abγ

x a = (H, Σ′), where

Σ′ = 〈{1 7→ λ(x)} ∪ 1⊕ I, {1 7→ λ(x)} ∪ 1⊕ O, λ− {x 7→ λ(x)}, τ, µ〉.

In general, these operators over the pattern nets are well-defined. However, the
abstractor abγ

x a is not well-defined if a vertex labelled by x is not contained in the net a. To
avoid such a situation, we adjust the definition of the above operators by

op(a, . . .)
de f
= opγ(a⊗γ i, . . .)⊗γ i,

where op stands for each operator defined above, and i = (H, Σ) is the pattern net

H = 〈{s}, {vi|i ∈ N}, {(s, vi)|i ∈ N}, s〉

Σ = 〈∅, ∅, {zi 7→ vi|i ∈ N}, ∅, ∅〉.

Following [9], it is not difficult to prove the following result.

Proposition 4. The operators 〈x〉, ω, ν, out, def, id, p, ·, ⊗ and abx define a control structure.

The actions of this control structure determine the hypergraph model for the pattern
calculus. We actually use the derived control operators:

outu
de f
= (〈u〉 ⊗ id1) · out;

defu a
de f
= 〈u〉 · def a.

The reaction↘ is the smallest relation over the pattern nets closed under equality,
composition, tensorial product and abstraction which satisfies the control rule

outu ⊗ defu a↘ a⊗ defu a.

The corresponding graphical description of the reaction rule is given by:

������
������
������
������

������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������

������
������
������
������

u
a

a

(1)

(1) u

a

Axioms 2022, 11, 8 8 of 17

In this diagram, the scope of the def operator is represented as a gray patch; due to the
properties derived from the syntax of our calculus, this patch can actually be determined
from the hypergraph structure.

The operators, actions and reaction complete the definition of our nets.

It is worth noting that the def operator can be generalized, namely we can have a more
general control operator defu1 ...um by defu1 ...um a = (〈u1〉 ⊗ . . .⊗ 〈um〉) · def a. Moreover,
the corresponding graphical representation is extended by using m external arcs to connect
the new root hyperedge to the old one. The corresponding reaction is generalized in the
following way: outu1 ⊗ . . .⊗ outum ⊗ defu1 ...um a↘ a⊗ defu1 ...um a.

We present some proprieties of the pattern nets. The proofs of these properties are
tedious (but easy), based mainly on definitions and the structure of the nets.

Lemma 2. We have the following properties:

1. surf(outu) ⊆ {u} and surf(defu a) ⊆ {u} ∪ surf(a).
2. For any substitution σ = {x/y}, [x/y]outu = outσu and [x/y]defu a = defσu [x/y]a.
3. If a↘ b, then there exists b′ such that b = b′ and surf(b′) ⊆ surf(a).
4. 〈v〉 · outw ⊗ defu (y)a↘ b iff u = w and b = [v/y]a⊗ defu (y)a.
5. a1 ⊗ a2 ⊗ a3 ↘ c iff

• either there exists i ∈ [3] such that ai ↘ b and c = b⊗ aj ⊗ ak, or
• there exist i, j ∈ [3] such that ai ⊗ aj ↘ b and c = b⊗ ak, where [3] = {i, j, k}.

6. Whenever u 6∈ surf(b), b⊗ defu a↘ c iff b↘ b′ and c = b′ ⊗ defu a.
7. ν · (x)a↘ b iff a↘ a′ and b = ν · (x)a′.

5. Fully Abstract Hypergraph Model of the Pattern Calculus

This section presents the main results of the paper. These results reveal the hyper-
graphs as a fully abstract model for the pattern calculus. According to [11], a model is fully
abstract if all observationally equivalent terms in the object language represent the same
object in the model. This means that processes with different behaviour are not mapped to
the same hypergraph. Moreover, we prove a correspondence between the reduction of the
processes and the reduction of their hypergraph representation.

Definition 4. The semantic relationship [[−]] between the pattern calculus processes and the
pattern nets is defined by structural induction as follows:

1. [[0]] = id0 ;
2. [[u〈v〉]] = 〈v〉 · outu ;
3. [[P | Q]] = [[P]] ⊗ [[Q]] ;
4. [[def u〈y〉 . P in Q]] = ν · (u)([[Q]] ⊗ defu (y) [[P]]) .

We prove some results involving this semantic relationship [[−]] .

Lemma 3. For every process P ∈ P , we have [[P]] : 0→ 0 .

Proof. A simple induction on the structure of P. In the case of our nets, 0 is the neutral
element of the arity monoid (N,+, 0). For case (4) of the previous definition, we use the
discard operator ω instead of ωp. Since 1 is the only prime arity p of the monoid (N,+, 0),
we omit the index without any risk of confusion.

Lemma 4. For every process P ∈ P , we have surf([[P]]) ⊆ fn(P).

Proof. By induction on the structure of P (the proof uses Lemma 2).

Lemma 5. For two names x, y ∈ X and a process P ∈ P , we have [[{x/y}P]] = [x/y] [[P]] .

Axioms 2022, 11, 8 9 of 17

Proof. Induction on the definition of the substitution over processes (and Lemma 5).

Proposition 5. If P ≡ Q, then [[P]] = [[Q]] .

Proof. Induction on the definition of structural congruence. Let us consider the relation

∼= {(P, Q) ∈ P | P ≡ Q and [[P]] = [[Q]] }.

Proof is reduced to the equality between ∼ and ≡. Obviously, ∼⊆≡. We show that ∼
satisfies the axioms from the definition of ≡. Since ≡ is the smallest relation satisfying
these axioms, it follows that ≡⊆∼, and so ∼=≡. Thus, to prove that ≡⊆∼, it is enough to
verify that ∼ satisfies the axioms from the definition of ≡.

The cases P | 0 ≡ P, P | Q ≡ Q | P and (P | Q) | R ≡ P | (Q | R) are rather trivial,
based on the fact that id0 is neutral for tensor product, together with the commutativity
and associativity of tensor product ⊗ in the equational theory (of the control structures).

Let us consider the other cases.

– def u〈v〉 . P in Q ≡ def u〈t〉 . {t/v}P in Q, if t 6∈ fn(P).
Assume t 6∈ fn(P). By Lemma 4, it follows that t 6∈ surf([[P]]). Then,
[[def u〈t〉 . {t/v}P in Q]] =

= ν · (u)([[Q]] ⊗ defu (t) [[{t/v}P]]) by Lemma 5
= ν · (u)([[Q]] ⊗ defu (t)[t/v] [[P]])
= [[def u〈v〉 . P in Q]] .

– def u〈v〉 . P in Q ≡ def w〈v〉 . {w/u}P in {w/u}Q if v 6∈ {u, w}, w 6∈ fn(P | Q).
Assume v 6∈ {u, w} and w 6∈ fn(P | Q); then, u 6= v and w 6∈ fn(P) ∪ fn(Q) ∪ {v}. By
Lemma 4, w 6∈ surf([[P]]) ∪ surf([[Q]]). If u = w, then the result is trivial.
Let us assume that u 6= w.
[[def w〈v〉 . {w/u}P in {w/u}Q]] =

= ν · (w)([[{w/u}Q]] ⊗ defw (v) [[{w/u}P]]) by Lemma 5
= ν · (w)([w/u] [[Q]] ⊗ defw (v)[w/u] [[P]]) by Proposition 3 and Lemma 2
= ν · (w)[w/u]([[Q]] ⊗ defu (v) [[P]]) by Lemma 2
= [[def u〈v〉 . P in Q]] .

– Q1 | def u〈v〉 . P in Q2 ≡ def u〈v〉 . P in (Q1 | Q2) if u 6∈ fn(Q1).
Assume u 6∈ fn(Q1). By Lemma 4, u 6∈ surf([[Q1]]). Then,
[[def u〈v〉 . P in (Q1 | Q2)]] =

= ν · (u)([[Q1]] ⊗ [[Q2]] ⊗ defu (v) [[P]]) by Lemma 3 and Proposition 2
= [[Q1 | def u〈v〉 . P in Q2]] .

– def u〈v〉 . P1 in def w〈t〉 . P2 in Q ≡ def w〈t〉 . P2 in def u〈v〉 . P1 in Q
if u 6= w, u 6∈ fn(P2), and w 6∈ fn(P1).

Assume u 6= w, u 6∈ fn(P2) and w 6∈ fn(P1). By Lemma 4, it follows that u 6∈ surf([[P2]])
and w 6∈ surf([[P1]]). Furthermore, by Lemma 2, w 6∈ surf(defu (v) [[P1]] .
[[def u〈v〉 . P1 in def w〈t〉 . P2 in Q]] =

= ν · (u)(ν · (w)([[Q]] ⊗ defw (t) [[P2]])⊗ defu (v) [[P1]]) by Proposition 2
= ν · (u)(ν · (w)([[Q]] ⊗ defw (t) [[P2]] ⊗ defu (v) [[P1]])) by Proposition 2
= (ν⊗ ν) · (u)(w)([[Q]] ⊗ defw (t) [[P2]] ⊗ defu (v) [[P1]]) = X.

In a similar way, we obtain [[def w〈t〉 . P2 in def u〈v〉 . P1 in Q]] =
= (ν⊗ ν) · (w)(u)([[Q]] ⊗ defu (v) [[P1]] ⊗ defw (t) [[P2]]) = Y.

To complete the proof, it remains to prove that X = Y.
X = by Proposition 2
= (ν⊗ ν) · p1,1 · (w)(u)([[Q]] ⊗ defw (t) [[P2]] ⊗ defu (v) [[P1]])
= p0,0 · (ν⊗ ν) · (w)(u)([[Q]] ⊗ defu (v) [[P1]] ⊗ defw (t) [[P2]])
= Y.

Theorem 1. If P→ Q, then [[P]] ↘ [[Q]] .

Axioms 2022, 11, 8 10 of 17

Proof. By induction on the definition of P→ Q.
* r1: P→ Q is

def u1〈y1〉 . Q1 in def u2〈y2〉 . Q2 in . . . def un〈yn〉 . Qn in R | ui〈v〉 →

def u1〈y1〉 . Q1 in def u2〈y2〉 . Q2 in . . . def un〈yn〉 . Qn in R | {v/yi}Qi, where

{ui+1, . . . , un} ∩ (fn(Qi) ∪ {ui}) = ∅, i ∈ [n], and n ≥ 1. According to Lemma 2 and
Lemma 4, {ui+1, . . . , un} ∩ surf(defui (yi) [[Qi]]) = ∅. According to Proposition 2 and
using the compatibility of↘ with composition, tensorial product and abstraction,
[[P]] = ν · (u1)(defu1 (y1) [[Q1]] ⊗

=
...

ν · (ui)(defui (yi) [[Qi]] ⊗
...

ν · (un)(defun (yn) [[Qn]] ⊗ [[R]] ⊗ 〈v〉 · outui) . . .) . . .)

= ν · (u1)(defu1 (y1) [[Q1]] ⊗ by Lemma 2
...

ν · (ui−1)(defui−1 (yi−1) [[Qi−1]] ⊗
ν · (ui)(
ν · (ui+1)(defui+1 (yi+1) [[Qi+1]] ⊗

...
ν · (un)(defun (yn) [[Qn]] ⊗ [[R]] ⊗ 〈v〉 · outui ⊗ defui (yi) [[Qi]])...)))...)

↘ ν · (u1)(defu1 (y1) [[Q1]] ⊗ by Lemma 5
...

ν · (ui)(defui (yi) [[Qi]] ⊗
...

ν · (un)(defun (yn) [[Qn]] ⊗ [[R]] ⊗ [v/yi] [[Qi]]) . . .) . . .)

= [[Q]] .

* r2: P→ Q is def u〈v〉 . R in P′ → def u〈v〉 . R in Q′ with P′ → Q′.
By induction, [[P′]] ↘ [[Q′]] . Since↘ is closed under composition, tensor and

abstraction, it follows that

[[P]] = ν · (u)([[P′]] ⊗ defu (v) [[R]])↘ ν · (u)([[Q′]] ⊗ defu (v) [[R]]) = [[Q]] .

* r3: P→ Q with P ≡ P′, P′ → Q′ and Q′ ≡ Q.
By the induction hypothesis, [[P′]] ↘ [[Q′]] . By Proposition 5, we have [[P]] =

[[P′]] and [[Q′]] = [[Q]] . Since↘ is closed under equality, then [[P]] ↘ [[Q]] .

Lemma 6. 〈v〉 · outu ⊗ [[P]] ↘ a iff [[P]] ↘ b and a = 〈v〉 · outu ⊗ b.

Proof. (⇐) A consequence of the fact that the reaction is closed under tensorial product
and equality.
(⇒) Induction on the structure of P.

– If P is the empty process or a message, then 〈v〉 · outu ⊗ [[P]] 6↘ . Therefore, the
statement of the lemma is obviously true because its premise is not satisfied.

– If P is a parallel composition P1 | P2, then 〈v〉 · outu ⊗ [[P1]] ⊗ [[P2]] ↘ a. Since
〈v〉 · outu 6↘ , it follows (Lemma 2) that one of the following cases remains possible:

(1) [[Pi]] ↘ b′ and a = 〈v〉 · outu ⊗ b′ ⊗ [[Pj]] ;
(2) [[Pi]] ⊗ [[Pj]] ↘ b′ and a = 〈v〉 · outu ⊗ b′;

Axioms 2022, 11, 8 11 of 17

(3) 〈v〉 · outu ⊗ [[Pi]] ↘ a′ and a = a′ ⊗ [[Pj]] , where {i, j} = [2].

Note that by Proposition 2, we have [[P]] = [[Pi]] ⊗ [[Pj]] .
In case (1), [[P]] ↘ b′ ⊗ [[Pj]] , and we consider b = b′ ⊗ [[Pj]] . In case (2), we take
b = b′. In case (3), by induction, we have [[Pi]] ↘ b′ and a′ = 〈v〉 · outu ⊗ b′. Thus,
[[P]] ↘ b′ ⊗ [[Pj]] , considering b = b′ ⊗ [[Pj]] .

– If P is a definition def w〈t〉 . P1 in P2, then we may assume without losing gener-
ality that w 6∈ {u, v}. It follows from Lemma 2 together with Proposition 2 that
ν · (w)(〈v〉 · outu ⊗ [[P2]] ⊗ defw (t) [[P1]])↘ a. By Lemma 2, 〈v〉 · outu ⊗ [[P2]] ⊗
defw (t) [[P1]] ↘ a′ and a = ν · (w)a′. Since 〈v〉 · outu 6↘ , defw (t) [[P1]] 6↘ and
〈v〉 · outu ⊗ defw (t) [[P1]] 6↘ , it follows (according to Lemma 2) that one of the
following cases remains possible:

(1) [[P2]] ↘ b′ and a′ = 〈v〉 · outu ⊗ b′ ⊗ defw (t) [[P1]] ;
(2) [[P2]] ⊗ defw (t) [[P1]] ↘ b′ and a′ = 〈v〉 · outu ⊗ b′;
(3) 〈v〉 · outu ⊗ [[P2]] ↘ a′′ and a′ = a′′ ⊗ defw (t) [[P1]] .

In case (1), [[P]] = ν · (w)([[P2]] ⊗ defw (t) [[P1]])↘ ν · (w)(b′ ⊗ defw (t) [[P1]]).
Considering b = ν · (w)(b′ ⊗ defw (t) [[P1]]), it satisfies the requirements (according to
Proposition 2). In case (2), we have [[P]] ↘ ν · (w)b′, and consider b = ν · (w)b′. In
case (3), by induction hypothesis, [[P2]] ↘ b′ and a′′ = 〈v〉 · outu ⊗ b′. Thus, [[P]] ↘
ν · (w)(b′ ⊗ defw (t) [[P1]]), and consider b = ν · (w)(b′ ⊗ defw (t) [[P1]]).

Lemma 7. [[P]] ⊗ [[Q]] ↘ a iff one of the following conditions holds:

1. [[P]] ↘ b and a = b⊗ [[Q]] ;
2. [[Q]] ↘ b and a = [[P]] ⊗ b .

Proof. (⇐) A consequence of the fact that the reaction is closed under tensorial product
and equality.
(⇒) Induction on the structure of P.

– If P is the empty process 0, then condition 2 holds obviously.
– If P is a message, then condition 2 holds by Lemma 6.
– If P is a parallel composition P1 | P2, then [[P1]] ⊗ [[P2]] ⊗ [[Q]] ↘ a.

By Lemma 2, it follows that one of the following cases is possible:

(i) [[Q]] ↘ b′ and a = [[P1]] ⊗ [[P2]] ⊗ b′;
(ii) [[Pi]] ↘ b′ and a = b′ ⊗ [[Pj]] ⊗ [[Q]] ;
(iii) [[Pi]] ⊗ [[Pj]] ↘ b′ and a = b′ ⊗ [[Q]] ;
(iv) [[Pi]] ⊗ [[Q]] ↘ a′ and a = a′ ⊗ [[Pj]] , where {i, j} = [2].

According to Proposition 2, [[P]] = [[Pi]] ⊗ [[Pj]] . In case (i), condition 2 holds by
taking b = b′. In case (ii), we have [[P]] ↘ b′ ⊗ [[Pj]] . Then, condition 1 holds by taking
b = b′ ⊗ [[Pj]] . In case (iii), condition 1 holds by taking b = b′.

In case (iv), by induction, we distinguish two sub-cases:

(a) [[Pi]] ↘ b′ and a′ = b′ ⊗ [[Q]] ;
(b) [[Q]] ↘ b′ and a′ = [[Pi]] ⊗ b′.

For (a), we obtain [[P]] ↘ b′ ⊗ [[Pj]] , and condition 1 holds for b = b′ ⊗ [[Pj]] .
For (b), condition 2 holds for b = b′. In both sub-cases, some action commutations are
required; they are possible according to Proposition 2.

– If P is a definition def w〈t〉 . P1 in P2, then we may assume without losing generality
that w 6∈ fn(Q). By Lemma 4, w 6∈ surf([[Q]]). According to Proposition 2,
we have ν · (w)([[P2]] ⊗ defw (t) [[P1]] ⊗ [[Q]]) ↘ a. By Lemma 2, [[P2]] ⊗
defw (t) [[P1]] ⊗ [[Q]] ↘ a′ and a = ν · (w)a′. Since defw (t) [[P1]] 6↘ , it follows
from Lemma 2 that one of the following cases remains possible:

(i) [[P2]] ↘ b′ and a′ = b′ ⊗ defw (t) [[P1]] ⊗ [[Q]] ;

Axioms 2022, 11, 8 12 of 17

(ii) [[Q]] ↘ b′ and a′ = [[P2]] ⊗ defw (t) [[P1]] ⊗ b′;
(iii) [[P2]] ⊗ defw (t) [[P1]] ↘ b′ and a′ = b′ ⊗ [[Q]] ;
(iv) [[P2]] ⊗ [[Q]] ↘ a′′ and a′ = a′′ ⊗ defw (t) [[P1]] .

In case (i), condition 1 holds for b = ν · (w)(b′ ⊗ defw (t) [[P1]]).
In case (ii), by Lemma 2, there exists b such that surf(b) ⊆ surf([[Q]]) and b = b′;

condition 2 holds for this b. In case (iii), condition 1 holds for b = ν · (w)b′.
In case (iv), we distinguish two sub-cases:

(a) [[P2]] ↘ b′ and a′′ = b′ ⊗ [[Q]] ;
(b) [[Q]] ↘ b′ and a′′ = [[P2]] ⊗ b′.

For (a), condition 1 holds for b = ν · (w)(b′ ⊗ defw (t) [[P1]]). For (b), there exists b
such that surf(b) ⊆ surf([[Q]]) and b = b′ (by Lemma 2); condition 2 holds for this b.
Proposition 2 is used in all cases and sub-cases.

Lemma 8. [[P]] ⊗ defu (y) [[Q]] ↘ a iff one of the following conditions holds:

1. [[P]] ↘ b and a = b⊗ defu (y) [[Q]] ;
2. P ≡ R | u〈v〉 and a = [[R | {v/y}Q]] ⊗ defu (y) [[Q]] ;
3. P ≡ def v1〈t1〉 . R1 in def v2〈t2〉 . R2 in ...def vn〈tn〉 . Rn in (R | u〈vn〉), and

a = ν · (v1)(defv1 (t1) [[R1]] ⊗
ν · (v2)(defv2 (t2) [[R2]] ⊗

...
ν · (vn)(defvn (tn) [[Rn]] ⊗ [[R | {vn/y}Q]] ⊗ defu (y) [[Q]])...)),

where vi 6∈ fn(Q) ∪ {u} for every i ∈ [n].

Proof. (⇐) If condition 1 holds, then the implication follows as a consequence of the fact
that the reaction is closed under tensorial product and equality. If condition 2 holds, then
we have
[[P]] ⊗ defu (y) [[Q]] = by Proposition 5
= [[R]] ⊗ 〈v〉 · outu ⊗ defu (y) [[Q]] by Lemma 2
↘ [[R]] ⊗ [v/y] [[Q]] ⊗ defu (y) [[Q]] by Lemma 5
= a.

If condition 3 holds, it follows by Lemma 2 and Lemma 4 that vi 6∈ surf(defu (y) [[Q]])
for every i ∈ [n]. Then,
[[P]] ⊗ defu (y) [[Q]] = by Propositions 5 and 2
= ν · (v1)(defv1 (t1) [[R1]] ⊗ by Lemma 2

...
ν · (vn)(defvn (tn) [[Rn]] ⊗ [[R]] ⊗ 〈vn〉 · outu ⊗ defu (y) [[Q]]) . . .)
↘ ν · (v1)(defv1 (t1) [[R1]] ⊗ by Lemma 5

...
ν · (vn)(defvn (tn) [[Rn]] ⊗ [[R]] ⊗ [vn/y] [[Q]] ⊗ defu (y) [[Q]]) . . .)

= a.
(⇒) Induction on the structure of P.

– If P is the empty process 0 or a message w〈v〉 with w 6= u, then [[P]] ⊗ defu
(y) [[Q]] 6↘ . The statement of the lemma is obviously true as its premise is not satisfied.
On the other hand, if P is a message u〈v〉, then

[[P]] ⊗ defu (y) [[Q]] ↘ by Lemma 2
↘ [v/y] [[Q]] ⊗ defu (y) [[Q]] ↘ a by Lemma 5
= 0 | {v/y}Q⊗ defu (y) [[Q]] .

Furthermore, P ≡ 0 | u〈v〉. Consequently, condition 2 holds.
– If P is a parallel composition P1 | P2, then [[P1]] ⊗ [[P2]] ⊗ defu (y) [[Q]] ↘ a.

Since defu (y) [[Q]] 6↘ , it follows from Lemma 2 that one of the following cases remains
possible:

Axioms 2022, 11, 8 13 of 17

(i) [[Pi]] ↘ b′ and a = b′ ⊗ [[Pj]] ⊗ defu (y) [[Q]] ,
(ii) [[Pi]] ⊗ [[Pj]] ↘ b′ and a = b′ ⊗ defu (y) [[Q]] ,
(iii) [[Pi]] ⊗ defu (y) [[Q]] ↘ a′ and a = a′ ⊗ [[Pj]] , where {i, j} = [2].

According to Proposition 2, we obtain [[P]] = [[Pi]] ⊗ [[Pj]] . In case (i), we obtain
[[P]] ↘ b′ ⊗ [[Pj]] , and condition 1 holds for b = b′ ⊗ [[Pj]] . In case (ii), condition 1
holds for b = b′. In case (iii), we distinguish three sub-cases:

(a) [[Pi]] ↘ b′ and a′ = b′ ⊗ defu (y) [[Q]] ;
(b) Pi ≡ R′ | u〈v〉 and a′ = [[R′ | {v/y}Q]] ⊗ defu (y) [[Q]] ;
(c) Pi ≡ def v1〈t1〉 . R1 in . . . def vn〈tn〉 . Rn in (R′ | u〈vn〉) and

a′ = ν · (v1)(defv1 (t1) [[R1]] ⊗
...

ν · (vn)(defvn (tn) [[Rn]] ⊗ [[R′ | {vn/y}Q]] ⊗ defu (y) [[Q]]) . . .),
where vk 6∈ fn(Q) ∪ {u} for every k ∈ [n].

In sub-case (a), we obtain [[P]] ↘ b′ ⊗ [[Pj]] . Therefore, condition 1 holds for
b = b′ ⊗ [[Pj]] . For (b), we have P ≡ R′ | Pj | u〈v〉. By Proposition 2, a = [[R′ | Pj |
{v/y}Q]] ⊗ defu (y) [[Q]] . Thus, condition 2 holds. For sub-case (c), we may assume
(without losing generality) that vk 6∈ fn(Pj) for every k ∈ [n]. By Lemma 4, it follows
that vk 6∈ surf([[Pj]]) for every k ∈ [n]. Then P ≡ def v1〈t1〉 . R1 in . . . def vn〈tn〉 .
Rn in (R′ | Pj | u〈vn〉), and
a = by Proposition 2
= ν · (v1)(defv1 (t1) [[R1]] ⊗

...
ν · (vn)(defvn (tn) [[Rn]] ⊗ [[R′ | Pj | {vn/y}Q]] ⊗ defu (y) [[Q]]) . . .).

Thus, condition 3 holds.
– If P is a definition def w〈t〉 . P1 in P2, then we can assume without losing generality

that w 6∈ fn(Q) ∪ {u}. By Lemma 4 and Lemma 2, w 6∈ surf(defu (y) [[Q]]). It follows
from Proposition 2 that [[P]] ⊗ defu (y) [[Q]] = ν · (w)([[P2]] ⊗ defw (t) [[P1]]
⊗defu (y) [[Q]]) ↘ a. By Lemma 2, [[P2]] ⊗ defw (t) [[P1]] ⊗ defu (y) [[Q]] ↘ a′

and a = ν · (w)a′. Since defw (t) [[P1]] 6↘ and defu (y) [[Q]] 6↘ , then defu (y) [[Q]] ⊗
defw (t) [[P1]] 6↘ (according to Lemma 2). It follows that one of the following cases
remains possible:

(i) [[P2]] ↘ b′ and a′ = b′ ⊗ defw (t) [[P1]] ⊗ defu (y) [[Q]] ;
(ii) [[P2]] ⊗ defw (t) [[P1]] ↘ b′ and a′ = b′ ⊗ defu (y) [[Q]] ;
(iii) [[P2]] ⊗ defu (y) [[Q]] ↘ a′′ and a′ = a′′ ⊗ defw (t) [[P1]] .

In case (i), condition 1 holds for b = ν · (w)(b′ ⊗ defw (t) [[P1]]). In case (ii), condi-
tion 1 holds for b = ν · (w)b′. In case (iii), by induction, we distinguish three sub-cases:

(a) [[P2]] ↘ b′ and a′′ = b′ ⊗ defu (y) [[Q]] ,
(b) P2 ≡ R′ | u〈v〉 and a′′ = [[R′ | {v/y}Q]] ⊗ defu (y) [[Q]] ,
(c) P2 ≡ def v1〈t1〉 . R1 in . . . def vn〈tn〉 . Rn in (R′ | u〈vn〉) and

a′′ = ν · (v1)(defv1 (t1) [[R1]] ⊗
...

ν · (vn)(defvn (tn) [[Rn]] ⊗ [[R′ | {vn/y}Q]] ⊗ defu (y) [[Q]]) . . .),
where vk 6∈ fn(Q) ∪ {u} for every k ∈ [n].

In sub-case (a), condition 1 holds for b = ν · (w)(b′ ⊗ defw (t) [[P1]]). In sub-case (b),
we have P ≡ def w〈t〉 . P1 in (R′ | u〈v〉). We distinguish two situations:

• v 6= w. Then P ≡ def w〈t〉 . P1 in R′ | u〈v〉. It is easy to see that surf([[{v/y}Q]]) ⊆
{v}∪surf([[Q]]), and so w 6∈ surf([[{v/y}Q]]). By Proposition 2, a = [[def w〈t〉 .
P1 in R′ | {v/y}Q]] ⊗ defu (y) [[Q]] . Thus, condition 2 holds.

• v = w. Then P ≡ def v〈t〉 . P1 in (R′ | u〈v〉). Moreover, a = ν · (v)(defv (t) [[P1]]
⊗ [[R′ | {v/y}Q]] ⊗ defu (y) [[Q]]). Thus, condition 3 holds.

Axioms 2022, 11, 8 14 of 17

In sub-case (c), P ≡ def w〈t〉 . P1 in def v1〈t1〉 . R1 in . . . def vn〈tn〉 . Rn in (R′ | u〈vn〉).
Using Proposition 2, we obtain

a = ν · (w)(defw (t) [[P1]] ⊗
ν · (v1)(defv1 (t1) [[R1]] ⊗

...
ν · (vn)(defvn (tn) [[Rn]] ⊗ [[R′ | {vn/y}Q]] ⊗ defu (y) [[Q]]) . . .)).

Thus, condition 3 holds.

Theorem 2. If [[P]] ↘ a, then there exists a process Q such that P→ Q and [[Q]] = a.

Proof. Induction on the structure of P.
– If P is the empty process or a message, then [[P]] 6↘ . Therefore, the statement of

the theorem is obviously true because the premise is not satisfied.
– If P is a parallel composition P1 | P2, then [[P1]] ⊗ [[P2]] ↘ a. By Lemma 7, one of

the following cases holds:

(1) [[P1]] ↘ a1 and a = a1 ⊗ [[P2]] ;
(2) [[P2]] ↘ a2 and a = [[P1]] ⊗ a2.

It is sufficient to consider the case (1), the other one being similar (symmetric).
By induction, we have P1 → Q1 and a1 = [[Q1]] . According to Proposition 1,

P → Q1 | P2 and a = [[Q1]] ⊗ [[P2]] . Thus, the result of the theorem holds for
Q = Q1 | P2.

– If P is a definition def w〈t〉 . P1 in P2, then ν · (w)([[P2]] ⊗ defw (t) [[P1]] ↘ a. It
follows from Lemma 2 that [[P2]] ⊗ defw (t) [[P1]] ↘ a′ and a = ν · (w)a′. By Lemma 8,
only one of the following cases holds:

(i) [[P2]] ↘ b and a′ = b⊗ defw (t) [[P1]] ;
(ii) P2 ≡ R | w〈v〉 and a′ = [[R | {v/t}P1]] ⊗ defw (t) [[P1]] ;
(iii) P2 ≡ def w1〈t1〉 . R1 in . . . def wn〈tn〉 . Rn in (R | w〈wn〉) and

a′ = ν · (w1)(defw1 (t1) [[R1]] ⊗
...

ν · (wn)(defwn (tn) [[Rn]] ⊗ [[R | {wn/t}P1]] ⊗ defw (t) [[P1]])...),
where wi 6∈ fn(P1) ∪ {w} for every i ∈ [n].

In case (i), by the induction hypothesis, P2 → Q2 and b = [[Q2]] . It follows that
P→ def w〈t〉 . P1 in Q2 and a = ν · (w)([[Q2]] ⊗ defw (t) [[P1]]) Thus, the result of the
theorem holds for Q = def w〈t〉 . P1 in Q2.

In case (ii), we have P → def w〈t〉 . P1 in (R | {v/t}P1) and a = ν · (w)([[R |
{v/t}P1]] ⊗ defw (t) [[P1]]) = [[Q]] . Thus, the result of the theorem holds for
Q = def w〈t〉 . P1 in (R | {v/t}P1).

In case (iii), it follows that wi 6∈ surf(defw (t) [[P1]]) for any i ∈ [n] (Lemmas 2 and 4).
P ≡ def w〈t〉 . P1 in def w1〈t1〉 . R1 in ...def wn〈tn〉 . Rn in (R | w〈wn〉)→
def w〈t〉 . P1 in def w1〈t1〉 . R1 in . . . def wn〈tn〉 . Rn in (R | {wn/t}P1)︸ ︷︷ ︸

Q

a = ν · (w)(by Proposition 2
ν · (w1)(defw1 (t1) [[R1]] ⊗

...
ν · (wn)(defwn (tn) [[Rn]] ⊗ [[R | {wn/t}P1]] ⊗ defw (t) [[P1]]) . . .))

= ν · (w)(defw (t) [[P1]] ⊗
ν · (w1)(defw1 (t1) [[R1]] ⊗

...
ν · (wn)(defwn (tn) [[Rn]] ⊗ [[R | {wn/t}P1]]) . . .))

= [[Q]] .

Axioms 2022, 11, 8 15 of 17

6. Describing Communication Patterns by Using the Hypergraph Model

In the Unix operating system, interprocess communications based on message queues
allow exchange of information between processes. The processes exchange information by
accessing a common message queue. Essentially, one process produces a message queue
(via a message-passing module) that other processes may access; often a server places a
message onto a queue which can be read by multiple clients. The sending process may
specify its type when placing the message in a queue such that the reading processes
can select the appropriate message; thus, message queues provide a way of multiplexing
information from one producer to more consumers.

As example, we consider a simple system in which only one channel is used to
exchange messages between the server and clients, and any message at the input of any
client must appear at the output of all the clients (this is a requirement for several social
networks including a chat messaging system). A type associated to each message allows a
client to access the (unique) message queue for selectively reading only specific messages
(in a first-in–first-out manner). We simplify the system, and consider a process S working
as a server and two clients A and B. The channels idA and idB are used to indicate the type
of messages from S to A and B, respectively; a channel idS indicates the type of messages
from the clients to the server. Client A uses an input channel inA and an output channel
outA; client B uses channels inB and outB). For a message m sent along the input channel
inA, the pattern calculus process corresponding to this system is:

CommSyst = def q〈x〉 | idS〈y〉 . q〈x〉 | idA〈_〉 | q〈x〉 | idB〈_〉 ∧
q〈x〉 | idA〈y〉 . outA〈x〉 ∧
q〈x〉 | idB〈y〉 . outB〈x〉 ∧

inA〈x〉 . q〈x〉 | idS〈_〉 ∧
inB〈x〉 . q〈x〉 | idS〈_〉

in inA〈m〉 .

Using the hypergraph model, in Figure 3 is presented the net corresponding to this process.

idA idB

m

any

inA inB

q

outA outB

idS

Figure 3. The net of a simple communication system described previously in pattern calculus.

Except the root hyperedge, the structure of this net does not change during the
evolution. Therefore, the evolution of the system could be described graphically focusing
only on the root hyperedge; this evolution is depicted in Figure 4.

Axioms 2022, 11, 8 16 of 17

q

any
m

inA inA

idBidA

q

any

m

inB inB

idAidA

idA idB

idBidB

m

mm

any any

any

q

inA

inA inA

idA idB

inBinB

inB

q q

outBoutA outB outB

outBoutB

outA outA

outA outA

idS idS idS

idS idS

Figure 4. The evolution of the system (as it appears in the root hyperedge).

In Figure 4 it is not difficult to check visually the requirement that a message appearing
at the input of a client appears also at the output of all the clients. In our case, the message
m on the input channel inA (the initial step) appears at the output channels outA and outB
in the final step described in Figure 4.

7. Conclusions and Related Work

In this paper we introduce a hypergraph model (given by the pattern nets) for the
communication patterns. These nets provide a fully abstract model for the pattern calculus.
In this way, a new sound graphical model for concurrency is introduced. We present a
semantic interpretation of the pattern calculus in the framework of control structures, creating
a graphical representation for the pattern calculus given by a new hypergraph model given
by the pattern nets. By introducing a mapping from the control structure of pattern calculus
into a set of hypergraphs, we provide a graphical model for communication patterns. It is
also proved that the hypergraph model preserves the operational reductions of processes
from pattern calculus and of the actions from the control structures. As an example, simple
interprocess communications based on message queues inspired by the social networks
are described by using our pattern nets. This example could be a first step towards more
realistic scenarios in which the proposed model can be used to identify control structures
supporting specific communication patterns. Future work will investigate realistic autonomic
networking, mobility management, multiaccess selection, wireless and mobile networks (as
they are presented in [12], for instance).

Graphical representations for process calculi highlight a new perception, providing
a visual approach of concurrency and networks. According to our knowledge, just a
few papers are devoted to the graphical presentations of the process calculi. We mention
our previous attempts, namely the faithful π-nets [13], a graphical representation of the
π-calculus machine [14], and a related approach by using jc-nets [15]. There exist also the
graphical representations introduced by Robin Milner, namely action graphs and π-nets.
Action graphs [16] are the graphical presentation of action calculi; they are very general, and
so they are not able to describe specific features of certain action calculi. In the graphical
presentation of the π-calculus given by the π-nets [6], channels are represented as rather
complicated nodes called torpedos together with boxes representing guards, and messages
are represented as directed arcs. The boxes obscure the internal nodes representing channels;
to ensure access to the hidden channels, a rather complex additional mechanism of links is
used. To avoid such a mechanism, in [13,14] the channels are represented by nodes, messages
are represented by boxes of arcs and guards are represented by arcs between boxes. This
approach simplified the graphical representation of the π-calculus; unfortunately, it provided

Axioms 2022, 11, 8 17 of 17

identical representations for processes with different behaviours. Fortunately, this deficiency
was overtaken in the pattern calculus hypergraph model: processes with different behaviours
are not mapped to the same hypergraph. The hypergraph model is presented in the same
formal framework used for the π-nets (it is worth noting that hypergraph model avoids
certain irrelevant aspects of π-nets). It is simpler than the π-nets, preserving much of their
expressive power (according to [2], the join calculus has the same expressive power as the
π-calculus). Compared with all of them, the pattern nets represent a simple but sound
graphical model for concurrency, providing a fully abstract model for the pattern calculus.

Funding: This research received no external funding.

Acknowledgments: Many thanks to Mihai Rotaru for his contributions in our past collaboration.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Resnik, M.D. Mathematics as a Science of Patterns; Oxford University Press: Oxford, UK, 1999.
2. Fournet, C; Gonthier, G. The reflexive CHAM and the join calculus. In Proceedings of the 23rd ACM Symposium on Principles

of Programming Languages (POPL’96), St. Petersburg, FL, USA; 21–24 January 1996; Association for Computing Machinery:
New York, NY, USA, 1996; pp. 372–385. [CrossRef]

3. Levy, J.J. Some results in the join calculus. Lect. Notes Comput. Sci. 1997, 1281, 233–249.
4. Milner, R. Communicating and Mobile Systems: The π-Calculus; Cambridge University Press: Cambridge, UK, 1999.
5. Reisig, W. Understanding Petri Nets; Springer: Berlin, Germany, 2013.
6. Milner, R. π-nets: A graphical form of π-calculus. Lect. Notes Comput. Sci. 1994, 788, 26–42.
7. Schmidt, G.; Strohlein, T. Relations and Graphs; EATCS Monographs on Theor. Comput. Sci. Springer: Berlin, Germany, 1993.
8. Milner, R. Action calculi for syntactic action structures. Lect. Notes Comput. Sci. 1993, 711, 105–121.
9. Mifsud, A.; Milner, R.; Power, J. Control structures. In Proceedings of the 10th IEEE Symposium on Logic in Computer Science

(LICS’95), San Diego, CA, USA, 26–29 June 1995.
10. Asperti, A.; Longo, G. Categories, Types and Structures; MIT Press: Cambridge, MA, USA, 1996.
11. Milner, R. Fully abstract models of typed λ-calculi. Theor. Comput. Sci. 1977, 4, 1–22. [CrossRef]
12. Pentikousis, K.; Blume, O.; Aguero, R.; Papavassiliou, S. Mobile Networks and Management; Springer: Berlin, Germany, 2010.
13. Ciobanu G.; Rotaru, M. Faithful π-nets. A graphical representation of the asynchronous π-calculus. Electron. Notes Theor. Comput.

Sci. 1998, 18, 24–45. [CrossRef]
14. Ciobanu G.; Rotaru, M. A π-calculus machine. J. Univers. Comput. Sci. 2000, 6, 39–59.
15. Ciobanu G.; Rotaru, M. JC-nets. Lect. Notes Comput. Sci. 2001, 2055, 190–201.
16. Milner, R. Calculi for interaction. Acta Inform. 1996, 33, 707–737. [CrossRef]

http://doi.org/10.1145/237721.237805
http://dx.doi.org/10.1016/0304-3975(77)90053-6
http://dx.doi.org/10.1016/S1571-0661(05)80248-8
http://dx.doi.org/10.1007/s002360050067

	Introduction
	Pattern Calculus
	Hypergraphs
	Control Structure for Pattern Calculus
	Fully Abstract Hypergraph Model of the Pattern Calculus
	Describing Communication Patterns by Using the Hypergraph Model
	Conclusions and Related Work
	References

